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satellite data record of dissolved
organic carbon concentration in
surface waters of the global
open ocean
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1Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland, 2Earth Observation
Science and Applications, Plymouth Marine Laboratory, Plymouth, United Kingdom, 3National Centre
for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
Dissolved Organic Carbon (DOC) is the largest organic carbon pool in the ocean.

Considering the biotic and abiotic factors controlling DOC processes, indirect

satellite methods for open ocean DOC estimation can be developed, using

conceptual, empirical or statistical models, driven by multiple satellite products.

In this study, we infer a time series of global DOC from data of the European

Space Agency’s (ESA) Ocean Colour Climate Change Initiative (OC-CCI) in

combination with a global database of in situ DOC observations. We tested

empirical machine learning modelling approaches in which the available in situ

data are used to train the models and to find empirical relationships between

DOC and variables available from remote sensing. Of the tested methods, a

random forest regression showed the best results, and the details of this model

are further reported here. We present a time series of global open ocean DOC

concentrations between 2010–2018 that is made freely available through the

archive of the UK Centre for Environmental Data Analysis (CEDA).
KEYWORDS

ocean carbon cycle, dissolved organic carbon, ocean colour, satellite observations,
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1 Introduction

Dissolved Organic Carbon (DOC) is the largest pool of organic carbon in the ocean at

around ∼662 Pg C (Hansell and Carlson, 2013). DOC is implicated in the physical

transport of carbon from the surface to intermediate or deep waters through circulation,

and in the metabolism of heterotrophic organisms. It is possible to classify DOC based on

its reactivity as refractory or labile. The labile pool, accounting for ∼0.2 Pg C, is biologically
available and has a high production rate of ∼14–25 Pg C y−1 (Hansell and Carlson, 2013).
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The refractory pool is the largest pool at ∼662 Pg, but has a much

lower production rate of 0.043 Pg C y−1 and an average turnover

time exceeding 1000 years (Williams and Druffel, 1987; Hansell and

Carlson, 2013).

Observing DOC from space is challenging because the

combined fractions of the DOC pool do not have a strong optical

signature. A seasonally and temporally varying part of the DOC

pool consisting of chromophoric substances known as Coloured

Dissolved Organic Matter (CDOM), which can be directly

monitored by ocean-colour remote sensing (Mannino et al.,

2008). Satellite-based models of the spectral absorption by

CDOM have performed reasonable well in validation studies

(Siegel et al., 2013; Loisel et al., 2014; Mannino et al., 2014;

Brewin et al., 2015) and their products are routinely produced by

space agencies. The total DOC pool can be monitored from

satellites by using its empirical relationship with CDOM

absorption, which has been found to work well in coastal and

shelf seas and the Arctic Ocean, but not in the open ocean where the

relationship breaks down (Fichot and Benner, 2012; Nelson and

Siegel, 2013; Matsuoka et al., 2017).

Given the various components of DOC, their respective

timescales and vertical distribution, photo-bleaching processes,

and the influence of biotic and abiotic factors on DOC processes

(Hansell et al., 2009; Hansell and Carlson, 2013; Aurin et al., 2018),

it is possible to develop indirect methods to estimate open ocean

DOC. These methods can be based on conceptual, empirical or

statistical relationships, incorporating multiple chemical, physical

and biological variables. For example, Roshan and DeVries (2017)

used an artificial neural network model to estimate global DOC

concentrations using depth, temperature, nutrients, chlorophyll-a

and the depth of the euphotic zone as input data. In combination

with a data-constrained ocean circulation model, they produced the

first observation-based global-scale assessment of DOC production

and export. Because many of these physical and biological products

are available from remote sensing observations, there is scope for

similar satellite-driven approaches to estimate DOC in the global

ocean. Recently, Bonelli et al. (2022) used a neural network

approach to map DOC in oligotrophic and mesotrophic open

ocean waters using sea surface temperature and the absorption of

CDOM two weeks prior to the target date; and added chlorophyll-a

concentration one week prior to the target date to the DOC model

in more productive waters.

In this study, we develop a machine learning regression model

to infer a time series of open ocean DOC from satellite-derived

quantities and other inputs that are available globally over the

ocean. We use the data from the European Space Agency’s (ESA)

Climate Change Initiative (CCI) in combination with a global in

situ database of DOC concentrations (Hansell et al., 2021). Several

empirical modelling approaches of the machine learning type were

tested, in which the available in situ data are used to train the

models and to find empirical relationships between DOC and

variables available from remote sensing. The best performing

random forest regression model is used to produce a global data

set of open ocean satellite-derived DOC concentrations at 9 km

spatial and monthly temporal resolution between 2010–2018.

Independent validation is done against time series at two
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measuring sites: Bermuda Atlantic Time-Series study site (BATS,

31°40’N, 64°10’W) and Hawaii Ocean Time-series Aloha site (HOT,

22°45’N, 158°W).
2 Data and methods

For modelling of DOC using satellite-based remote sensing, we

experimented with machine learning regression approaches to map

these global observations to in situ DOC. The tested methods were

1) multiple linear regression, 2) gradient boosting regression, and 3)

random forest regression. The aim was to provide a time series of

global, monthly averaged maps of DOC using satellite data only.

While the spatial and temporal coverage of in situ data that is

available for training of the models caused challenges, the results

presented here are promising. This study compares and validates

the models using cross validation approach.
2.1 Satellite data

As input data to the satellite-based DOC model, we used

remote-sensing reflectances at six different wavelengths (412, 443,

490, 510, 555 and 670 nm), phytoplankton primary production and

sea surface salinity and temperature (Table 1). In addition, distance-

to-shore, bathymetry, and latitude were used as geographical

regressors. Remote-sensing reflectances were obtained from the

Ocean Colour Climate Change Initiative (OC-CCI) v4.2

(Sathyendranath et al., 2019)1 for 1997–2019 and the associated

global satellite-based primary production data for 1998–2018 was

estimated as in Kulk et al. (2020), available from the Centre for

Environmental Data Analysis (CEDA)2. Sea Surface Salinity was

obtained from the Sea Surface Salinity Climate Change Initiative

(SSS-CCI) for 2010–2019 (Boutin et al., 2020)3, and Sea Surface

Temperature (SST) data for 2007–2020 were adapted and

reprojected from versions of daily 1/25°.

OSTIA foundation SST (UK Met Office, 2005; Fiedler et al.,

2019). All data was obtained at ∼9 km (1/12°) or better spatial

resolution – or reprojected to that resolution – and monthly

temporal resolution. Figure 1 shows examples of the global

satellite data sets for June 2018.
2.2 In situ data

To train the global DOC model, i.e. to calibrate the model

parameters, and validate model predictions, in situ DOC

observations were used (Table 1). The global in situ data set from
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Hansell et al. (2021) (1994– 2020) was used, which include DOC

concentrations and ancillary data from different field campaigns

worldwide (Figure 2). From these datasets, we removed any

duplicates, and we selected those in situ observations where the

concentration of DOC was reported and its value was greater than

zero. In addition, we chose only near surface measurements, with

criteria ‘CTD PRESSURE’ ≤ 30 dbar, corresponding approximately

to 30 metres.

After data selection of near-surface in situ DOC, we had a total

of 12,910 in situ observations available for further analysis. The in

situ data was matched-up with the satellite data at the time and

location of each in situ observation and a total of 8,796 data points

were available for all regression variables, which forms the
Frontiers in Marine Science 03
maximum size of the training data set for model calibration.

However, we further decided to aggregate the in situ data to the

same spatial and temporal resolutions as our monthly satellite data.

After calculating monthly means and means over 1/24° spatial grid,

we were left with 1,339 data points. We note that the overlapping

period of in situ and satellite data is 2010–2018, as this is the time

period for which sea surface salinity from CCI and the satellite-

based primary production data were available.
2.3 Machine learning models

Linear regression and visual inspection of pair-wise correlation

between variables was used to set a baseline for modelling of

DOC using other machine learning methods and to make an

initial selection of regression variables. The initial multiple linear

regression model used here is similar to that of Aurin et al. (2018).

We have a total of 13 candidate regressors to predict surface

water DOC in mmol kg−1. The regressors, or features in machine

learning terminology, are listed in Table 2. As satellite derived

quantities, we are using normalised remote-sensing reflectance at

wavelength 412, 443, 490, 510, 555 and 670 nm from the OC-CCI as

Rrsnnn, primary production from Kulk et al. (2020) as PP. Other

globally available regressors include sea surface temperature and

salinity. The geographical variables used were water depth and

distance to shore. All these regressors are available at the in situ

locations together with the observed DOC to train the model to be

used globally over the open ocean. For satellite-based data we used
FIGURE 1

Examples of the satellite datasets with. Top left: the remote sensing reflectance (Rrs) at 443 nm. Top right: Rrs at 555 nm. Bottom left: primary
production. Bottom right: sea surface salinity. All represent June 2018 mean values. Rrs and primary production are given in log scale. Light grey
areas over the oceans are missing data.
TABLE 1 Overview of the data sets used in this study.

Data
set

Spatial Temporal Reference

resolution coverage

OC-
CCI

1/24° 1997–2019 Sathyendranath et al. (2019)

PP 1/12° 1998–2018 Kulk et al. (2020)

Salinity
CCI

1/12° 2010–2019 Boutin et al. (2020)

SST 1/25° 2007–2020 UK Met Office (2005)

In situ 1994–2020 Hansell et al. (2021)
Monthly-averaged data was used, except for the in situ data. Abbreviations as in text.
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monthly averages interpolated to the location and time of in situ

data. Scatter plots of in situ DOC vs. various regressors are given in

the auxiliary material (Supplementary Figure 1).

For advanced machine learning we use random forest and

gradient boosting algorithms. Both are ensemble machine learning

methods that use random subsamples of the training data set and

builds decision trees or regression models for each sample, with the

final model being a combination of the individual models. The book

by Murphy (2012) gives an introduction to both methods as well as

other similar machine learning approaches. In this study, we have

used the Python package scikit-learn (Pedregosa et al., 2011) and its

functions LinearRegression, RandomForestRegressor and

GradientBoostingRegressor as well as several feature selection and

cross validation tools available in the package. To illustrate random

forest, Figure 3 shows an example of what an individual decision tree

might look like. The actual trees are usually much larger.
2.4 Model and hyper-parameter selection

An important step in model building is the selection of

explanatory variables. Including all or too many regressors will

make the model perform better for the training data set, but
Frontiers in Marine Science 04
typically causes over-fitting, i.e., the model is not able to predict

beyond the data used in training. This is the reason why most

machine leaning models use a separate and independent parts of the

observational data to evaluate the model’s performance. Although

there are automatic methods to select explanatory variables, or

features, some hand-tuning is necessary. In the case of DOC, the

amount of in situ data is still limited, both spatially and

temporally (Figure 2).

We ended up comparing 6 models: multiple linear regression

with full and reduced set of predictors, and random forest model

and gradient boosting model with L2 (least squares) and L1 (least

absolute deviation) optimisation criteria. The models use all

available regressors given in Table 2, except for the reduced linear

model, which used variables SST,
ffiffiffiffiffiffi

PP
p

, Rrs443, Rrs510, Rrs490, and

Rrs555, which were receiving largest Lasso scores when using L1

Lasso cross validation feature selection criteria available in the

scikit-learn (Pedregosa et al., 2011) package (shown later

in Figure 4).

Tuning and verification of the DOCmodel is challenging due to

relative small number of data points for building a global model that

depends on seasonally varying covariates. Due to sequential nature

of the in situ sampling (Figure 2), simple leave-one-out cross

validation is not optimal, as even an over-fitted model will easily

predict a data points that are very close in time and place to values

used in training. Here we decided to do cross-validation and model

hyper-parameter tuning by leaving out individual years of the

training data and then predicting DOC at the in situ location of

these left-out years. The main cross validation criteria used for

model selection and tuning of the boosting algorithms was R2

coefficient of determination of the prediction, called Q2 in the

following. Other cross validation criteria used were root mean

squared error (RMSE) of prediction and mean absolute error

(MAE) of prediction. For random forest and gradient boosting,

the cross validation was performed 30 times to calculate the mean

Q2 and other criteria mentioned above. For the multiple linear

regression model similar cross validation was performed 100 times.

The optimisation was done using package Optuna (Akiba et al.,

2019). The both machine learning regression models turned out to

be quite robust to overfit. We found out that the best performance

was achieved when allowing full model with all available predictors

and letting the hyper-parameter optimisation algorithm tune the

models using cross validated predictive ability. The three hyper-

parameters that were tuned in the process were max_depth,

n_estimators, and max_features (Pedregosa et al., 2011). The best

performance was achieved by the random forest model and L1

criteria. Table 3 shows the result of model validation

and comparison.

In addition to the above cross validation based model tuning,

we further evaluated the models using the same year-by-year cross

validation as in the tuning, whose results are shown in Table 3.

The results for two years, 2010 and 2011, are given in Figure 5,

showing estimated vs. observed DOC for the given year with

a model that is using all the years as well as cross-validation

results where the year has been left out from the training set.

Similar figures for all years are given in auxiliary material as

Supplementary Figure 5. For the random forest model, the Q2
TABLE 2 Regressors used in the models.

feature
ffiffiffiffiffiffi

PP
p

square root of primary production [g C m-2

month-1]

SST sea surface temperature [°C]

SSS sea surface salinity [ppt]

depth water depth [m]

dts distance to shore [km]

lat latitude of the observation [degrees north]

Rrsnnn remote-sensing reflectance at 6 wavelengths [sr-1]
FIGURE 2

Locations of the in situ Dissolved Organic Carbon measurements,
collected around the world on various field campaigns (Hansell
et al., 2021). The original data have been aggregated to monthly
means in 1/24° x 1/24° grid boxes.
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values for prediction ranged from 20% to 77% for different years.

This is an indication that the available training data might not be

adequate, or at least that we do need to use all available data to be

able to make reasonable predictions. However, the low values for

some years in predictive variance explained is not only the property

of random forest model. For the multiple linear regression models

experimented, the yearly Q2 values were much worse, also including

negative values, which indicate that the linear model is performing

worse in predicting new observations than just using the

observed average.
2.5 Uncertainty in the predictions

The problem with many machine learning tools is that they do

not provide uncertainty estimates for the predicted values. To
Frontiers in Marine Science 05
estimate the predictive ability of the DOC random forest

regression model and the uncertainty in predictions, we evaluated

model residuals and their dependency on external variables, such as

distance-to-shore and SST. In Figure 4 DOC estimations errors, i.e.,

the difference between in situ values and the corresponding model

predicted values, are plotted against distance to shore. Panel on left

shows absolute errors and panel on right shows relative errors

interpolated spatially over the globe using regression kriging.

Concentrations of DOC nearshore that are close to river and land

discharges will be controlled heavily by factors that do not directly

depend on the global variables available from space. For this reason,

the data used for the DOC random forest model training include

only those data points with distance-to-shore (e.g., variable dts)

greater than 300 km. We chose this distance based on model

performance and uncertainty analysis as described above. We

note that the global predictions of DOC (section 3.2) are
A B

FIGURE 4

DOC multiple linear regression model with (A) Predicted versus observed Dissolved Organic Carbon (DOC) concentrations (in mmol kg−1, and
(B) LassoCV scores for the model parameters.
temp<= 21.7
mse = 92.6

samples= 2311
value = 65.5

lat <= -41.7
mse = 78.7

samples= 1236
value = 60.3

True

sqrtpp<= 27.6
mse = 41.9

samples= 1075
value = 71.5

False

salt <= 34.3
mse = 35.3

samples= 246
value = 49.4

lat <= 71.3
mse = 52.8

samples= 990
value = 63.0

mse = 21.9
samples= 209
value = 48.2

mse = 49.6
samples= 37
value = 57.1

mse = 45.0
samples= 923
value = 62.3

mse = 68.9
samples= 67
value = 72.9

temp<= 24.7
mse = 32.0

samples= 953
value = 70.5

salt <= 32.1
mse = 52.0

samples= 122
value = 78.8

mse = 22.3
samples= 307
value = 68.0

mse = 32.3
samples= 646
value = 71.6

mse = 18.6
samples= 7
value = 92.6

mse = 39.8
samples= 115
value = 77.8

FIGURE 3

A simplified illustration of one random forest decision tree. The actual trees used in the model are much larger. The top line in each box shows
branch selection criteria, “mse” is mean squared error in the test data set, “samples” is the size of the sample in the branch, and “value” is the
estimated value of DOC.
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calculated also for near shore points where the accuracy is not

optimal and only reflects the background DOC not affected by

inland fluxes.
2.6 Other machine learning methods

There are other machine learning methods that have been used

successfully when predicting natural phenomena. The use of

artificial neural networks (ANN) has grown enormously in recent

years and they have shown to have good performance in

complicated modelling situations. An ANN model is even more

dependent on good training data than the machine learning

methods experimented here. We did experiment with ANN for

DOC estimation, but at least with tests utilising dense network layer

structure with different number of layers and layer widths, we were

not able to build models that would have enough predictive

performance with the Q2 criteria. The full development of a

neural network model, given the rapid development of the field in

recent years, would need much more work than was available for
Frontiers in Marine Science 06
this study. We refer to Bonelli et al. (2022) and earlier Roshan and

DeVries (2017) for interesting experiments using ANN for

modelling DOC.
3 Results

Figures 6, 7 show random forest and gradient boosting models

fitted to the whole in situ training data set. Both models can provide

very good fit to the whole in situ data and from the feature

importance analysis we can infer that all the regressors used can

provide some extra information to the procedure. The most

important predictors being sea surface temperature and latitude

of the observation. If we compare this to Figure 8 of multiple linear

regression and Lasso cross validation based scores we see that the fit

is much better and the effect of latitude is not so strong, which is

natural as the effect is not linear on the value of the latitude. We

could have tried to use different transformations to achieve

linearity, so this comparison is not totally fair against a more

simple model that only includes linear effects.

As seen in Figure 6A, the random forest DOCmodel can produce

a good fit to the training data with an R2 and Q2 values of 97% and

64%, respectively (see Table 3). Variable importance, or feature

importance in machine learning terminology, based on a

permutation method, is shown in Figure 6B. The SST and latitude

being the most important features. From ocean colour the reflectance

at 412 nm was the most important, salinity and primary production

bringing both about equally amount of predictive power to the model.

There is a tendency to over-fit, but still we conclude, that machine

learning DOC models provide relatively robust behaviour in cross

validation. Supplementary Figure 3 in supplementary shows observed

vs. predicted DOC scatter plots for individual years.

We used model residuals and their dependency on external

variables to estimate the predictive ability of the model and the

uncertainty in predictions. This analysis showed that a rough

estimate of the relative uncertainty in the estimated DOC is on

average 5% or less when in open ocean waters, i.e., more than 1,000
FIGURE 5

Observed versus predicted Dissolved Organic Carbon (DOC) in mmol kg−1 from the random forest model in years 2010 and 2011 with the 1:1 line.
The panel shows model fitted with all available data as well as the version where the given year has been left out of the training data set. All the
estimated years are shown in Supplementary Figure 16 in the Supplementary Material.
TABLE 3 Validation of different models using stratified cross validation.

Model R2 Q2 MAE RMSE MAPE%

Linear Regression, full 66 57 4.61 6.04 7.02

Linear
Regression, reduced

63 61 4.22 5.82 6.41

Random Forest, L1 97 64 4.27 5.66 6.49

Random Forest, L2 97 60 4.29 5.75 6.49

Gradient Boosting, L1 90 62 4.36 5.73 6.67

Gradient Boosting, L2 88 58 4.59 5.99 7.03
The cross validation was repeated at least 30 times to get the mean score. The R2 statistic is
calculated over the whole in situ data set. Other scores are: variance explained in prediction
Q2, mean absolute prediction error MAE, prediction root mean square error, RMSE, and
relative mean absolute prediction error MAPE%. For MAE and RMSE the unit is the same as
for DOC, mmol kg−1.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1305050
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Laine et al. 10.3389/fmars.2024.1305050
km from the shore, and the error stays smaller than 10% when the

distance is more than 300 km, see Figure 4.
3.1 Validation against measurement sites

There are few open ocean stations that measure DOC in

systematic manner. As an independent validation, we used in situ

data from two sites. The first time series was obtained at the Hawaii

Ocean Time-series HOT-DOGS application4. We compared model

estimates to the in situ measurements from station Aloha (22°45’N,

158°W), which were not part of the data used in the model

calibration. Figure 9 shows the estimated DOC with observations.

In this case, all our global models show similar seasonal pattern that

does not fully match to that in the observations. There is an average

bias of 1–3 µmol kg−1 for both machine learning models. The

multiple linear regression model has larger bias. The seasonal

pattern is not so noticeable in the observation, perhaps due to

sampling and representation issues. Overall the match is quite good

and within the anticipated estimation error.4

Figure 10 shows similar time series of data from Bermuda

Atlantic Time-Series study (BATS, 31°40’N, 64°10’W) station. This

is the same data set as was used by Bonelli et al. (2022), who kindly

provided the data they used. We used daily averages of first 30

metres depth, whereas Bonelli et al. (2022) used 50 m. Here the

observational data shows much clearer seasonal variability, which is

also present in all the models. From year 2014, the variability of the

observation changes, again perhaps due to some changes in

sampling. The bias in the model results is up to 7% during some

years. There were only three observations in Hansell et al. (2021)
4 University of Hawai’i at Mānoa. National Science Foundation Award #

1756517

https://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html
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data set close to BATS that are used to train the model for years

2010–2018. Those are shown separately in the figure.
3.2 Global satellite-based DOC time series

Using our DOC model for open water, we generated a global

monthly time series of DOC for 2010– 2018, for which time period, all

global input data were available. The output data have a spatial

resolution of 9 km (1/12°) in an uniform longitude-latitude grid, and

the data contains the estimated monthly DOC concentrations in mmol

kg−1. Data were generated only for those locations where remote sensing

reflectance, primary production, salinity and SST data were available.

We used the open ocean model even for near shore pixels. As examples,

Figure 11 shows themean climatology for years (2010–2018), withmore

maps provided in the supplementary material (Supplementary Figure

4). The entire data set is freely available online through the UK Centre

for Environmental Data Analysis (CEDA).
4 Discussion

Thanks to the comprehensive collections of in situ DOC data by

(Hansell et al., 2021), it is now possible to apply machine-learning-based

methods to estimate DOC in the surface waters of the global ocean. This

is, nevertheless, a challenging task (Brewin et al., 2021). The current work

explored modelling surface DOC from satellite data using multiple linear

regression, gradient boosting and random forest. They are all designed to

map the output variable of interest from the input variables in such a way

that the model would have some explanatory power on predicting values

outside the training data set. Extended validation of the models is still

essential to establish confidence in the model predictions. This study

shows that there are promising possibilities, but also room formore work.

In this study, we presented a machine learning approach to

develop a global time series of DOC from observations of remote-
A B

FIGURE 6

The DOC random forest model with (A) Model fit with the observed versus predicted DOC and (B) The relative importance of the regressor variables
based on a permutation method.
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FIGURE 9

Time series from globally estimated DOC with gradient boosting and random forest models (both using L1 error criteria) and reduced linear
regression model at a location of Aloha HOT-DOGS station compared to observations available from that stations for 2010–2018.
FIGURE 8

Uncertainty in the DOC random forest model. Left: the estimation error in all in situ locations compared against distance-to-shore. Right: the
relative mean absolute error interpolated globally using regression kriging method and distance to shore as predictor. The dots show relative model
residual error at in situ locations.
A B

FIGURE 7

The DOC gradient boosting model with (A) Model fit with the observed versus predicted DOC and (B) The relative importance of the regressor
variables based on a permutation method.
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sensing reflectance values at OC_CCI provided wavelengths (412, 443,

490, 510, 555, and 670 nm) phytoplankton primary production, sea

surface temperature and salinity, as well as geographical variables.

Other studies have used similar predictor variables, notably sea surface

temperature and salinity, but also other variables such as nutrient

concentrations and the absorption of Colour Dissolved Organic

Matter (aCDOM) (Siegel et al., 2002; Roshan and DeVries, 2017;

Aurin et al., 2018; Bonelli et al., 2022). The selection of predictor

variables is in part driven by domain-knowledge, but also by the type

of data available. We have chosen to use only those predictor variables

that are available from remote sensing observations, while other

studies have used a combination of data available from in situ

observations, satellite observations and biogeochemical models

(Siegel et al., 2002; Aurin et al., 2018; Bonelli et al., 2022). In the

DOC model presented here, sea surface temperature and latitude had

the highest relative importance in predicting DOC, followed by

primary production, distance to shore, sea surface salinity, and the
Frontiers in Marine Science 09
remote sensing reflectance at 412 nm, (Figure 6). The importance of

temperature and salinity in estimating DOC has been demonstrated in

other studies: for example, the empirical model of Siegel et al. (2002) is

based on relationships between temperature and in situ DOC that are

parameterised per ocean basin; and the empirical model of Aurin et al.

(2018) is based on the relationship between sea surface salinity and

satellite-derived aCDOM. While phytoplankton biomass has been used

in other global DOCmodels (Roshan and DeVries, 2017; Bonelli et al.,

2022), phytoplankton primary production is not commonly used,

maybe in part because in situ observations of primary production are

not available in sufficient numbers. Here, satellite-based primary

production is seen to add to the predictive power of the gradient

boosting and random forest models. It is important that internally

consistent datasets based on the Ocean Colour Climate Change

Initiative (remote sensing reflectances and primary production)

were used in this study.

The DOC values estimated from our model compared well with in

situ observations used in training the model (Figure 6). Leave-one-

year-out cross validation (Figure 5) showed varying consistency across

the years, but still provided reasonable results. Distance from shore

(dts) appeared as a key determinant of outliers (Figure 4). Validation

against in-situ measurements at Station Aloha and at BATS (Section

3.1) revealed biases that were in agreement with the assumed errors,

and also showed challenges in reproducing seasonal variability at a

local scale. The globally-mapped climatology (Figure 11) can be

compared visually with the results of Bonelli et al. (2022), who

recently published a 10-year DOC climatology based on a neural

network approach that incorporated sea surface temperature,

absorption of CDOM and chlorophyll-a. The two models showed a

high level of qualitative agreement in spite of the differences in the AI

methods employed, and in the satellite input data sets used. Though

we did not use absorption by CDOM in our analysis, it is interesting to

note that one of the key regressor variables in our study is the remote-

sensing reflectance at 412 nm, the wavelength were the absorption by

CDOM is the highest, compared with longer wavelengths that were

included in the model.
FIGURE 11

Climatology of Dissolved Organic Carbon (DOC) for 2010–2018.
The light grey areas represent missing pixels for which input satellite
data from CCI was not available. Climatologies of each year in the
time series are provided in the Supplementary Material.
FIGURE 10

Time series from globally estimated DOC with gradient boosting and random forest models (both using L1 error criteria) and reduced linear
regression model at a location of BATS station compared to observations available from that stations for 2010–2018.
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All the tested machine learning models suffer from the tendency to

over-fit. Their ability to model and find non-linear relationships

between explanatory variables and the variable of interests (DOC in

our case) is their strength. At the same time, it can be a weakness, if not

enough representative in situ and satellite observations are used. The

validation of predictions by independent observations is not always

possible and the second best option is to cross validate by leaving out a

part of the already scarce data. Doing cross validation and studying

errors in the predictions can also help on the second problematic feature

of many machine learning models, namely the lack of uncertainty

estimates in model outputs. The tested approaches showed similar

performance. Machine learning models require careful tuning of the

parameters of themethods as they are prone to performwell on the data

set that is used for training the model, but have worse results on

independent new data. The ability to predict new observations and

extrapolate spatially and temporally is usually the main reason to use

machine learningmodels. In our case having a single collection of in situ

observations, the problem of over-fitting is handled by using model

scoring based on repeated cross validation by stratified random

sampling. The final results will necessarily have some dependency on

the choice of model’s tuning parameters and other estimation strategies.

This is a common feature in advanced machine learning models.

Against the background of the complex biogeochemistry of DOC

and in the absence of a clear optical signal that can unequivocally be

related to DOC, our study has focused on exploring indirect methods to

estimate DOC using proxy variables selected on the basis of our

understanding of the biogeochemistry of DOC. Using an in situ

database and satellite observations of primary production, sea surface

temperature and salinity as well as remote sensing reflectances, a series of

empirical and machine-learning approaches were tested to map global

DOC in open ocean waters. This resulted in the selection of a satellite-

based random forest model to map the total pelagic DOC on a monthly

basis between 2010–2018. Due to spatially and temporally limited in situ

data, it is still unclear how well the model can represent the seasonal

patterns and trends in the global ocean DOC. One future approach

might be to include dynamical processes, such as advection by ocean

currents in satellite-based DOCmodels to improve our understanding of

the temporal dynamics and spatial correlation structures of DOC.

Undoubtedly, further progress must rely on parallel improvement in

our understanding of the biogeochemical processes that underpin DOC

dynamics in the ocean, as well as in improvements to the in situ data on

DOC, with respect to both geographical and seasonal coverage.
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