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Geospatial analysis of shoreline
changes in the Oman coastal
region (2000-2022) using GIS
and remote sensing techniques
Arife Tugsan Isiacik Colak*

İnternational Maritime College Oman, National University of Science and Technology, Sohar, Oman
This research introduces an innovative method employing the Canny edge

detector for automatic and precise coastline extraction, aiming to analyze

spatial and temporal variations in the Oman coastline from 2000 to 2022 using

GIS and remote sensing (RS) techniques. Focusing on both multi-decadal and

short-term periods, the study aims to detect accretion and erosion rates through

the observation and interpretation of coastal changes. Utilizing the Digital

Shoreline Analysis System and LANDSAT imageries, Shoreline changes have

been quantitatively evaluated using three distinct approaches: Linear

Regression Rate (LRR), End Point Rate (EPR), and Net Shoreline Movement

(NSM). The dynamic nature of the Oman coastal region necessitates a

comprehensive understanding of its evolving coastline. Our investigation

applies digital shoreline analysis to discern shifts in the coastline’s position,

employing a multiple regression approach for quantifying the rate of coastal

change. To facilitate automatic shoreline extraction, various methods were

experimented with, ultimately determining the Canny Edge algorithm’s

superiority in yielding precise results. The paper outlines the monitoring

procedures for the coastal area and analyzes coastline changes using

geospatial techniques. This analysis provides valuable insights for the planning

and management of the Oman shore. Furthermore, the proposed model’s

applicability is rigorously tested against other generic edge detection

algorithms, including Sobel, Prewitt, and Robert’s techniques. The conclusive

findings demonstrate that our model outperforms these alternatives, particularly

excelling in the accurate detection of the coastline. This research contributes to a

deeper understanding of coastal dynamics and offers a robust methodology for

coastal monitoring, with implications for effective planning and management

strategies in the Oman shore region.
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1 Introduction

Over time, coastal usage areas are continually changing. It is

imperative to constantly redefine and monitor coastal areas in light

of this change. The coastal usage area changes as a result of events

such as drifting coastal soil into the sea, waves that carry soil to the

shore, deltas that form along the river directly affecting the shore,

natural changes resulting from the region’s geographical location,

and sea level changes (Parthasarathy and Deka, 2019;

Apostolopoulos and Nikolakopoulos, 2021; Rahman et al., 2022;

Nidhinarangkoon et al., 2023). A premier factor in coastal change is

the effects of natural events. When coastal cities are examined, it is

the changes caused by natural events that are the most significant.

As a result of the settlements on the coasts, natural events are

triggered, and erosion is a common consequence of the sea’s

progression to land. Thus, the coastal city can transform over

time (Gurel, 2018).

In coastal planning, coastal management, and decision-making

processes, it is imperative to take into account the physical and

socioeconomic impacts of coastal areas (Dasgupta et al., 2009;

Gazioğlu et al., 2010; Yasir et al., 2020a; Yasir et al., 2020b; Hossain

et al., 2021; Yasir et al., 2021). Coastal management and

engineering design rely on essential information to predict the

coastline’s past, present, and future locations. Analyzing coastal

data is crucial in various aspects, such as coastal protection design

(Apostolopoulos and Nikolakopoulos, 2022), the calibration and

validation of numerical models (Hanson et al., 1988), assessing sea-

level rise (Leatherman, 2001), defining legal property boundaries

(Morton and Speed, 1998), and monitoring coastal surveys (Smith

and Jackson, 1992). To analyze coastal variability and trends

effectively, a clear definition of the “coastline” is indispensable.

Given the dynamic nature of this boundary, it is essential to

evaluate the selected shoreline definition both in terms of time

and space (Boak and Turner, 2005). While a concise and ideal

description of the coastline is that it coincides with the physical

interface of water and land (Dolan et al., 1980), the application of

this definition is challenging. The coastal position continually

shifts over time due to sediment movement along the coastline

and the dynamic nature of water levels, especially at the coastline,

influenced by waves, tides, groundwater, storms, and other factors.

Recognizing the significance of defining the “coastline” is crucial

for the analysis of coastal variability and trends. Given the dynamic

nature of this boundary, a temporal and spatial evaluation of the

chosen shoreline definition is imperative (Zheng et al., 2023). The

instantaneous shoreline refers to the immediate location of the

land-water interface (Mullick et al., 2020; Hui et al., 2022). It is

important to acknowledge that the cost is a time-dependent

phenomenon with short-term variability. While defining the

coastline, it is also necessary to take into account the coastal

variations. Most coastal change studies consider discrete

transitions or points and monitor how they change over time.

Defining the coastline requires consideration of coastal variations

as well. In most coastal change studies, discrete transitions or

points are considered and their changes are monitored over time.

In their study, Eliot and Clarke (1989) demonstrated that a small-
Frontiers in Marine Science 02
scale study of one area of the coastline does not fully reflect the

change of the entire coast.

Nowadays, monitoring coastal areas, which are the only areas

where the atmosphere, hydrosphere, and earth interact with each

other, determining the temporal change, and comparing historical

data with current data, coastal area management and monitoring of

the change in the coastline are carried out using computer science

and remote sensing technologies. RS data has become an

indispensable tool in the management and planning of coastal

and marine areas (Uçkaç, 1998; Yasir et al., 2024). Knowledge of

coastal location is essential for tackling shore issues and measuring

and identifying land and water resources such as land area and

perimeter of coastlines. Performing this task can be challenging,

time-intensive, and at times, unfeasible, especially when employing

conventional ground surveying methods over a vast area (Cracknell,

1999; Li and Michiel, 2010; Kuleli et al., 2011). RS data deliver

important preliminary estimates of change (Ghaderi and Rahbani,

2020). At the same time, maps obtained from satellite data are a

very important resource for reflecting changes in the coastline over

the years (Kevin and El Asmar, 1999; Shaghude et al., 2003).

Various image processing techniques have been applied to extract

water features from satellite images over the past few years. Single-

band methods employ a chosen threshold value for watermark

removal, but they often encounter errors stemming from the mixing

of water pixels with various land cover types (Du et al., 2012).

Classification techniques employed to eliminate surface water

typically yield greater accuracy compared to single-band techniques

(Du et al., 2012). Multiband approaches amalgamate various reflective

bands to enhance the extraction of surface water (Du et al., 2012). For

example, the development of the Normalized Difference Water Index

(NDWI) aimed to discern water features in Landsat images. However,

NDWI often includes false positives arising from built-up terrains. To

address this issue, a modified Normalized Difference Water Index

(MNDWI) was implemented, substituting the near-infrared (NIR)

band for the mid-infrared (MIR) band (Pandey et al., 2023). MNDWI

excels in isolating surface water while suppressing inaccuracies stemming

from both soil and vegetation, achieved through the removal of surface

soil (Pandey et al., 2023). The first article to propose the green and

infrared band ratio (NDWI), which reveals the water feature in remote

sensing images, belongs to McFeeters (1996).

DSAS is a versatile tool with a wide range of applications, making it

valuable for calculating positional changes over time (Baig et al., 2020). It

can be used to track alterations in various features, including glacier

boundaries in historical aerial photographs, riverbank borders, and shifts

in land use/land cover (Saad, 2021). To ensure the consistency and

accuracy of computed results, DSAS offers rate-of-change information

and mathematical data to assist in shoreline change calculations. The

model comprises three primary components. First, it involves defining a

baseline. Next, orthogonal transects are generated to indicate spatial

separation along the coastline. Finally, rates of change are calculated

using diverse approaches or models, such as linear regression rates,

endpoint rates, average rates, and more (Adebola et al., 2017). However,

it’s worth noting that remote sensing technology plays a pivotal role in

cost-effective data acquisition. Optical images are readily interpretable

and accessible. Moreover, the unique characteristics of water, vegetation,
frontiersin.or
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and soil, including the absorption of infrared waves by water and their

strong reflection by vegetation and soil, provide an ideal means of

delineating land-water boundaries. These distinctive features have led to

the frequent use of images containing infrared bands for shoreline

analysis (Alesheikh et al., 2004). The main objective of this paper is

as follows;
Fron
• To develop an innovative method for automatic and precise

coastline extraction, employing the Canny edge detector.

Our objective is to analyze the spatial and temporal

variations in the Oman coastline from 2000 to 2022 using

GIS and RS techniques.

• Our study is centered on the detection of accretion and

erosion rates through the observation and interpretation of

coastal changes over both multi-decadal and short-

term periods.

• The application of digital shoreline analysis allows us to

detect shifts in the position of the coastline. A multiple

regression approach will be used to quantify the rate of

coastal change along the coast of Oman, including EPR,

NSM, and LRR.
1.1 Geomorphology and surface processes

Oman’s northeastern Al Batinah coastal plain is surrounded by

both the Al Hajar Al Gharbi (Western Hajar) Mountains and the

Sea of Oman. Stretching approximately 230 km in an NW-SE

direction, from the United Arab Emirates (UAE) border in the

northwest to Muscat in the southeast, it forms a crescent shape

parallel to the mountains (Figure 1). This shore plain is roughly
tiers in Marine Science 03
50 km wide at its center and tapers at its northwest and southeast

ends. Notably, around 90% of its shoreline consists of sandy beaches

(Al-Hatrushi et al., 2015). Numerous deltas within the coastal plain

drain from the mountains (Lotfy, 2012). The shore plain itself is

composed of continuous alluvial fans that have been deposited from

the southern highlands. It can be divided into two parts: the alluvial

plain and the coastal zone. The gently sloping alluvial plain features

surface characteristics dominated by both recent and ancient

alluvial fans. The coastal area is situated at an elevation of less

than 20 meters above sea level and includes coastal dunes and

sabkhas (supratidal mudflats or sandflats) near the shoreline. The

coastline is characterized by sandy beaches, numerous tidal inlets,

lagoons, and stands of mangroves near the mouths of significant

wadis. Sediments along this plain vary from gravel and coarse sands

near the mountains to fine sands and silt as one moves closer to the

coast (Kwarteng et al., 2016). The Al Batinah watersheds are known

for their aridity and susceptibility to rapid wadi flooding, especially

during the winter (Abushandi and Abualkishik, 2020). According to

Kwarteng et al. (2009), the Al Batinah plain receives an average

annual rainfall of 101 millimeters, with air temperatures varying

based on elevation. Coastal regions experience higher relative

humidity throughout much of the year, particularly in the

summer when it can reach up to 99%. The region’s winter

weather is influenced by northwesterly and northeasterly winds,

while the southwesterly monsoon affects summer conditions.

Although there are several groundwater aquifers in the Al

Batinah region, they are not extensively utilized due to the risk of

saltwater intrusion. The tidal system of Al Batinah’s beaches is

primarily influenced by low-wave energy tides and an annual

littoral drift of 100,000 m3 (Al-Hatrushi et al., 2015).

Furthermore, Al-Hatrushi et al., (2015) express concerns about

the vulnerability of the Al Batinah coastline to sea-level rise due to
FIGURE 1

Location map.
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climate change, as well as frequent threats from cyclones and storms

like Gonu in 2007 and Kyar in 2019. Air pressure, wind patterns,

and precipitation are the key climatic variables strongly correlated

with geomorphological processes along the coastline. These

mechanisms play a crucial role in sediment deposition, transport,

and coastal processes such as erosion. Notably, the main wadis

replenish the beach with sediment during periods of precipitation

(Kwarteng et al., 2009).
2 Materials and methods

2.1 Datasource

In this study, Landsat Multi-temporal satellite data has been

utilized, specifically making use of the Operational Land Imager

(OLI) and Enhanced Thematic Mapper Plus (ETM+) sensors, to

encompass the study period spanning from 2000 to 2022. These

satellite images were acquired from the US Geological Survey’s

Earth Explorer website (http://earthexplorer.usgs.gov) at no cost.

Due to their open accessibility and cost-effectiveness, Landsat

images were selected as the most suitable data source for our

research. Detailed information about the data used can be found

Table 1. The data underwent pre-processing by the USGS before

being delivered in the form of level-one terrain-corrected (L1T)

Landsat data. These data were provided in the WGS84 geodetic

datum and the Universal Transverse Mercator Map projection

(UTM, Zone 40N). It is important to note that the L1T nature of

the data ensured that radiometric and geometric deformations were

rectified before being made available, as discussed by Jensen (1996),

Seilheimer et al. (2007), and Nahiduzzaman et al. (2015). Figure 1

shows the location map of the study area.
2.2 Water and non-water attributes are
separated using a spectral index

The typical approach for detecting surface water changes

involves isolating water features from multi-dated satellite images

before conducting comparisons to identify alterations (Xu, 2006; Xu

et al., 2010; El-Asmar and Hereher, 2011; Zhou et al., 2011; Du et al.,

2012). Feyisa et al. (2014), the automatic water extraction index

(AWEI) has been proposed for mapping water bodies. The AWEI

index is applied for shoreline extraction, but it is emphasized in

studies that the AWEI method cannot extract small areas of water.
Frontiers in Marine Science 04
MNDWI is simple but efficient and user-friendly and performs well

in shoreline extraction, according to Wang and ve ark (2017)

suggested. Within the scope of this study, Landsat images have

been examined to detect shoreline changes. An analysis of shoreline

changes in the selected areas was conducted using the Digital

Shoreline Analysis System (DSAS). DSAS is a statistical tool

designed for studying shoreline changes, and it provides valuable

insights into coastal environmental dynamics (Sheeja and Ajay

Gokul, 2016; Thieler et al., 2017; Selamat et al., 2019). The user-

friendly interface developed for DSAS enhances users’ ability to

access valuable information, facilitating the generation of

interactive reports for analysis (Moussaid et al., 2015; Abdul

Maulud et al., 2022). In this study, multi-temporal LANDSAT

imagery was employed and an appropriate index was selected that

encompasses common bands from both the ETM and OLI sensors.

Specifically, the Near-Infrared and Green bands, which are shared

by Landsat 7 and 8 sensors were focused on. Consequently,

McFeeters’ NDWI was adopted (Normalized Difference Water

Index) as it is recommended for describing water features due to

its superior accuracy compared to other indices, especially when

manually and theoretically adjusted thresholds are taken into

account (Das and Pal, 2017). To calculate NDWI, Equation 1 was

used as proposed by McFeeters (1996), where GreenBOA and

NIRBOA represent the reflectance of the green and Near-Infrared

bands, respectively. The NDWI values range from -1 to 1. Typically,

NDWI yields positive results for water features and negative results

for non-water features (McFeeters, 1996). Our goal was to

demarcate the coastline by distinguishing between water and non-

water features. This was accomplished through binary image

classification, in which values were assigned to each of the

images: 0 to non-water features and 1 to water features, as

outlined by (Das and Pal, 2017). For a visual representation,

please refer to Figure 2A.

NDWI =
GreenBOA − NIRBOA

GreenBOA + NIRBOA
(1)
2.3 Coastline extraction

Various techniques for edge detection are available for the

extraction of shorelines from RS imagery. These techniques

include common operators such as Sobel, Canny, Prewitt, and

Robert. These algorithms are renowned for their simplicity and

speed in detection. In our study, we specifically chose the Canny
TABLE 1 details information of the dataset.

Year/Month Sensor Spatial Resolution (m) Cloud No of Band Format

19/11/2000 Landsat_7 ETM+ 30 0 7 Geo TIF

25/11/2005 Landsat_7 ETM+ 30 0 7 Geo TIF

15/11/2010 Landsat_7 ETM+ 30 0 7 Geo TIF

09/11/2015 Landsat_8 OLI 30 0 11 Geo TIF

22/11/2022 Landsat_8 OLI 30 0 11 Geo TIF
fro
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Edge algorithm for the automatic extraction of precise coastlines,

eliminating the labor-intensive process of manual digitization. The

Canny technique, rooted in optimization principles, effectively

addresses the limitations of other gradient operators. It is widely

recognized as the most successful and commonly employed

grayscale edge detection technique. The objective of this study

was to conduct an in-depth analysis of RS image edge detection,

adhering closely to the procedural steps outlined in the Canny

technique. As a result, it was noticed that the Canny edge detection

operator emerges as the most effective choice for obtaining

welldefined image edges with remarkable continuity and minimal

breakpoints. In satellite images, the boundaries between sea and

land exhibit a step-like edge transformation as the image’s grayscale

values shift from land to seawater. This characteristic aligns with the

precision of the Canny operator in edge positioning. When contrast

to other techniques, Canny excels in accurately delineating coastal

lines within a limited time and iterations. The extraction process is

finalized during the detection step of this method. The Canny

technique comprises four primary steps in its implementation, as

outlined in Canny’s work from 1986 (Canny, 1986).

• To reduce noise in the image, a Gaussian function G(x, y) is

employed to convolve the image f(x, y), resulting in a smoother

image g(x, y) as described by Equations 2, 3.

G(x, y) =
1
ffiffiffiffiffiffiffiffiffi

2pa
p exp (

−(x2 + y2

2a2 ) (2)

g(x, y) = f (x, y)*G(x, y) (3)

• Calculate the gradient direction and amplitude by employing a

suitable gradient operator to assess the size and direction of the

gradient for each pixel in the noise-reduced image.

• Utilize the non-maximum suppression (NMS) technique to

accurately pinpoint the positions of edge points. This involves
Frontiers in Marine Science 05
comparing the gradient amplitudes of neighboring pixels. Pixels with

higher amplitude values are identified as edge points of interest, while

those with lower amplitudes are considered non-edge points.

• Proceed to detect edges with high and low thresholds after the

initial processing. The edges obtained in the previous steps are

typically rough, and it is necessary to distinguish between genuine

and false edge points. Points below the low threshold are excluded,

while those above the high threshold are designated as edge points.

Points with intermediate strength are marked as weak points, and

the algorithm assesses whether these weak edges are connected to

the primary edge points. If a connection is established, the point is

recorded as an edge point.

Following the completion of the coastline extraction step by

MATLAB R2021b, the ArcGIS 10.5 version software conversion

tool was used to convert the raster data into a vector format

(Figures 2A–F). This allowed to obtain coastline shapefiles for

each year of the study period. DSAS was then utilized to analyze

changes in the coastline for Oman during the period 2000-2022. As

depicted in Figure 3, the accuracy graph illustrates the relationship

between time consumption and the precision of data provided by

various coastline extraction techniques. Notably, Canny

outperforms others with an impressive accuracy rate of 87.79%.

This result affirms the efficacy of the proposed model for the

extraction and identification of coastal lines.
2.4 Interpretation and calculation of
change rates

This research used statistical methods delivered by the DSAS

application, designed to seamlessly integrate with the ESRI ArcGIS

software, to calculate shoreline change rates. To achieve edge

extraction, we followed the procedural steps outlined in the
B C

D E

F

A

FIGURE 2

To showcase the results of the automatic coastline extraction, (A) The input includes the original image or NDWI. (B) The outcome of coastline
extraction using the Prewitt technique. (C) The outcome of coastline extraction using the Sobel technique. (D) The outcome of coastline extraction
using the Robert technique. (E) The outcome of coastline extraction using the Log technique. (F) The outcome of coastline extraction using our
proposed Canny technique.
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Canny technique to conduct a thorough analysis of RS image edge

detection. Specifically, for our study, we utilized DSAS software

version 5, developed by the US Geological Survey (Himmelstoss

et al., 2018). Our approach involved the generation of orthogonal

transects spaced 100 meters apart along the northeast coast of

Oman using DSAS. The shoreline change statistics were calculated

using three methods: End Point Rate (EPR), Linear Regression Rate

(LRR), and Net Shoreline Movement (NSM). The EPR method was

applied to monitor changes between successive coastline pairs,

specifically for the years 2000-2005, 2005-2010, 2010-2015, and

2015-2022 (Figure 4).

In contrast, LRR statistics, which encompassed all shoreline

data, were utilized to assess coastline variation over the entire 22-

year from 2000 to 2022. The NSM method quantified the total

distance of shoreline change between two specific periods. While

LRR is commonly used to monitor shoreline dynamics (Crowell

et al., 1991), it does not capture short-term trends that may occur

between two successive periods due to various factors. The EPR

statistic, on the other hand, illuminates these short-term trends for

all transects between the four pairs of years. These change rates

represent alterations in shoreline positions between two consecutive

years, divided by the time elapsed between the two dates of coastline
Frontiers in Marine Science 06
assessment. In our study, the time elapsed between shoreline pairs

was typically five years, except for the final period, which spanned

seven years.
3 Results and discussion

3.1 Coastline dynamic during the
studied period

To conduct an extensive analysis of shoreline position changes

spanning from 2000 to 2022, LRR technique was employed. This

approach assesses the rate of change by fitting a least square

regression to all shoreline positions, beginning with the oldest

and progressing to the newest, along each of the transects. The

results, as depicted in Figure 5, provide a comprehensive overview

of global trends in shoreline change rates calculated using the LRR

statistic. Positive values in this representation indicate shoreline

accretion, while negative values signify coastal erosion.

Additionally, Figure 5 offers insights into the specific locations of

both accretion and erosion areas.

The figure illustrates the computed long-term shoreline change

rates using the Local Regression Rate (LRR) method for the period

spanning 2000 to 2022. Each transect is color-coded, with negative

values depicted in red, indicating erosion, and positive values shown

in blue, representing accretion rates. The visual representation

provides a clear spatial understanding of the coastal dynamics,

allowing for the identification of areas experiencing erosion and

accretion along the Oman coastline.

During the 22-year study period, both the overall average rates

obtained through LRR and NSM analysis consistently indicated a

prevailing trend of shoreline accretion. The average rate for LRR

was 3.17 meters per year, while NSM showed an average distance of

77 meters. The long-term analysis results further underscored the

dominance of accretion along the coastline, with 76.53% of

transects exhibiting accretional behavior. Among these, 22.4%

were statistically significant. In contrast, 23.47% of transects

showed erosion, with only 1.24% of them having statistically

significant erosion values. The maximum positive distance in

NSM, signifying accretion, reached 1220.8 meters, while the
FIGURE 4

Shoreline with transect line.
FIGURE 3

The extraction accuracy of different methods.
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maximum accretion rate based on LRR statistics was 57.28 meters

per year. Notably, these maximum values were often associated with

port infrastructure developments. EPR analysis results for the same

period also confirmed the prevalence of the accretion process, with

82.36% of transects exhibiting accretion tendencies, and 51.64% of

them being statistically significant. Conversely, 17.6% of transects

showed erosion, and only 4.7% of these displayed statistically
Frontiers in Marine Science 07
significant erosion. This period of observation witnessed notable

fluctuations in shoreline dynamics, including both accretion and

erosion trends. Remarkably, the areas of coastline undergoing

significant changes were often characterized by intensive socio-

economic activities, particularly urbanization, as evident in

Figure 6. These findings strongly suggest that anthropogenic

factors play a pivotal role in driving high shoreline changes along
FIGURE 6

Visual representation of Oman’s littoral zone changes and anthropogenic activities from 2000 to 2022, extracted from Google Earth Pro. This figure
succinctly captures the dynamic evolution of the coastline, highlighting the impact of human activities. High-resolution imagery provides key insights
into the complex interplay between natural processes and anthropogenic influences.
FIGURE 5

The long-term shoreline change rate from 2000 to 2022 was calculated using LRR. In the representation, transects with negative values (depicted in
red) indicate erosion, while positive values (shown in blue) represent accretion rates.
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this coast. Figure 6 provides an illustrative representation of the

dynamic changes in the littoral zone of Oman spanning the years

2000 to 2022. Extracted from Google Earth Pro, the illustration

offers a detailed visual insight into the evolving coastal landscape,

highlighting the impact of anthropogenic activities over this time-

period. The distinctive features captured in the image include

alterations in land cover, shoreline shifts, and the imprint of

human interventions along the coastline. The comprehensive

nature of this illustration serves to complement our findings,

providing a tangible and accessible representation of the complex

interactions between natural processes and anthropogenic

influences in the studied region.
3.2 Coastline change analysis

3.2.1 End point rate analysis
The short-term analysis reveals spatiotemporal trends and

fluctuations in shoreline dynamics, enabling monitoring of the

various stages of infrastructure development along this human-

altered coastline. The Employment-Population Ratio (EPR) serves as

a straightforward and effective method for assessing the evolution

between two consecutive shoreline dates. Figure 7 presents the

outcome of the EPR for different pairs of years, highlighting areas of

significant accretion or erosion. These results also indicate variations

in spatiotemporal change rate trends across different time periods.
3.2.2 Shoreline changes 2000-2005
Figure 7 illustrates the rates of coastline position changes

calculated using the EPR technique for this specific time period.

The statistical analysis reveals that the Oman coastline primarily

experiences accretion, with an average rate of 4.58 m/yr. More
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specifically, 66.45% of all transects exhibit accretion, with 29.44% of

them displaying statistically significant accretion. In contrast,

33.55% of all transects show erosion, and only 7.23% of these

exhibit statistically significant erosion. The maximum recorded

accretion rate reached 99.07 m/yr, while the maximum erosional

rate stands at -43.16 m/yr. Notably, this period is marked by

significant sections with notably high erosion rates, with the

highest values, both in terms of erosion and accretion, located in

the southern part of the coastline.

Figure 7 presents a detailed visualization of EPR (Erosion and

Accretion) changes along the Oman coastal zone during the period

2000-2005. Transects are color-coded to indicate the nature of

change, with red representing erosion and blue denoting accretion.

The visual analysis offers a snapshot of the dynamic coastal processes,

highlighting regions experiencing erosion in red and areas

undergoing accretion in blue. This color-coded mapping provides a

clear and concise representation of the evolving coastal landscape

during the specified timeframe, contributing valuable insights into

the directional changes and potential areas of concern.

3.2.3 Shoreline changes 2005-2010
During this period, significant fluctuations between

progradation and erosion were observed, as computed using the

EPR techniques (see Figure 8). Notably, this timeframe is

characterized by the highest rates of both accretion and erosion.

These trends align with the patterns observed in previous periods.

The average rate stands at 4.26 m/yr, with 54.13% of all transects

showing accretion, and 25.59% of them exhibiting statistically

significant accretion rates. Additionally, 45.87% of the transects

experience erosion and 13.39% of these display statistically

significant erosion. The maximum accretion rate, reaching 184.7

m/yr, is found in the Sohar Port area.
FIGURE 7

Displaying EPR changes from 2000 to 2005, where red signifies erosion and blue indicates accretion. This visual representation vividly illustrates the
dynamic coastal alterations during this specific timeframe, offering a clear distinction between areas experiencing erosion (in red) and those
undergoing accretion (in blue).
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3.2.4 Coastline changes 2010-2015
The EPR statistics for this period are graphically presented in

Figure 9, highlighting that both eroded and prograded sections of

the shoreline exhibit approximately equal rates of change. The

average rate stands at 0.25 meters per year, with 50.35% of all

transects demonstrating accretion, and 19.1% of them displaying

statistically significant accretion. On the other hand, 49.65% of all

transects experience erosion, and 14.89% of these exhibit
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statistically significant erosion. The maximum accretion rate

reaches 126.93 meters per year, while the maximum erosion rate

plunges to -177.03 meters per year. These peak values are

concentrated in the southern part of the coastal area.

3.2.5 Shoreline changes 2015-2022
The EPR statistics for the final period, as depicted in Figure 10,

reveal a progradation trend, with an average rate of 5.27 meters per
FIGURE 9

Visualizing EPR changes from 2010 to 2015, where red indicates erosion and blue signifies accretion. This graphical representation offers a clear
distinction between areas experiencing coastal erosion (depicted in red) and those undergoing accretion (depicted in blue) during the
specified timeframe.
FIGURE 8

Illustrating EPR changes from 2005 to 2010, with red denoting erosion and blue representing accretion. This visual depiction provides a clear
differentiation between areas experiencing coastal erosion (depicted in red) and those undergoing accretion (depicted in blue) during the
specified timeframe.
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year. Specifically, 58.1% of all transects show accretion and 29.9% of

them exhibit statistically significant accretion. In contrast, 41.9% of

the transects experience erosion. The highest accretion value, 130.6

meters per year, is located in the Dibba Al Fujairah port area, while

the maximum erosion rate reaches -53.2 meters per year.
3.3 Land loss and land gain

The Oman shoreline has changed over time due to processes of

both accretion and erosion. However, it’s important to note that the

entire coastline has predominantly experienced accretion, with

erosion occurring but to a lesser extent throughout the entire

period. Between 2000 and 2022, the most significant accretion

took place (Figure 11). The coastal regions have predominantly

witnessed extensive socioeconomic activities and urbanization, with

a notable emphasis on the proliferation of large port infrastructure.

Long-term spatiotemporal assessments of coastline changes,

spanning from 2000 to 2022, underscore the significant influence

of anthropogenic activities on shoreline dynamics. The most

significant alterations involve land progradation toward the sea, a

transformation primarily driven by human interventions.

Conversely, certain sections of the shoreline have experienced

erosion, primarily attributed to human pressures. A closer

examination of these rates over time reveals a growing

anthropogenic footprint and urban expansion along the coast.

Continuous monitoring of shoreline changes highlights that,

across all time periods, seaport areas and their neighboring regions

have consistently expanded seaward. These shifts in coastline shape

have far-reaching implications for the coastal environment,

impacting ecosystems, marine habitats, and benthic communities

in the near-shore area. Additionally, industrial cities in the vicinity

may pose pollution challenges as a result of these changes.
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4 Ecological & socio-
economic Implications

4.1 Ecological implications

Our research delves into the ecological consequences of changes

observed in the Oman coastline. Landsat images have allowed us to

assess changes in land cover, vegetation, and coastal features. The

implications for local ecosystems are multifaceted, encompassing

potential impacts on biodiversity, habitat loss, and changes in

coastal dynamics. Our findings contribute valuable insights into

the vulnerability of coastal ecosystems to various anthropogenic

and natural factors. changes in coastal dynamics, such as erosion

and accretion, can disrupt the delicate balance of sediment

transport and coastal geomorphology. This not only affects the

stability of coastal ecosystems but also alters nutrient cycling,

sediment deposition patterns, and shoreline protection

mechanisms. Consequently, the resilience of coastal ecosystems to

natural disturbances and climate change-induced stressors may be

compromised, exacerbating the risk of biodiversity loss and

ecosystem degradation.
4.2 Socio-economic implications

The socio-economic implications of coastal changes are crucial

for understanding the broader impacts on communities and

industries. Our study explores the interactions between coastal

transformations and local socio-economic activities, such as

fisheries, tourism, and infrastructure development. Our objective

is to provide stakeholders and policymakers with a comprehensive

understanding of the potential impacts of these changes on

livelihoods, resource utilization, and community resilience by
FIGURE 10

Displaying EPR changes from 2015 to 2022, with red indicating erosion and blue representing accretion. This visual representation delineates areas
experiencing coastal erosion (in red) and those undergoing accretion (in blue) during the specified timeframe.
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analyzing these connections. The livelihoods of coastal

communities are intricately linked to the health and stability of

coastal ecosystems. For instance, changes in coastal morphology

and habitat degradation can significantly impact fisheries

productivity, jeopardizing the livelihoods of fisherfolk reliant on

marine resources for sustenance and income. Similarly, the tourism

sector, which thrives on pristine coastlines and marine attractions,

may suffer adverse consequences from coastal erosion and

degradation, leading to economic losses and employment

uncertainties for local communities dependent on tourism-related

activities. Moreover, coastal infrastructure, including ports, harbors,

and residential settlements, is vulnerable to the impacts of coastal

erosion and sea-level rise. The degradation of coastal defenses and

inundation of coastal areas pose substantial risks to infrastructure

integrity, public safety, and property values, necessitating costly

adaptation and mitigation measures. The socio-economic

ramifications of these challenges extend beyond immediate
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economic losses to encompass broader issues of community

resilience, social cohesion, and equitable access to resources.
4.3 Policy and
management recommendations

To address the identified ecological and socio-economic

implications, our research includes recommendations for

sustainable coastal management and policy considerations. Our

findings will be incorporated into future planning initiatives in

order to help develop strategies that balance economic development

with ecological conservation and promote long-term well-being.

In summary, our study not only focuses on the technical aspects

of image extraction and change analysis but also aims to provide a

holistic understanding of the broader consequences for the

environment and society. The opportunity to emphasize the
FIGURE 11

Map illustrating land loss and gain along the Oman coastline from 2000 to 2022. This visual representation provides a comprehensive overview of
the dynamic changes in coastal areas, highlighting regions experiencing land loss and those undergoing land gain over the examined period.
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ecological and socio-economic dimensions of our work is greatly

appreciated, and we believe that this comprehensive approach

enhances the significance and applicability of our research.
5 Conclusion

In the present research, we conducted a spatiotemporal

assessment of coastline variations along the Oman coast, utilizing

GIS and RS technologies. Utilizing the DSAS application and

multitemporal satellite data, we analyzed 22 years of data

concerning the coastline of Oman. Canny-based edge extraction

was used in this study to automatically delineate the study area,

resulting in more precise and finer representations of the coastline.

Clearly, accretion has been observed along the coast of Oman. To

gain a detailed understanding of these changes, the LRR method

proved advantageous. However, the EPR method proved effective

when the coastline exhibited either consistent seaward or landward

movement. Statistical techniques, such as EPR, NSM, and LRR were

used to quantify the rates of coastline change that allows the user to

evaluate both long-term and short term trends. Study identified

areas of significant accretion and erosion between 2000 and 2022.

Assessing spatiotemporal coastline variations in a non-structural

manner presents a feasible alternative for coastal area management.

Additionally, this study contributes to understanding coastline

susceptibility. Over the past 22 years, human activities have

exerted a more significant influence on coastal topography than

natural factors, with artificial structures dominating the natural

shoreline. Moreover, research emphasizes the critical role of

coastline alterations as a primary physical influence. Continued

monitoring of areas prone to land loss is crucial, considering their

significance for future tourism and urban planning.
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