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Modified Benney-Luke equation (mBL equation) is a three-dimensional

temporal-spatial equation with complex structures, that is a high-dimensional

partial differential equation (PDE), it is also a new equation of the physical ocean

field, and its solution is important for studying the internal wave-wave interaction

of inclined seafloor. For conventional PDE solvers such as the pseudo-spectral

method, it is difficult to solve mBL equation with both accuracy and speed.

Physics-informed neural network (PINN) incorporates physical prior knowledge

in deep neural networks, which can solve PDE with relative accuracy and speed.

However, PINN is only suitable for solving low-dimensional PDE with simple

structures, and not suitable for solving high-dimensional PDE with complex

structures. This is mainly because high-dimensional PDEs usually have complex

structures and high-order derivatives and are likely to be high-dimensional non-

convex functions, and the high-dimensional non-convex optimization problem

is an NP-hard problem, resulting in the PINN easily falling into inaccurate local

optimal solutions when solving high-dimensional PDEs. Therefore, we improve

the PINN for the characteristics of mBL equation and propose “DF-ParPINN:

parallel PINN based on velocity potential field division and single time slice focus”

to solve mBL equation with large amounts of data. DF-ParPINN consists of three

modules: temporal-spatial division module of overall velocity potential field, data

rational selection module of multiple time slices, and parallel computation

module of high-velocity fields and low-velocity fields. The experimental results

show that the solution time of DF-ParPINN is nomore than 0.5s, and its accuracy

is much higher than that of PINN, PIRNN, cPINN, and DeepONet. Moreover, the

relative error of DF-ParPINN after deep training 1000000 epochs can be reduced

to less than 0.1. The validity of DF-ParPINN proves that the improved PINN also

can solve high dimensional PDE with complex structures and large amounts of

data quickly and accurately, which is of great significance to the deep learning of

the physical ocean field.
KEYWORDS

mBL equation, PINN, DF-ParPINN, temporal-spatial division, data rational selection,
parallel computation
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1 Introduction

With the rapid development of computer technology, scientific

computation has become the third scientific method that can be

juxtaposed with theory and experiments (Shi, 2001; Lu and Guan,

2004). Solving various partial differential equations (PDE)

numerically is an important part of scientific computation

(Ockendon et al., 2003), which is of great significance in

promoting the development of related fields. Many physical

processes, such as nuclear explosion and fluid flow, can be

described by PDE. However, solving PDE through theoretical

analysis is very complicated and time-consuming, and it is faced

with unsolvable dilemmas (Science, 2016). It is usually faster to

obtain the numerical approximate solution of PDE by scientific

computation, and the solution model based on computer science

and technology can be continuously optimized, which liberates

human participation in the theoretical solution.

Traditional numerical methods mainly include the finite

difference method, finite element method, and finite volume

method (Chen et al., 2020). These methods first discretize the

computational domain into independent grid elements, and then

iteratively solve the partial differential equation on the subdomain

of the element to obtain the numerical approximate solution of the

equation. However, to ensure the accuracy of the solution,

traditional numerical methods are usually time-consuming and

rely heavily on manual experience: On the one hand, iterative

solving of complex PDE requires expensive computational

overhead. On the other hand, to avoid calculation failure,

frequent human-computer interaction is usually required to

identify and optimize grid quality during grid division, to meet

the requirements of prediction accuracy (Katz and Sankaran, 2011;

Abel et al., 2013). With the increasing complexity of the PDE

solving process, the high computational cost and frequent human-

computer interaction limit the efficiency of traditional numerical

methods in parameter optimization, space exploration, real-time

simulation, and other aspects.

Using the traditional numerical methods for PDE, grid division

and iterative solution are required, which is computationally

expensive and technically difficult. The method of solving PDEs

based on deep learning can not only quickly move forward and

inverse (Wang et al., 2021; Xu, 2021), but also effectively solve

nonlinear problems (Raissi et al., 2017a, Raissi et al., 2017b, Raissi et

al., 2017c, Raissi and Karniadakis, 2018) and more complex and

higher-dimensional PDE (Weinan et al., 2017; Han et al., 2018;

Nabian and Meidani, 2019). Solving methods of PDE based on deep

learning is overturning traditional numerical methods of PDE,

leading the scientific and technological wave of “AI for science”

(Le, 2022).

Different from the traditional neural networks, the physics-

informed neural network (PINN) is a new method based on

“meshless” calculation (Raissi et al., 2019), which fundamentally

solves the differentiation problem of grid division (Shao et al., 2022).

PINN uses not only the neural network’s own loss function but also

the physical information loss function with the physical equation as

the restriction condition (Zheng et al., 2022). Therefore, the model

trained by PINN can learn both the distribution law contained in
Frontiers in Marine Science 02
the training data set like the traditional neural network model, and

the physical law described by the partial differential equation

(Lu et al., 2021). Compared with pure data-driven neural

networks, PINN can learn a model with more generalization

ability by fewer training data samples due to the additional

physical information constraints in the training process (Li and

Cheng, 2022). PINN uses a deep neural network (DNN) as its basic

network structure, if DNN is replaced by a recurrent neural network

(RNN), a new variant of PINN is formed: Physics-Informed

Recurrent Neural Network (PIRNN) (Wu et al., 2023).

One of the main limitations of PINN is the high cost of training,

which can adversely affect performance, especially when solving real-

world applications that require running PINN models in real time.

Therefore, it is crucial to find ways to accelerate the convergence of

these models without sacrificing performance. This problem is first

addressed in the conservative physics-informed neural network

(cPINN) algorithm (Jagtap et al., 2020), which uses the domain

division method in the PINN framework by dividing the

computational domain into subdomains. cPINN deploys a separate

neural network in each subdomain, and efficiently tunes

hyperparameters for all networks, thus providing the network with

strong parallelization and representation capabilities, and the final

global solution obtained consists of a series of independent

subproblems solutions associated with the entire domain.

In addition to introducing physical information in neural

networks, neural operators are also a class of methods for deep

learning to solve PDEs. While neural networks are used to learn

mappings between finite-dimensional spaces, neural operators can

learn mappings between infinite-dimensional spaces by introducing

kernel functions into the linear transformations of the neural

network. The deep operator networks (DeepONet) can solve a

family of PDEs with a series of initial and boundary conditions in

one go (Lu et al., 2019). DeepONet first constructs two sub-

networks to encode input functions and location variables

separately, and then merge them together to compute the output

functions, consequently learning neural operators accurately and

efficiently from a relatively small dataset.

In the context of three-dimensional ocean internal waves,

considering the topographic effect, Yuan Chunxin et al. proposed

the modified Benney-Luke equation (mBL equation) (Yuan and

Wang, 2022) to describe the internal wave interaction on the

oblique bottom. Compared with the Benney-Luke equation (BL

equation) (Benney and Luke, 1964), mBL equation has a more

concise structure and the characteristics of isotropic and

bidirectional propagation. The numerical solution of mBL

equation fits well with those of BL equation, which proves that

mBL equation is valid.

As a relatively complex new partial differential equation in the

field of the physical ocean field, the mBL equation has multiple

higher partial derivatives, a complex temporal-spatial boundary,

and involves a large space range and time range. At present, for

mBL equation, only the traditional numerical methods are used to

solve it, while deep learning methods such as PINN have not been

used to solve it. However, solving mBL equation directly with PINN

cannot obtain high-precision solutions, mainly because PINN has

the following problems:
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• It is difficult to solve complex PDE with high-dimensional

non-convex properties. High-dimensional PDE are usually

space-time equations in three dimensions and above, have

complex structures and highorder derivatives, and are likely

to be high-dimensional non-convex functions, and high-

dimensional non-convex optimization problems are NP-

hard problems, which are difficult to solve. Therefore, due

to the inaccuracies involved in solving high-dimensional

nonconvex optimization problems, PINN can easily fall

into local optimal solutions when solving high-dimensional

PDE, which leads to difficulties in obtaining exact solutions

of high-dimensional PDE.

• It is difficult to transfer the physical information of

boundary points and initial points. PINN are trained

from initial points and boundary points, however, as the

number of training times increases, it is difficult to transfer

the physical information of initial points and boundary

points to longer time scales and deeper spatial interiors, and

sometimes it is difficult to determine the initial or boundary

conditions of PDE.

• It is difficult to train the automatic derivative network

quickly at a low cost. The backbone network of PINN is a

deep neural network, which introduces the physical

information of PDE in the iterative training using

automatic derivation, and the derivation includes finding

the spatial partial derivatives and the temporal partial

derivatives, but the complicated process of derivation will

increase the cost and time of the training greatly.
Aiming at the above problems, this paper proposes “DF-

ParPINN: parallel PINN based on velocity potential field division

and single time slice focus for solving mBL equation”, with the

following contributions:
• Proposed a temporal-spatial division module of overall

velocity potential field. The module firstly divides the

overall velocity potential field into velocity potential fields

of different time slices based on the time axis, and then

divides the velocity potential field of different time slices

into the highvelocity field and the low-velocity field based

on the shape of rules. The module provides a temporal

dimensionality reduction and spatial domain division of

overall velocity potential field, delineating multiple sets of

velocity potential fields under different temporal-spatial

conditions, and reduces the complex high-dimensional

nonconvexity of overall velocity potential field.

• Proposed a data rational selection module of multiple time

slices. The module selects different time slices of data to

start training through the reasonable allocation of physical

information: on the basis of correlatively selecting all

previous time slices of data, the module focuses on

selecting the data of the time slice to be solved, and

combines the two parts of the selected data to start

training. In the case where the initial and boundary

points exist only in the initial field with the velocity

potential values all zero, the module reasonably selects
tiers in Marine Science 03
data from different time slices to start training, which

reduces the influence of the physical information of the

initial and boundary points that is difficult to be transferred.

• Proposed a parallel computation module of high-velocity

fields and low-velocity fields. The module uses multiple

servers to accelerate solving the high-velocity fields and the

low-velocity fields, and then merges the high-velocity fields

and the low-velocity fields into one velocity potential field

based on the spatial coordinates. This module accelerates

the solution of the high-velocity fields and the low-velocity

fields on the basis of overall velocity potential field spatio-

temporal division and multi-time slice data reasonable

selection, which reduces the training cost and time of

the network.
DF-ParPINN improves PINN and can solve mBL equation with

high accuracy. DF-ParPINN is a breakthrough in solving complex

PDE of the physical ocean field by using deep learning technology.
2 Related work

2.1 mBL equation

The Benney-Luke equation (BL equation) is a nonlinear partial

differential equation used to observe the interaction and reflection

characteristics of finite amplitude permanent waves, but the

structure of the equation is somewhat complicated. The

Kadomtsev-Petviashvili equation (the KP equation) (Kadomtsev

and Petviashvili, 1970; Molinet et al., 2011) is a nonlinear partial

differential equation used to simulate nonlinear waves, but it lacks

the characteristics of isotropic and bidirectional propagation. In the

context of three-dimensional ocean internal waves, taking into

account the topographic effect, Yuan Chunxin et al. proposed the

modified Benney-Luke equation (mBL equation) to describe the

internal wave-wave interaction of the inclined seafloor, as shown

below:

xtt − c2Dx − aDxtt + b∇ · b∇x + g ½( ∣ ∇x ∣2 )t + xtDx� = 0 (1)

In Equation 1,

c2 =
(1 − R)gh−h+

h+ + Rh−
,  a =

h−h+(h− + Rh+)
3(h+ + Rh−)

(2; 3)

b =
(1 − R)g(h+)2

(h+ + Rh−)2
,   g =

(h+)2 − R(h−)2

(h+ + Rh−)2
(4; 5)

In Equations 2–5, x is the velocity potential, xt is the first partial
derivative of x to t, xtt is the second partial derivative of x to t, h+ and
h− are the upper fluid layer water depth and lower fluid layer water

depth respectively, R is the ratio of the upper fluid layer density and

lower fluid layer density, and g is the gravity acceleration.

Equation 1 modifies the classical Benney-Luke equation and

considers the propagation of nonlinear internal waves over the

variable bottom terrain. It is worth noting that mBL equation has

the characteristics of isotropic and bidirectional propagation, which
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the widely used KP equation does not have. The structure of mBL

equation is much simpler compared with BL equation, and the

numerical results of mBL equation are in good agreement with

those of BL equation, which verifies the validity of mBL equation.

Equation 1 admits an analytic solution for internal line solitary

waves in the absence of topography, which can be explicitly

expressed as:

xt = A(k)sech2(k · r − vkt),   x = −
A
vk

tanh(k · r − vkt) (6; 7)

In Equations 6, 7, r = (x,y) is a vector in any direction on the

horizontal plane, k = (kx, ky) is the corresponding wave number

vector with the magnitude of k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x + k2y

q
, and the amplitude A(k)

and non-linear wave speed v(k) as shown in of Equations 8, 9:

A(k) = −
4av2k2

g
,   v2 = −

c2

1 − 4ak2
(8; 9)
2.2 PINN

In 2019, the “Physical Information Neural Network” (PINN) was

proposed by a research group led by Professor George Em Karniadakis

of Brown University. PINN is a new scientific research paradigm that

uses deep learning technology to solve PDE. Since its birth, PINN has

become the commonest keyword in the field of “AI for science”. PINN

is a kind of neural network used to solve supervised learning tasks, it

adds physical equations as limiting conditions to the neural network so

that the trained model can meet the laws of physics. In order to realize

this physical limitation, in addition to using the neural network’s own

loss function, PINN also uses the physical information loss function

that contains the physical equation. What PINN optimizes through the

physical information loss function is the difference between the solved

physical equation value and the real physical equation value, and the

closer the difference is to zero, the better the optimization effect is. After

many rounds of iteration, the model trained by the PINN not only
Frontiers in Marine Science 04
optimizes the neural network’s own loss function but also optimizes the

physical information loss function including the physical equation, so

that the final solved result can fit the real value and satisfy the physical

law described by the partial differential equation. PINN uses a deep

neural network to train the model, and the two-dimensional temporal-

spatial structure of PINN is shown in Figure 1:

In Figure 1, x is the spatial argument in the input data, and t is

the time argument in the input data. u is the output dependent

variable, and its right connected ∂
∂ t ,

∂
∂ x ,

∂2

∂ x2 , … are the first or

multiple partial derivatives of u to t and x. MSE stands for mean

square error and is formed by adding MSE{u,BC,IC} and MSEf. After

each iteration, PINN will judge the size of MSE and threshold ϵ, if

MSE is greater than threshold, the model training will continue, if

MSE is less than threshold, the model training will 180 end. Specific

definitions of MSE, MSE{u,BC,IC} and MSEf are as follows:

MSE = MSE u,BC,ICf g +MSEf (10)

In Equation 10, MSE is the loss function of the whole, which is

composed of the addition of the loss function MSE{u,BC,IC} of the

initial and boundary point and the physical information loss

function MSEf of the space point.

MSE u,BC,ICf g =
1
Nu
o
i=1

Nu

∣ u(xiu, t
i
u) − ui ∣ (11)

In Equations 11, MSE{u,BC,IC} is the fitting of the data set, and

can learn the distribution law of the training data set just like the

traditional neural networks, where u is the solution of the partial

differential equation, BC is the boundary data set, and IC is the

initial data set. u(xu,tu) is the velocity value (or other values) of the

initial and boundary point solved by PINN, u is the velocity value

(or other values) of the initial and boundary point solved by the

numerical method, Nu is the number of input initial and boundary

points.

MSEf =
1
Nf
o
i=1

Nf

∣ f (xif , t
i
f ) ∣ (12)
FIGURE 1

Network structure of PINN.
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In Equation 12,MSEf is the fitting of physical equations and can

learn the physical laws described by the equation. f(xf, tf) is the size

of the physical equation solved by PINN, and Nf is the number of

input space points (including initial and boundary points).

If the PINN can obtain the solution of the equation well, then

the velocity value (or other values) of MSEu with respect to every

initial or boundary point approaches zero, and the size of the

physical equation of MSEf with respect to every point approaches

zero. In other words, when MSE approaches zero, it can be

considered that the solved value of each point on the training

data set approaches the true value. In this way, solving the equation

is transformed into an optimization loss function using the

backpropagation mechanism of the neural network and two

optimizers L-BFGS and Adam.
3 Materials and methods

3.1 Overall architecture of DF-ParPINN

The mBL equation is a time-dependent two-dimensional

equation with a complex structure and non-convex properties,

contains many second-order partial derivatives, has a complicated

derivation process, and has boundary conditions that are difficult to

determine. Because of the problems existing in PINN, it is difficult

to obtain the high-accuracy solution of mBL equation directly by

PINN. Therefore, according to the characteristics of mBL equation,

we proposed “DF-ParPINN: parallel PINN based on velocity

potential field division and single time slice focus”.

The overall architecture of DF-ParPINN consists of three

modules: temporal-spatial division module of overall velocity

potential field, rational selection module of multiple time slices

data, parallel computation module of high-velocity fields and low-

velocity fields, each of them respectively improves the optimization

of the high-dimensional non-convex equation, the deep

transmission of effective physical information, the low cost and

fast training of the network. The three modules are shown in

Figures 2–4:

In Figures 2–4, VPF is shorthand for velocity potential field,

HVFs is shorthand for the high-velocity fields and HVF is the
Frontiers in Marine Science 05
singular form of HVFs, LVFs is shorthand for the low-velocity fields

and LVF is the singular form of LVFs.

In Figure 2, firstly, the whole velocity potential field with three-

dimensional temporal-spatial data is temporal dimension reduced,

and the velocity potential fields of different time slices are obtained.

Then, the velocity potential field of different time slices is spatially

divided, and the high-velocity field of different time slices (the

raised part in middle marked by high) and the low-velocity field of

different time slices (the smooth part in around marked by low)

are obtained.

In Figure 3, firstly, the high-velocity field (low-velocity field)

data of different time slices are divided into the data of the time slice

to be solved and the data of the previous time slices. Then, the data

of these two parts are selected reasonably, the data of the time slice

to be solved are focused selected, and the data of the previous time

slices are less selected, to obtain the reasonably selected data of the

high-velocity field (low-velocity field).

In Figure 4, firstly, the reasonably selected data of the high-

velocity field and the reasonably selected data of the low-velocity

field are respectively input into parallel physics-informed neural

networks (shown in Figure 5) of different servers for subdomain

parallel calculation and the solved high-velocity field and the solved

low-velocity field are obtained. Then, the subdomains solved by

these two parts are combined in space to get the solved velocity

potential field.
3.2 Temporal-spatial division module of
overall velocity potential field

3.2.1 mBL equation normalization
mBL equation has different velocity potential fields under

different equation coefficients, initial conditions, and boundary

conditions. The more coefficients of the equation, the more

complex the initial and boundary conditions, and the more

irregular the velocity potential field shape of mBL equation. The

velocity potential field of mBL equation can be spatially domain

divided according to regular shapes, and reduce complex high-

dimensional nonconvexity. Therefore, in order to obtain the regular

velocity potential field shape, we set the equation coefficients, initial
FIGURE 2

Temporal-spatial division module of overall velocity potential field.
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conditions, and boundary conditions of mBL equation, and mBL

equation after setting is shown in follows:

xtt − c2Dx − aDxtt + g ½(j∇x ∣2 )t + xtDx� = 0 (13)

By setting the coefficient b in Equation 1 to 0, we get Equation

13. After the above settings, the velocity potential field of mBL

equation can take on a regular shape.

3.2.2 Time dimension reduction
For mBL equation, the velocity potential fields of different time

slices may have different shapes. Therefore, before spatial domain

division of the velocity potential field, time dimension reduction is

needed, that is, the overall velocity potential field is divided into

velocity potential fields of different time slices based on the time

axis. After the time dimension reduction, the original three-

dimensional space-time mBL equation becomes many groups of

the two-dimensional space mBL equation, and the complex high-

dimensional non-convex characteristics of the mBL equation are

degraded. In this way, DF-ParPINN does not have to process the

three-dimensional data selected under all time slices at once, but

only to process the three-dimensional data selected under the

required time slices.
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mBL equation of x ∈ [−1,1], y ∈ [−2,2] and t ∈ [0,7500] is taken

as an example for time dimension reduction. Among them, x

contains 512 points, y contains 1024 points, and t contains 51

time slices. After time dimensionality reduction, the overall velocity

potential field, which originally contained 512*1024*51 = 26738688

solutions, was divided into 51 velocity potential fields

corresponding to 51 time slices, each containing 512*1024 =

524288 solutions. The velocity potential fields at partial time slice

solved by the pseudo-spectral method are shown in Figure 6:
3.2.3 Spatial domain division
As can be seen from Figure 6, for mBL equation, except that the

initial field when t = 0 is “a flat land”, the velocity potential field of

other time slices has a regular shape: high in the middle and low

around the sides. Therefore, the velocity potential fields of different

time slices can be spatially domain divided according to the shape of

this rule. 51 sets of the high-velocity fields and the low-velocity

fields can be obtained from 51 time slices. After the Spatial Domain

Division, the original multiple velocity potential fields become

multiple high-velocity and low-velocity fields, and the non-convex

characteristics of mBL equation in space are further degraded.

In this way, DF-ParPINN can process high-velocity fields and
FIGURE 4

Parallel computation module of high-velocity fields and low-velocity fields.
FIGURE 3

Data rational selection module of multiple time slices.
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low-velocity fields separately, to better learn the characteristics of

high-velocity fields and low-velocity fields.

For the velocity potential field per time slice (except for the

initial field), the velocity potential values of some space points have

a large variation range, and these space points are all distributed in

the middle of the velocity potential field; the velocity potential

values of other space points are almost unchanged, and these points

are all distributed around the velocity potential field. The velocity

potential field at this time can be divided into high-velocity

potential field (referred to as “high-velocity field”) and low-

velocity potential field (referred to as “low-velocity field”) based

on the velocity threshold. The velocity threshold has the following

characteristics: it is smaller than the value of all points in the high-

velocity field and larger than the value of all points in the low-

velocity field. Therefore, the high-velocity field is a part of the

velocity potential field where the velocity potential of all points is

greater than the velocity threshold, while the low-velocity field is

another part of the velocity potential field where the velocity

potential of all points is less than the velocity threshold. Because

the velocity potential value of no space point is equal to the velocity

threshold value, there are no boundary points and boundary

domain when the velocity potential field is divided based on the

velocity threshold value, and there is no sub neural network aiming

at the boundary domain.

The velocity potential field at t = 7500s (51st time slice) of mBL

equation is taken as an example to divide the spatial domain. For

the velocity potential field at this time, the velocity threshold is

-0.7616 when taking the minimum value of the velocity potential

value of all space points by MATLAB (MATLAB takes four decimal

places by default). Using -0.7616 as the velocity threshold, the
Frontiers in Marine Science 07
velocity potential field at this time is spatially domain divided. The

obtained high-velocity field, as shown in the middle trapezoid

(yellow, green, and light blue) in Figure 6, contains 400762 space

points. The obtained low-velocity field, as shown in the surrounding

plane (dark blue) of Figure 6, contains 123526 space points.
3.3 Data rational selection module of
multiple time slices

For the overall velocity potential field of mBL equation, it is

difficult to obtain a high-accuracy solution by directly selecting a

part of data from all time slices into PINN and outputting the solved

velocity potential value of all time slices. This is because without

dividing the overall velocity potential field, it is impossible to reduce

its high-dimensional non-convex property, and the interaction of

physical information in different time slices increases the

complexity and difficulty of training. Therefore, in addition to the

division of overall velocity potential field, the physical information

of different time slices should be reasonably allocated. By selecting

the data of different time slices reasonably, the physical information

of different time slices can be allocated reasonably.

Objectively, the velocity potential value of mBL equation in a

certain time slice depends only on the physical information of the

current time slice and all previous time slices, and mainly depends

on the physical information of the current time slice. Therefore, for

the velocity potential field of a certain time slice, the physical

information of all previous time slices should be related and the

physical information of the current time slice should be focused

during training. In other words, for the velocity potential field of a
FIGURE 5

Network structure of DF-ParPINN.
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certain time slice, the data entered into the network for training

should contain the data of the current time slice and all previous

time slices, mainly including the data of the current time slice.

mBL equation of x ∈ [−1,1], y ∈ [−2, 2], and t ∈ [0,7500] is

taken as an example to carry out reasonabledata selection. After the

velocity potential field division module, the initial and boundary

points of mBL equation are located in the initial field, and the

velocity potential value of all space points in the initial field is zero.

Moreover, the overall velocity potential field of mBL equation is

divided into 51 groups (corresponding to 51 time slices) of high-

velocity field and low-velocity field. When the high-velocity field

and the low-velocity field of a certain time slice are required to be

solved, the data entered into the network for training consists of two

parts, as shown below:

data = datai+ + datai− (14)

In Equation 14, data indicates all the selected data, datai+
indicates the data selected from the time slice to be solved, and
Frontiers in Marine Science 08
datai− indicates the data selected from all previous time slices. The

data contains space points and corresponding true velocity

potential values, the amount of data in datai+ is greater that in

datai−, and datai− contains the data of the initial field.
3.4 Parallel computation module of high-
velocity fields and low-velocity fields

The mBL equation of x ∈ [−1, 1], y ∈ [−2, 2] and t ∈ [0, 7500] is

taken as an example of parallel computation in a subdomain. After

the temporal-spatial division module of overall velocity potential

field and the data rational selection module of multiple time slices,

the overall velocity potential field of mBL equation is divided into

51 groups (corresponding to 51 time slices) of high-velocity field

and low-velocity field. Moreover, when the high-velocity or the low-

velocity field of a time slice is required to be solved, the data entered

into the network contains not only the data of the time slice to be
FIGURE 6

Velocity potential field at partial time slice solved by pseudo-spectral method.
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solved but also the data of all previous time slices. Compared with

using a single server to serial compute the overall velocity potential

field, using multiple servers to compute the high-velocity and the

low-velocity fields of different time slices in parallel can accelerate

the calculation speed. Therefore, when the velocity potential field of

a certain time slice is required to be solved, different servers can be

used to compute the high-velocity or the low-velocity field in

parallel, and then combine the high-velocity field and the low-

velocity field into one velocity potential field according to the spatial

coordinates, as shown below:

x = xhigh ∪ xlow (15)

xhigh = ½qhigh(x, y, t) ∣ (x, y) ∈ HVFs� (16)

xlow = ½qlow(x, y, t) ∣ (x, y) ∈ LVFs� (17)

In Equations 15–17, x is the solved velocity potential value of

the current velocity potential field, xhigh is the solved velocity

potential value of the current high-velocity field, and xlow is the

solved velocity potential value of the current low-velocity field. qhigh
is the neural network used by the current high-velocity field, and

HV Fs is the current high-velocity field and all previous high-

velocity fields. qlow is the neural network used by the current low-

velocity field, LV Fs is the current low-velocity field and all previous

low-velocity fields, including the initial field, and the initial and

boundary points are located in the initial field. x is obtained by the

union of xhigh and xlow. qhigh and qlow have the same network

structure is shown in Figure 5:

In the network structure of DF-ParPINN, the input is the space

coordinates x, y and time coordinates t, and the output is the

velocity potential value x and the function value f. The network first

determines whether x and y belong to the high-velocity field, if yes,

they are trained by deep neural network 1 in server 1, if not, they are

trained by deep neural network 2 in server 2. The structure of the

two deep neural networks is exactly the same, except that the inputs

and outputs are different. x, y, t become x after deep neural network,
x becomes multiple first and second partial derivatives after

automatic derivation, and multiple partial derivatives become f

when substituted into Equation 13. DF-ParPINN uses multiple

deep neural networks in parallel to train the model and defines the

loss function as:

MSE = MSEx +MSExt +MSEf (18)

Where, MSE is the overall loss function, which is formed by

adding MSEx, MSExt, and MSEf.

MSEx =
1
No

i=1

N
∣ x(xi, yi, ti) − xi ∣ (19)

Where MSE x is the velocity potential loss function, x(x,y,t) is
the velocity potential value solved by DF-ParPINN, x is the velocity
potential value solved by the pseudospectral method, and N is the

number of input space points in different time slices (including
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initial and boundary points). x in qhigh is xhigh, and x in qlow is xlow.

MSExt =
1
No

i=1

N
∣ xt(x

i, yi, ti) − xit ∣ (20)

Where, MSExt is the first-order partial time derivative loss

function, xt(x,y,t) is the first partial derivative of x to t solved by

DF-ParPINN, xt is the first partial derivative of x to t solved by the

pseudospectral method, and N is the number of input space points

in different time slices (including initial and boundary points). xt in
qhigh is xthigh, and xt in qlow is xtlow.

MSEf =
1
No

i=1

N
∣ f (xi, yi, ti) − f i ∣ (21)

Where, MSEf is the physical information loss function, f(x,y,t)

is the size of mBL equation solved by DF-ParPINN, f is the size of

mBL equation solved by the pseudo-spectral method, and N is the

number of input space points in different time slices (include initial

and boundary points). f in qhigh is fhigh, and f in qlow is flow.

Moreover, qlow is also responsible for processing the data of the

initial field, and the initial and boundary points are located in the

initial field, and the loss function of the initial and boundary points

also follows Equations 18-21.

If DF-ParPINN can solve mBL equation well, then the velocity

potential value of MSEx with respect to every point tends to zero,

the first partial derivative ofMSExt with respect to every point tends

to zero, and the physical equation value of MSEf with respect to

every point tends to zero. In other words, when MSE approaches

zero, it can be considered that the solved value of each point on the

training data set approaches the true value. In this way, solving mBL

equation is transformed into an optimization loss function using the

backpropagation mechanism of the neural network and two

optimizers, L-BFGS and Adam.
4 Results

4.1 Data set

We use mBL equation with the regular shape shown in

Equation 13 to conduct numerical experiments, and the data set

was obtained and provided by Chunxin Yuan et al. through the

pseudo-spectral method. The detailed information of mBL equation

dataset is shown in Table 1:
4.2 Initial conditions and
boundary conditions

For mBL equation shown in Equation 13, there are many sets of

initial conditions and boundary conditions, but not every set of

conditions results in a mBL equation with the regular shape. The

initial conditions and boundary conditions of mBL equation with

the regular shape are shown in Table 2:
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4.3 Comparative study

4.3.1 Experimental setup
In order to verify that DF-ParPINN can solve mBL equation

with high accuracy, we use three physical information neural

network methods PINN, PIRNN, and cPINN, and a neural

computing subclass method DeepONet, as the contrast baseline.

The differences between the five algorithms are shown in Table 3:

The input and output of the five algorithms are shown

in Table 4:

The detailed settings of the five algorithms are shown in Table 5:

Both the training set and the test set of the five algorithms

belong to the same data set, both follow the principle of random

selection, and the data contained in both are not repeated.

PINN or PIRNN does not perform temporal-spatial domain

division of mBL equation. PINN or PIRNN selected directly 100000

datasets from 1024 × 512 × 51 datasets (containing the overall

velocity potential field of all time slices) as the training set, and

10000 datasets from 1024 × 512 datasets (containing only the

velocity potential field of the time slice to be solved) as the test set.

cPINN only performs temporal-spatial domain division

(division only in the spatial domain), and divides the velocity

potential field of all time slices into the overall high-velocity field
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and the overall low-velocity field. For the overall high-velocity field,

cPINN selected 100000 datasets from 400762*51 datasets

(containing the high-velocity field and the partial low-velocity

field of all time slices) as the training set, and selected 10000

datasets from 400762 datasets (containing the high-velocity field

and the partial low-velocity field of the time slices to be solved) as

the test set. For the overall low-velocity field, cPINN selected 10000

datasets from 123526*51 datasets (containing another part of the

low-velocity field of all time slices) as the training set, and selected
TABLE 2 Initial conditions and boundary conditions of mBL equation
with the regular shape.

Type Nature Characteristics

Initial
conditions

Three-dimensional temporal-spatial
points with differentiable

velocity potentials

t = 0

boundary
conditions

Three-dimensional temporal-spatial
points with differentiable

velocity potentials

x = 0 and xt = 0
TABLE 3 Differences between the five algorithms
(contrast experiments).

Algorithm Physical
information

Neural
operator

Basic
network
structure

PINN ✓ × DNN

PIRNN ✓ × RNN

cPINN ✓ × DNN

DeepONet × ✓ DNN

DF-ParPINN ✓ × DNN

Algorithm
Data

rational
selection

Temporal-
spatial
domain
division

Parallel
computation

PINN × × ×

PIRNN × × ×

cPINN × ✓ ×

DeepONet × × ×

DF-ParPINN ✓ ✓ ✓
TABLE 4 Input and output of the five algorithms (contrast experiments).

Algorithm Input

PINN Partial data set of velocity potential field of all time slices

PIRNN Partial data set of velocity potential field of all time slices

cPINN
Partial data set of high-velocity field (or low-velocity field) of

all time slices

DeepONet Partial data set of velocity potential field of all time slices

DF-ParPINN
Partial data set of high-velocity field (or low-velocity field) of
time slice to be solved and all previous time slices

Algorithm Output

PINN Velocity potential field of time slice to be solved

PIRNN Velocity potential field of time slice to be solved

cPINN
High-velocity field (or low-velocity field) of time slice to

be solved

DeepONet Velocity potential field of time slice to be solved

DF-ParPINN
High-velocity field (or low-velocity field) of time slice to

be solved
TABLE 1 Detailed information of mBL equation data set.

Variables
or parameter

Physical
meaning

Range
or size

Number

x (independent variable)
Space point on the

x-axis
[-1,1] 1024

y (independent variable)
Space point on the

y-axis
[-2,2] 512

t (independent variable)
Space point on the

t-axis
[0,7500] 51

x (dependent variable) Velocity potential (-0.8,2.4)
1024 × 512

× 51

xt (dependent variable)
First partial

derivative of x to t
(-0.5,0.06)

1024 × 512
× 51

h+ (Invariant parameter)
Upper fluid layer

water depth
100 1

h− (Invariant parameter)
Lower fluid layer

water depth
200 1

R (Invariant parameter) Ratio of h+ and h− 0.9985 1

g (Invariant parameter) Gravity acceleration 9.8 1
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10000 datasets from 123526 datasets (containing another part of the

low-velocity field of the time slice to be solved) as the test set.

DeepONet does not perform temporal-spatial domain division

of mBL equation. The training set and test set selection of

DeepONet are the same as that of PINN.

DF-ParPINN performs temporal-spatial domain division

(division in both spatial and temporal domains) for mBL

equation, and divides the velocity potential field of each time slice

into two parts: the high-velocity field and the low-velocity field. For

the high-velocity field (the low-velocity field) of the time slice to be

solved, DF-ParPINN first selected 95000 datasets from the high-

velocity field (the low-velocity field) of the time slice to be solved,

then selected 5000 datasets from high-velocity fields (the low-

velocity field) of all previous time slices, a total of 100000 datasets

were selected as training sets, and selected 10000 datasets from the

high-velocity field (the low-velocity field) of the time slice to be

solved. Unlike cPINN, which only uses a single server to train and

test the overall high-velocity field and the overall low-velocity field,

DF-ParPINN uses multiple servers to train and test the high-

velocity field and the low-velocity field separately in parallel, to

improve the training and testing speed under the spatial-temporal

division strategy.

For mBL equation, cPINN divides the velocity potential field of

all time slices based on the velocity threshold of the last time slice,

and DF-ParPINN divides the velocity potential field of each time

slice based on the velocity threshold of each time slice. Because the

velocity potential value of no space point is equal to the velocity

threshold, there is no boundary point and boundary domain when

the velocity potential field is divided based on the velocity threshold,

and there is no sub-neural network for the boundary domain.

In solving equations, PINN uses relative error to measure the

accuracy of the solution. Therefore, in solving mBL equation,

the five algorithms continue to use relative error to measure the

accuracy of the velocity potential field solved. In this paper,

the relative error is the matrix of two norms between the

algorithm prediction solution and the pseudo-spectral method

numerical solution. The smaller the relative error is, the higher

the accuracy of the prediction solution is, and the better the

performance of the algorithm is. For the algorithms that use

temporal-spatial domain division, the relative error of the velocity

potential field of the time slice to be solved is shown as follows:

error = (h� errorh) + (l � errorl) (22)
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h =
counth
count

,   l =
countl
count

(23; 24)

In Equations 23, 24, error is the relative error of the velocity

potential field of the time slice to be solved, errorh is the relative error

of the high-velocity field of the time slice to be solved, errorl is the

relative error of the low-velocity field of the time slice to be solved,

counth is the number of space points of the overall high-velocity field

(cPINN) or the number of space points of the high-velocity field of

the time slice to be solved (DF-ParPINN). countl is the number of

space points in the overall low-velocity field (cPINN) or the number

of space points in the low-velocity field of the time slice to be solved

(DF-ParPINN), and count is the number of space points in the overall

velocity potential field (cPINN) or the number of space points in the

velocity potential field of the time slice to be solved (DF-ParPINN).

4.3.2 Experimental results
After the above settings, five algorithms are trained separately

on the same mBL equation data set, and partial time slice data is

selected for testing. The relative errors of the five algorithms are

shown in Table 6:

The solution time of the five algorithms is shown in Table 7:

Where, t=750s is the 6th time slice, t=1500s is the 11st time

slice, t=2250s is the 16th time slice, t=3000s is the 21st time slice,

t=3750s is the 26th time slice, t=4500s is the 31st time slice, t=5250s

is the 36th time slice, t=6000s is the 41st time slice, t=6750s is the

46th time slice, t=7500s is the 51st time slice.

It can be clearly seen from Table 6 that compared with PINN,

PIRNN, cPINN, and DeepONet, DFParPINN has absolute accuracy

advantages in solving mBL equation, which proves that DF-

ParPINN is the most effective. It also can be clearly seen from

Table 7 that the average solution time of the five algorithms is no

more than 0.5s, much faster than 9.4 minutes of the pseudo-spectral

method, which proves that DF-ParPINN is very efficient.
4.4 Ablation study

4.4.1 Experimental setup
In addition to comparison experiments, we also conducted

ablation experiments to further verify the effectiveness of DF-

ParPINN. The ablation experiments adopt module ablation and

include three modules. Temporal-spatial division module of overall

velocity potential field is the first module, data rational selection

module of multiple time slices is the second module, parallel

computation module of high-velocity fields and low-velocity fields

is the third module. The first module is the premise for the second

and the third module, without the first module there can be no the

second and the third module. The second module can be divided

into the first submodule data rational selection and the second

submodule data focus. The second module can be divided into the

first submodule data focus and the second submodule data rational

selection. The first submodule is the premise of the second

submodule data, without the first submodule there is no second

submodule. Therefore, five ablation algorithms can be set up. The

differences between the five algorithms are shown in Table 8:
TABLE 5 Detailed settings of the five algorithms (contrast experiments).

Algorithm Training
instances

Testing
instances

Epochs

PINN 100000 10000 5000

PIRNN 100000 10000 5000

cPINN 100000 10000 5000

DeepONet 100000 10000 5000

DF-ParPINN 100000 10000 5000
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The input and output of the five algorithms are shown

in Table 9:

The detailed settings of five algorithms are shown in Table 10:

Both the training set and the test set of the five algorithms

belong to the same data set, both follow the principle of random

selection, and the data contained in both are not repeated.

DF-ParPINN-1a or DF-ParPINN-1a3 do not select data from

datasets of the time slice to be solved and datasets of all previous

time slices according to the 95000:5000 allocation rule, but more

focus on selecting data from datasets of the time slices to be solved.

For the high-velocity field (the low-velocity field) of the time slice to

be solved, the algorithm first selected 50000 datasets from the high-

velocity field (the low-velocity field) of the time slice to be solved,

then selected 50000 datasets from high-velocity fields (low-velocity

fields) of all previous time slices, a total of 100000 datasets were

selected as training sets, and selected 10000 datasets from the high-

velocity field (the low-velocity field) of the time slice to be solved as
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test sets. DF-ParPINN-1a3 also uses different servers to solve high-

velocity and low-velocity fields.

DF-ParPINN-1b or DF-ParPINN-1b3 do not select data from

datasets of the time slice to be solved and datasets of all previous

time slices according to the 95000:5000 allocation rule, and do not

focus on selecting data from datasets of the time slices to be solved.

For the high-velocity field (the low-velocity field) of the time slice to

be solved, the algorithm selected directly 100000 datasets from all

high-velocity fields (all low-velocity fields) of all time slices as

training sets, and selected 10000 datasets from the high-velocity

field (the low-velocity field) of the time slice to be solved as test

sets.DF-ParPINN-1b3 also uses different servers to solve high-

velocity and low-velocity fields.

DF-ParPINN-12 selects data from datasets of the time slice to be

solved and datasets of all previous time slices according to the

95000:5000 allocation rule. For the high-velocity field (the low-

velocity field) of the time slice to be solved, the algorithm first
TABLE 7 Solution time of the five algorithms (contrast experiments).

Algorithm t=750s t=1500s t=2250s t=3000s t=3750s

PINN (Raissi et al., 2019) 0.0246s 0.0226s 0.0243s 0.0156s 0.0138s

PIRNN (Wu et al., 2023) 0.0302s 0.0103s 0.0102s 0.0104s 0.0097s

cPINN (Jagtap et al., 2020) 0.0342s 0.0316s 0.0308s 0.0667s 0.0369s

DeepONet (Lu et al., 2019) 0.0186s 0.0016s 0.0013s 0.0014s 0.0012s

DF-ParPINN 0.0258s 0.0232s 0.0167s 0.0259s 0.0155s

Algorithms t=4500s t=5250s t=6000s t=6750s t=7500s

PINN (Raissi et al., 2019) 0.0136s 0.0129s 0.0132s 0.0131s 0.0131s

PIRNN (Wu et al., 2023) 0.0116s 0.0093s 0.0108s 0.0129s 0.0127s

cPINN (Jagtap et al., 2020) 0.0369s 0.0375s 0.0308s 0.0285s 0.0307s

DeepONet (Lu et al., 2019) 0.0013s 0.0013s 0.0012s 0.0012s 0.0013s

DF-ParPINN 0.0199s 0.0142s 0.0155s 0.0235s 0.0175s
Bold representsthe lowest relative errors.
TABLE 6 Relative errors of the five algorithms (contrast experiments).

Algorithm t=750s t=1500s t=2250s t=3000s t=3750s

PINN (Raissi et al., 2019) 0.9902 0.9910 0.9908 0.9904 0.9900

PIRNN (Wu et al., 2023) 0.9037 0.9208 0.8774 0.8621 0.8572

cPINN (Jagtap et al., 2020) 1.8960 0.9453 0.6099 0.4315 0.3419

DeepONet (Lu et al., 2019) 1.0798 1.0400 1.0214 1.0175 1.0100

DF-ParPINN 0.1056 0.1272 0.1048 0.1127 0.1194

Algorithms t=4500s t=5250s t=6000s t=6750s t=7500s

PINN (Raissi et al., 2019) 0.9896 0.9893 0.9891 0.9886 0.9891

PIRNN (Wu et al., 2023) 0.8607 0.8762 0.8999 0.9200 0.9062

cPINN (Jagtap et al., 2020) 0.3736 0.4264 0.4887 0.5539 0.6307

DeepONet (Lu et al., 2019) 1.0115 1.0110 1.0090 1.0114 1.0156

DF-ParPINN 0.1604 0.1866 0.2255 0.2564 0.2895
Bold representsthe lowest relative errors.
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selected 5000 datasets from the high-velocity field (the low-velocity

field) of the time slice to be solved, then selected 95000 datasets from

high-velocity fields (low-velocity fields) of all previous time slices, a

total of 100000 datasets were selected as training sets, and selected

10000 datasets from the high-velocity field (the low-velocity field) of
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the time slice to be solved as test sets. DF-ParPINN-1a3 does not use

different servers to solve high-velocity and low-velocity fields.

In solving mBL equation, we still use relative error to measure the

accuracy of the velocity potential field solved by the five algorithms. For

DF-ParPINN, the relative error of the velocity potential field of the time

slice to be solved is shown in Equation 22).

4.4.2 Experimental results
After the above settings, five algorithms are trained separately

on the same mBL equation data set, and partial time slice data is

selected for testing. With the addition of DF-ParPINN, the relative

errors of the six algorithms are shown in Table 11:

The solution time of the six algorithms is shown in Table 12:

It can be clearly seen from Table 11 that compared with

DF-ParPINN-1a, DF-ParPINN-1b, DF-ParPINN1a3, and

DF-ParPINN-1b3, DF-ParPINN and DF-ParPINN-12 have same

absolute accuracy advantages in solving mBL equation, which

proves that DF-ParPINN is the most effective. It also can be clearly

seen from Table 12 that the average solution time of DF-ParPINN,

DF-ParPINN-1a, DF-ParPINN-1b, DF-ParPINN-12, DF-ParPINN-

1a3 and DF-ParPINN-1b3 is 0.0198s, 0.0358s, 0.0207s, 0.0350s and

0.0239s respectively, and the average solution time of DF-ParPINN is

the shortest, which proves that DF-ParPINN is the most efficient.
4.5 Depth study

4.5.1 Experimental setup
Unlike PINN, PIRNN, cPINN, and DeepONet, which use only

one optimizer for training, DF-ParPINN can use both LBFGS and

Adam optimizers for deep training. First use LBFGS efficient

training, when the epochs reach 10000, the loss no longer

decreases. Then use Adam to continue training, until the loss is

almost no longer decreasing.

4.5.2 Experimental results
Taking the velocity potential field at t=7500s (51st time slice) of

mBL equation as an example, the depth training of DF-ParPINN was

conducted. The training set is consistent with the description in 4.2.1,

while the test set changes to all 400762 datasets of high-velocity field

at t=7500s and all 123526 datasets of low-velocity field at t=7500s.

The relative errors in different training stages are shown in Table 13:

The solution time in different training stages is shown

in Table 14:
TABLE 9 Input and output of the five algorithms (ablation experiments).

Algorithm Input

DF-ParPINN-1a Partial data set of high-velocity field (or low-velocity
field) of time slice to be solved and all previous

time slices

DF-ParPINN-1b Partial data set of high-velocity field (or low-velocity
field) of all previous time slices

DF-ParPINN-12 Partial data set of high-velocity field (or low-velocity
field) of time slice to be solved and all previous

time slices

DF-ParPINN-1a3 Partial data set of high-velocity field (or low-velocity
field) of time slice to be solved and all previous

time slices

DF-ParPINN-1b3 Partial data set of high-velocity field (or low-velocity
field) of all previous time slices

Algorithm Output

DF-ParPINN-1a High-velocity field (or low-velocity field) of time slice
to be solved

DF-ParPINN-1b High-velocity field (or low-velocity field) of time slice
to be solved

DF-ParPINN-12 High-velocity field (or low-velocity field) of time slice
to be solved

DF-ParPINN-1a3 High-velocity field (or low-velocity field) of time slice
to be solved

DF-ParPINN-1b3 High-velocity field (or low-velocity field) of time slice
to be solved
TABLE 10 Detailed settings of five algorithms (ablation experiments).

Algorithm Training
instances

Testing
instances

Epochs

DF-ParPINN-1a 100000 10000 5000

DF-ParPINN-1b 100000 10000 5000

DF-ParPINN-12 100000 10000 5000

DF-ParPINN-1a3 100000 10000 5000

DF-ParPINN-1b3 100000 10000 5000
TABLE 8 Differences between the five algorithms (ablation experiments).

Algorithm First module First submodule
of second module

DF-ParPINN-1a ✓ ✓

DF-ParPINN-1b ✓ ×

DF-ParPINN-12 ✓ ✓

DF-ParPINN-1a3 ✓ ✓

DF-ParPINN-1b3 ✓ ×

Algorithm
Second

submodule of
second module

Third module

DF-ParPINN-1a × ×

DF-ParPINN-1b × ×

DF-ParPINN-12 ✓ ×

DF-ParPINN-1a3 × ✓

DF-ParPINN-1b3 × ✓
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Finally, after deep training 1000000 epochs, the velocity

potential field t=7500s solved by DF-ParPINN is shown in the left

part of Figure 7, and the velocity potential field t=7500s solved by

the pseudo-spectral method is shown in the right part of Figure 7:

Comparing the left and right parts of Figure 7, the velocity

potential field solved by DF-ParPINN after deep training 1000000

epochs almost fits the velocity potential field solved by the pseudo-

spectral method, which further proves DF-ParPINN is very

effective. It also can be clearly seen from Table 14 that the

average solution time of DF-ParPINN after deep training is still

no more than 0.5s, much faster than 9.4 minutes of the pseudo-

spectral method, which proves that DF-ParPINN is very efficient.
5 Discussion

5.1 Compared with advanced deep
learning PDE solvers

mBL equation is a high-dimensional non-convex function with

three-dimensional spatiotemporal variables, and high-dimensional
Frontiers in Marine Science 14
non-convex optimization problems are NP-hard problems that are

difficult to solve accurately. Therefore, PINN is easy to fall into the

local optimal solution when solving mBL equations, so it is difficult

to obtain the exact solution, so the overall accuracy of PINN is

not ideal.

Compared with PINN, PIRNN uses RNN to replace the DNN in

PINN. The circular structure of RNN allows information to be

passed between different time steps, captures long-term

dependencies, and exploits contextual information. These make

RNN better model the timing relationship of velocity potential

fields in different time slices, and then improve the solving accuracy,

so the overall accuracy of PIRNN is higher than that of PINN.

Compared with PINN, cPINN uses the same spatial domain

partitioning strategy for velocity potential fields in different time

slices, and divides the overall velocity potential field into two parts:

the overall high-velocity field and the overall low-velocity field,

which have different spatial characteristics. Therefore, first solving

the overall high-velocity field and the overall low-velocity field, then

combining them can reduce the difficulty of solving, and then

improve the solving accuracy, so the overall accuracy of cPINN is

higher than that of PINN.
TABLE 11 Relative errors of the six algorithms (ablation experiments).

Algorithm t=750s t=1500s t=2250s t=3000s t=3750s

DF-ParPINN-1a or DF-ParPINN-1a3 0.3466 0.3134 0.2916 0.2954 0.2898

DF-ParPINN-1b or DF-ParPINN-1b3 0.5511 0.5572 0.5024 0.5394 0.5143

DF-ParPINN or DF-ParPINN-12 0.1056 0.1275 0.1048 0.1129 0.12

Algorithms t=4500s t=5250s t=6000s t=6750s t=7500s

DF-ParPINN-1a or DF-ParPINN-1a3 0.3012 0.3199 0.3321 0.3463 0.3558

DF-ParPINN-1b or DF-ParPINN-1b3 0.5099 0.5212 0.5278 0.5401 0.5518

DF-ParPINN or DF-ParPINN-12 0.1601 0.1861 0.2298 0.252 0.2894
Bold representsthe lowest relative errors.
TABLE 12 Solution time of the six algorithms (ablation experiments).

Algorithm t=750s t=1500s t=2250s t=3000s t=3750s

DF-ParPINN-1a 0.0542s 0.0309s 0.0294s 0.0312s 0.0377s

DF-ParPINN-1b 0.0285s 0.0264s 0.0336s 0.0264s 0.0269s

DF-ParPINN-12 0.0514s 0.0344s 0.0303s 0.0402s 0.0286s

DF-ParPINN-1a3 0.0312s 0.0258s 0.0159s 0.0168s 0.0193s

DF-ParPINN-1b3 0.0143s 0.0136s 0.0205s 0.0136s 0.0138s

DF-ParPINN 0.0258s 0.0232s 0.0167s 0.0259s 0.0155s

Algorithms t=4500s t=5250s t=6000s t=6750s t=7500s

DF-ParPINN-1a 0.0399s 0.0384s 0.0332s 0.0318s 0.0313s

DF-ParPINN-1b 0.0283s 0.0317s 0.0666s 0.0804s 0.0285s

DF-ParPINN-12 0.0359s 0.0273s 0.0295s 0.0403 0.0323s

DF-ParPINN-1a3 0.0260s 0.0230s 0.0167s 0.0159s 0.0161s

DF-ParPINN-1b3 0.0145s 0.0180s 0.0494s 0.0668s 0.0148

DF-ParPINN 0.0199s 0.0142s 0.0155s 0.0235s 0.0175s
Bold representsthe lowest relative errors.
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DeepONet does not use the corresponding physical information to

assist in solving mBL equations, and the complex high-dimensional

characteristics of mBL equations are very challenging for DeepONet

neural operators. As a result, it is difficult for DeepONet to accurately

capture all the details and features of mBL equation, so the overall

accuracy of DeepONet is lower than other algorithms.

DF-ParPINN uses three modules: the temporal-spatial division

module of the overall velocity potential field, the data rational selection

module of multiple time slices, and the parallel computation module of

high-velocity and low-velocity fields. These modules improve the

PINN, to a certain extent, and solve the following three problems

that exist when the PINN solves PDEs: difficult to solve complex PDEs

with high-dimensional non-convex properties, difficult to transfer the

physical information of boundary points and initial points, and difficult

to train the automatic derivative network quickly at a low cost.

Therefore, DF-ParPINN greatly improves the accuracy of solving the

mBL equation, so the overall accuracy of DF-ParPINN is higher than

that of other algorithms.
5.2 Compared with DF-ParPINN with
different modules

DF-ParPINN-1a or DF-ParPINN-1a3 uses the temporal-spatial

divisionmodule of overall velocity potential field, but uses only the data

focus submodule of the data rational selection module of multiple time

slices. Because the amount of data selected from the velocity potential

field of the time slice to be solved is the same as the velocity potential

fields of all previous time slices, the physical information of the velocity

potential field of the time slice to be solved is not utilized to the

maximum extent, so their accuracy is not ideal.

Compared with DF-ParPINN-1a, DF-ParPINN-1a3 also uses

the parallel computation module of highvelocity fields and low-

velocity fields, replacing the serial computation of a single server

used by the DF-ParPINN-1a with parallel computation of multiple

servers, which greatly reduces the training time and significantly

reduces the solution time.

DF-ParPINN-1b or DF-ParPINN-1b3 uses the temporal-spatial

division module of overall velocity potential field, but does not use
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the data rational selection module of multiple time slices. Due to the

lack of focused and reasonable distribution of training data, the

physical information of velocity potential fields of all previous time

slices is overused, so their accuracy is not ideal.

Compared with DF-ParPINN-1b, DF-ParPINN-1b3 also uses

the parallel computation module of highvelocity fields and low-

velocity fields, replacing the serial computation of a single server

used by the DF-ParPINN-1b with parallel computation of multiple

servers, which greatly reduces the training time and significantly

reduces the solution time.

Compared with DF-ParPINN, DF-ParPINN-12 just doesn’t use

the parallel computation module of high-velocity fields and low-

velocity fields, instead using a single server for serial computation.

Therefore, the solution accuracy of both is the same, but the training

time of DF-ParPINN-12 is much larger than that of DF-ParPINN, and

the solution time is significantly larger than that of DF-ParPINN.

DF-ParPINN uses all three modules, and to a certain extent

solves the three problems that exist when PINN solves PDE, so the

accuracy of DF-ParPINN is the highest.
5.3 Compared with DF-ParPINN after
deep training

DF-ParPINN trained only 5000 epochs using the LBFGS optimizer,

and the training loss only converges to a local minimum, so the accuracy

of DF-ParPINN is not very low.

DF-ParPINN after deep training uses LBFGS and Adam two

optimizers to train more than 10000 epochs, and when epochs reach

1000000 the training loss almost converges to the global minimum,

so the accuracy of DF-ParPINN after deep training is close to ideal.
5.4 Limitations of DF-ParPINN

First, DF-ParPINN needs to perform the temporal-spatial

division of the PDE. If there are too many time slices of the PDE

or the space field shape of each time slice is irregular, it is difficult to

perform the temporal-spatial division.
TABLE 14 Solution time in different training stages (depth experiments).

epochs=10000 epochs=50000 epochs=100000 epochs=200000 epochs=300000 epochs=400000

0.1311s 0.1218s 0.1210s 0.1188s 0.1187s 0.1182s

epochs=500000 epochs=600000 epochs=700000 epochs=800000 epochs=900000 epochs=1000000

0.1198s 0.1197s 0.1196s 0.1197s 0.1195s 0.1312s
TABLE 13 Relative errors in different training stages (depth experiments).

epochs=10000 epochs=50000 epochs=100000 epochs=200000 epochs=300000 epochs=400000

0.2772 0.14 0.1278 0.1193 0.1141 0.1104

epochs=500000 epochs=600000 epochs=700000 epochs=800000 epochs=900000 epochs=1000000

0.1076 0.1055 0.1034 0.1003 0.0987 0.0966
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Secondly, DF-ParPINN needs to perform the data rational

selection of different time slices, which depends on the temporal-

spatial division of the PDE. If the time dimension reduction is

unsuccessful, it is difficult to perform the data rational selection.

Finally, DF-ParPINN needs to perform the parallel

computation of different types of fields, which also depends on

the temporal-spatial division of the PDE, and if the spatial division

is not successful, it is difficult to perform the parallel computation.

Therefore, some very complex high-dimensional PDEs in real-

world applications have no regular shape, the current DF-ParPINN

has difficulty solving them.
6 Conclusion

In order to solve mBL equation, a high-dimensional PDE with

complex structures, quickly and accurately, and achieve a new

breakthrough in solving complex PDE of the physical ocean field

by using deep learning technology, we propose “DF-ParPINN:

parallel PINN based on velocity potential field division and single

time slice focus”. DF-ParPINN consists of three modules: temporal-

spatial division module of overall velocity potential field, rational

selection module of multiple time slices data, and parallel

computation module of high-velocity fields and low-velocity

fields, each of them respectively realizes the optimization of the

high-dimensional non-convex equation, the deep transmission of

effective physical information, the low cost and fast training of the

network, to varying degrees. The core of DF-ParPINN is parallel

physics-informed neural networks of different servers, they are used

separately to solve the high-velocity field and low-velocity field. The

experimental results show that the solution time of DF-ParPINN is

no more than 0.5s, and its accuracy is much higher than that of

PINN, PIRNN, cPINN, and DeepONet. Moreover, the relative error

of DF-ParPINN after deep training 1000000 epochs can be reduced

to less than 0.1. With the help of neural operators and other

methods, continue to improve DF-ParPINN, so that it can solve

more complex mBL equations more accurately and quickly, which

will be our future research direction.
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FIGURE 7

Velocity potential field at t=7500s solved by two algorithms.
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