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Introduction

Coastal lagoons represent transitional ecosystems between terrestrial and marine

environments and play a central role in nutrient cycling, carbon flux, and biodiversity

conservation (Kjerfve, 1994; Schubert and Telesh, 2017). These characteristics and their

location on low-lying coasts are responsible for coastal lagoons being among the most

productive and valuable ecosystems in the world, providing and supporting a wide range of

ecological services and social benefits (Pérez-Ruzafa et al., 2020). Coastal lagoons are

classified as one of the most sensitive ecosystems to changes in their environment (Velasco

et al., 2018) especially to anthropogenic eutrophication and pollutant accumulation

(Barbier et al., 2011), which explains why most coastal lagoons around the world show

signs of ecological imbalance and degradation.

Marine coastal sediments are complex ecosystems that are influenced by the interaction

of various geological, hydrological, physical, chemical and biological factors (Zhang et al.,

1999). Coastal sediments formed by continental transport and sedimentation of biological

products provide abundant nutrients for microorganisms (Parkes et al., 2014). In coastal

marine ecosystems, microorganisms play a central role in shaping nutrient dynamics and

biogeochemical cycles by transforming and metabolizing nutrients and pollutants (Nogales

et al., 2011). Microorganisms can degrade sediment organic matter, promote sulfate

reduction, sulfide/sulfur oxidation, iron reduction, nitrification and pollutant

degradation, improve sediment structure and increase the stability of ecosystems (Behera

et al., 2017). However, microorganisms in coastal sediments are influenced by the physico-

chemical properties of the sediment, including salinity, pH, nutrients and are especially

vulnerable to pollutants (Rodrıǵuez et al., 2018; Liang et al., 2023). Changes in these

properties can have a cascading effect on the microbial growth, metabolism, and activity,

thereby affecting the structure of the sediment-associated microbial communities (Jackson

and Vallaire, 2009; Liang et al., 2023).

The Mar Menor, located in the southeast of Spain, is the largest hypersaline coastal

lagoon in Europe, with a surface area of 135 km2 (Conesa and Jiménez-Cárceles, 2007). The
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lagoon and its adjacent areas are protected at the national and

international levels. Mar Menor is included in the Ramsar wetland

sites of international importance and the Specially Protected Areas

of Mediterranean Importance [SPAMI; (Álvarez-Rogel et al.,

2020)]. In recent years, increasing human activities, especially

mining, agriculture and tourism, have caused significant negative

changes in the Mar Menor, leading to a considerable input of

sediments, nutrients (nitrates and phosphates) and pollutants

(pesticides and metals) into the lagoon (Velasco et al., 2006;

Pérez-Ruzafa et al., 2019). These activities have caused a decline

in water quality, leading to the proliferation of harmful algal

blooms, fish mortality events, and degradation of seagrass beds

(Pérez Ruzafa et al., 2004; Pérez-Ruzafa et al., 2006; Zamora-López

et al., 2022). In 2015, the ecological condition of the lagoon

deteriorated significantly due to a massive phytoplankton bloom,

resulting in the loss of macrophytes and benthic fauna (Ruiz-

Fernández et al., 2019). This disturbance destabilized the natural

ecological balance of the lagoon leading to several hypoxic episodes

in recent years (Álvarez-Rogel et al., 2020). Many of these negative

impacts could also affect the sediment-associated microbiota, which

is not only an important contributor to biogeochemical cycles but

could also help to counteract these impacts by accumulating and

managing nutrients and contaminants (Dash et al., 2013; Nzila,

2013; Rodrıǵuez et al., 2018). However, our knowledge of the

microbial communities in the Mar Menor remains quite limited

(Aldeguer-Riquelme et al., 2022).

This study aims to preliminarily characterize the microbial

communities in different zones of the Mar Menor impacted by

tourism, mining, or agricultural activities. Its objective is to identify

microbial biomarkers that serve as indicators of the lagoon’s

environmental conditions. We anticipate that these findings will

provide valuable insight into the microbial biosphere of the region

and make a significant contribution to the establishment of effective

conservation and management practices for the sustainability of

this important ecosystem.
Methods

Study area and field sampling

The Mar Menor is a hypersaline coastal lagoon that occupies 135

km2 of surface, its volume is 653 Hm3, and its maximum depth is 7 m.

It is located in Campo de Cartagena, in the Region ofMurcia, southeast

of Spain. The lagoon is one of the largest in the Mediterranean basin

and the largest on the SpanishMediterranean coast. It is separated from

the open sea by a 22-km-long sand bar (La Manga), with three

channels through which it exchanges water with the sea.

Five zones, characterized by different levels of anthropogenic

impact, were selected for sediment sampling along the Mar Menor

during May 2022 (Supplementary Figure S1). Zone 1 (Z1; Playa de

la Mota, 4 samples) and Zone 2 (Z2; Playa de las Salinas, 4 samples)

are located in the northern part of the lagoon and are the subject of

extensive urban and maritime activities. Zone 3 (Z3; Albujón

estuary, 4 samples) is located in the western area of the lagoon

and is directly influenced by the discharge of the Albujón
Frontiers in Marine Science 02
watercourse. Inputs to the lagoon from the Albujón wadi include

organic particles, dissolved inorganic nitrogen (mainly as nitrate),

and phosphorus derived from agriculture (Velasco et al., 2006).

Zone 4 (Z4; Beal dry riverbed, 3 samples), the Beal River is one of

the main collectors of the Cartagena-La Unión mine and is polluted

with heavy metals. Zone 5 (Z5; Playa del Vivero, 3 samples) is

located in the southern part of the lagoon. This area is surrounded

by hotels and restaurants and is influenced mainly by tourism. At

each sampling zone, surface sediments (5-10 cm) were collected

from 3-4 different locations with the help of a sediment core

sampler (3 cm diameter). All the samples were promptly

transferred into sterile plastic bags and stored in boxes containing

dry ice, maintaining temperatures below -20°C for further analysis.

After being transported to the laboratory, the sediments were

homogenized completely and stored at -80°C.
DNA extraction and 16S rRNA Illumina
Novaseqalanala sequencing

The total DNA of the 18 sediment samples (250 mg) was extracted

with the DNeasy PowerSoil Pro Kit (QIAGEN), according to the

manufacturer’s instructions. DNA concentration was calculated with a

Qubit™ fluorometer using the dsDNA High Sensitivity (HS;

ThermoFisher) kit. The V3–V4 region of the microbial 16S rRNA

gene was amplified using primers 341F (5′-CCTAYGGGRBGCASC
AG-3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′). The PCR
products with the proper size were selected by 2% agarose gel

electrophoresis. The same amount of PCR products from each

sample were pooled, end-repaired, A-tailed, and further ligated with

Illumina adapters. Libraries were sequenced using Novaseq 6000

Illumina platform to generate 250bp paired-end raw reads. The

DNA sequencing and library preparation were carried out by the

Novogene (Cambridge, UK) Sequencing Centre. The sequencing

process resulted in more than 2,280,000 raw reads of V3-V4

amplicons from 18 samples (Supplementary Table S1). After filtering

out low-quality reads with Q values < 10 and N > 10% and chimera

filtering, a total of 1,353,236 high-quality sequences with an average

read length of around 418bp were obtained (Supplementary Table S1).
Bioinformatic and statistical analysis

Paired-end reads were assigned to samples based on their unique

barcodes and truncated by cutting off the barcode and primer

sequences. FLASH v1.2.1 (Magoč and Salzberg, 2011) was used to

merge the reads to get raw tags. High quality clean tags were obtained

using FASTP v0.20.0 (Chen et al., 2018). To obtain effective tags,

chimera tags were removed with Vsearch v2.15.0 (Rognes et al., 2016).

The DADA2 module (Callahan et al., 2016) in QIIME 2 (v2020.6) was

used for denoising effective tags, and the sequences with a frequency

below 5 were filtered out to obtain the final Amplicon Sequence

Variables (ASV). Subsequently, the species assignment of each ASV

was performed with the q2-feature-classifier plugin (Bokulich et al.,

2018) QIIME 2’s (v2020.6). Core microbiome analysis was performed

using the Microbiome (Lahti and Shetty, 2019) package (v1.18.0) in R
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software (v4.2.1) using Rstudio (v2022.02.2). Alpha and beta diversity

indices were calculated with the Phyloseq package v1.40.0 (McMurdie

and Holmes, 2013) and PERMANOVA analysis was performed using

the Vegan package v2.6.4 (Oksanen et al., 2020) in R software (v4.2.1)

using Rstudio (v2022.02.2). To normalize the data, the absolute

frequency of ASVs in all samples was standardized based on the

sequence count of the sample with the lowest number of sequences.

LEfSe analysis was performed by LEfSe software v1.0 (Segata

et al., 2011).
Results and discussion

Summary 16S rRNA data and
microbial diversity

A total of 15,117 ASVs were identified in the 18 samples

analyzed (Supplementary Table S2). The rarefaction curves

showed that the number of ASVs reached the saturation plateau at

~20K sequences, suggesting adequate sampling effort at the five

sampling stations (Supplementary Figure S2). The abundance of

ASVs in the sediment samples in Z5 (965-1540) was significantly

lower than in the other sampling zones (1573 - 2854; p < 0.05)

(Supplementary Table S1). Comparison of alpha diversity values

showed that there were differences in Chao1 and Shannon indices

between Z5 and the other zones (Figures 1A, B). Both alpha diversity

indices of Z1-Z4 were significantly (p < 0.05) higher than those of

Z5. In addition, Z4 had the highest Shannon diversity index,

indicating a greater diversity of microbial communities in this

zone compared to the other regions (Figure 1B).
Microbial community composition

A total of 74 bacterial phyla were identified at the 18 sampling

sites. The predominant bacterial phyla were Proteobacteria (36.1%),

Desulfobacterota (13.1%), Actinobacteriota (12.7%), Firmicutes

(6.5%), Bacteroidota (4.7%), and Cyanobacteria (4.2%), which

accounted for 77.9% of the total sequences in all sediment

samples (Figure 1C). In contrast to the bacterial kingdom, only

2.27% of the sequences (11 phyla) were identified as archaea,

dominated by the phyla Thermoplasmatota (1.2%) and

Nanoarchaeota (0.7%; Figure 1C). The relative abundance of the

3 main phyla, Proteobacteria, Desulfobacterota and Actinobacteria

was significantly different among the 18 sampling sites. Z3 (48.9%)

and Z2 (17.5%) had the highest abundance of phyla Proteobacteria

and Actinobacteria, respectively, while the relative abundance of

Desulfobacterota was highest in both Z5 (21.7%) and Z1 (19.8%;

Figure 1C). Previous studies of coastal and estuarine sediments

affected by contaminants from anthropogenic activities such as

agriculture, industry and urban wastewater have consistently

identified Proteobacteria, Desulfobacterota, Actinobacteriota and

Bacteroidota as the most abundant phyla (Mahmoudi et al., 2015;

Quero et al., 2015; Guo et al., 2018). Consistent with these

observations, a recent study identified a similar pattern in the

sediment of Mar Menor, with Proteobacteria, Bacteroidota, and
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(Aldeguer-Riquelme et al., 2022). The prevalence of these phyla in

contaminated sediments seems to be related to their capacity to

tolerate and metabolize various contaminants. Proteobacteria play

an important role in degrading organic materia and hydrocarbon

compounds (Liang et al., 2023) while members of Desulfobacterota

are critically involved in the anaerobic degradation of organic

pollutants and the cycling of sulfur compounds (Gillan et al.,

2005; Quero et al., 2015). Actinobacteriota and Bacteridoidota are

known to metabolize contaminants like hidrocarbons and PCBs

and to tolerate heavy metals. (Zhang et al., 2008; Nogales et al.,

2011; Zanaroli et al., 2012; Quero et al., 2015). Overall, these results

indicate a considerable influence of pollutants on the microbial

community in the sediment of the Mar Menor.

Analysis of the core microbiome showed that 7 classes and 4

families co-occurred in the 18 samples at the minimum detection

threshold of 0.01% (Supplementary Figure S3). Accordingly, the core

microbiome of the Mar Menor sediment was formed by the classes

Gammaproteobacteria, Acidimicrobiia, Alphaproteobacteria,

Bacteroidia, Clostridia, Polyangia, and Thermoanaerobaculia, and the

familiesWoeseiaceae, Rhodobacteraceae, Ilumatobacteraceae, as well as

Thermoanaerobaculaceae. Previous studies in contaminated coastal

areas in Italy and Australia have also found the presence of

Gammaproteobacteria, Acidimicrobiia, Alphaproteobacteria,

Bacteroidia, and Clostridia in the core microbiome (Sun et al., 2013;

Quero et al., 2015). Interestingly, to our knowledge, this is the first time

that Polyangia and Thermoanaerobaculia clades have been found as

part of a core microbiome in coastal sediments.
Prokaryotic structure of the sediment
microbial communities and
taxonomic biomarkers

The Principal Coordination Analysis (PCoA) based on Bray–

Curtis distance (Figure 1D) showed the dissimilarity of bacterial

communities among sampling sites, and it was significant as

revealed by a PERMANOVA test (R2 = 0.426, p < 0.001;

Supplementary Table S3). The sediment samples from Z4 and Z5

were highly clustered, while the samples from Z1 showed the

greatest dissimilarity in composition. PCoA clearly distinguished

Z1, Z2 and Z5 from the sampling sites near the estuaries, Z3 and Z4.

To find more detailed differences in the taxonomic composition

of the 5 microbial communities associated with the 5 sampling

zones, a Linear discriminant analysis Effect Size (LEfSe) was

performed using phylum-to-species level data. This analysis

allowed us to identify discriminating bacterial and archaeal taxa

from marine sediments that could serve as ecological biomarkers.

The LEfSe of all species found in the five sediment sampling zones

(Z1, Z2, Z3, Z4 and Z5) were analyzed together, resulting in 26 taxa

with significant differences (LDA Score > 10,000; Figure 2).

Members of Desulfobacterota (class Desulfobacteria, order

Desulfobacterales, family Desulfosarcinaceae) and Chloroflexi

phylum, Thiotrichales order (family Thiotrichaceae) and the

uncultivated family CG2-30-50-142 (phylum Actinobacteriota)

were identified as bacterial biomarkers of the Z1. Interestingly, Z1
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was the only microbial community showing an Archaea biomarker,

as it was enriched in the Thermoplasmata class. Z2 was enriched

with members of the Acidobacteriota and the non-cultivated phyla

NB1-J, the classes Acidimicrobiia and Alphaproteobacteria as

well as the order Rhizobiales. In the case of Z3, most bacterial

taxa identified as bacterial biomarkers belong to the phylum
Frontiers in Marine Science 04
Proteobacteria, including the class Gammaproteobacteria and the

order Steroidobacterales (family Woeseiaceae), while in Z4 only two

bacterial taxa were consistently enriched, the phylum Bacteroidia

and the order Rhodobacterales (family Rhodobacteraceae). Finally,

the LEfSe analysis in Z5 shows a significant enrichment in members

of the phylum Desulfobacterota (class Desulfobulbia, order
A B

C

D

FIGURE 1

Comparison of sediment bacterial composition between sampling stations in the Mar Menor. Boxplots with alpha diversity metrics for the five sampling
stations (Z1–Z5) calculated with Chao1 (A) and Shannon index (B), bars are colored by sampling site (*Kruskal-Wallis test, p-value 0.05). (C) Relative
abundance (%) of bacterial and archaeal top phyla. The category ‘Others’ accounted for phyla that were represented by < 2.5% abundance. (D) PCoA of
Bray-Curtis distances between all samples, colored by sampling station (Z1-Z5).
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Desulfobulbales, class Desulfocapsacea), the order Chromatiales

(family Chromatiaceae), the class Bacteroida and the genus

Desulfosarcina (order Desulfobacterales).
Conclusions

In this study, we investigated microbial diversity and community

structure by 16S metagenomic sequencing of the sediment-

associated microbiota in the Mar Menor coastal lagoon. We

identified 74 bacterial phyla, with Proteobacteria, Desulfobacterota,

Actinobacteriota, and Bacteroidota being the most represented. The

occurrence of lineages belonging to the Archaea domain was quite

limited, accounting for only 2.25% of the sequences. The southern

region of the coastal lagoon (Z5), which is most strongly influenced

by local tourism, showed the lowest ecological diversity values. The

Mar Menor sediment’s core microbiome comprised seven classes and

four families. The LefSE analysis revealed a strong correlation

between the phyla Acidobacteria, NB1_J, Chloroflexi, and

Thermoplasmatota with the north, while the phylum Bacteroidota

emerging as an ecological indicator for the southern region. The

findings from this investigation will prove useful for broadening our

understanding of microbial communities in lagoon sediments and for

future efforts aimed at promoting the sustainability of this

significant ecosystem.
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FIGURE 2

Circular LEfSe cladogram showing the phylogenetic distribution of microbial lineage in the five sampling regions. Linages with LDA values of 3.0 or
higher are indicated. The dot in the center represents phylum-level ASVs, while the outer circle of dots denotes genus-level ASVs. The order, family,
and class that differ significantly between two groups are indicated in the upper right corner with corresponding color codes.
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