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Predicting fishing effort distribution is crucial for guiding fisheries management in

developing effective strategies and protecting marine ecosystems. This task

requires a deep understanding of how various hydrological factors, such as

water temperature, surface height, salinity, and currents influence fishing

activities. However, there are significant challenges in designing the prediction

model. Firstly, how hydrological factors affect fishing effort distributions remains

unquantified. Secondly, the prediction model must effectively integrate the

spatial and temporal dynamics of fishing behaviors, a task that shows analytical

difficulties. In this study, we first quantify the correlation between hydrological

factor fields and fishing effort distributions through spatiotemporal analysis.

Building on the insights from this analysis, we develop a deep-learning model

designed to forecast the daily distribution of fishing effort for the upcoming

week. The proposed model incorporates residual networks to extract features

from both the fishing effort distribution and the hydrological factor fields, thus

addressing the spatial limits of fishing activity. It also employs Long Short-Term

Memory (LSTM) networks to manage the temporal dynamics of fishing activity.

Furthermore, an attention mechanism is included to capture the importance of

various hydrological factors. We apply the approach to the VMS dataset from

1,899 trawling fishing vessels in the East China Sea from September 2015 to May

2017. The dataset from September 2015 to May 2016 is used for correlation

analysis and training the prediction model, while the dataset from September

2016 to May 2017 is employed to evaluate the prediction accuracy. The

prediction error ratio for each day of the upcoming week range is only 5.6%

across all weeks from September 2016 to May 2017. HyFish, notable for its low

prediction error ratio, will serve as a versatile tool in fisheries management for

developing sustainable practices and in fisheries research for providing

quantitative insights into fishing resource dynamics and assessing ecological

risks related to fishing activities.
KEYWORDS

VMS, fishing effort distribution, fishing effort distribution prediction, hydrological
factors, deep learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1296146/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1296146/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1296146/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1296146/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1296146&domain=pdf&date_stamp=2024-02-21
mailto:hongfeng@ouc.edu.cn
https://doi.org/10.3389/fmars.2024.1296146
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1296146
https://www.frontiersin.org/journals/marine-science


Shi et al. 10.3389/fmars.2024.1296146
1 Introduction

The oceans are currently experiencing a critical ecological

deterioration, with an alarming number of species facing the risk of

extinction (Bongaarts, 2019). This crisis can be attributed, in part, to

the extensive and unsustainable fishing practices that have

significantly depleted fishery resources, resulting in adverse effects

on marine ecosystems and biodiversity (Demirel et al., 2023). To

promote sustainable development, it is imperative for fishery

management authorities to analyze the dynamic changes in fishing

activities promptly y. By utilizing the spatiotemporal distribution of

fishing effort, they can assess the impacts of these activities on fish

species and the marine environment (Rijnsdorp et al., 1998; Kaiser

et al., 2000; Stefansson and Rosenberg, 2005), and develop evidence-

based fishery management policies (Dinmore et al., 2003; Jin et al.,

2021). In this context, the quantitative analysis and prediction of

fishing effort distribution play a pivotal role in providing valuable

insights and guidance for sustainable fisheries management.

Previous research on fishing effort distribution can be broadly

divided into two categories. The first kind of approaches involve

statistical analysis of historical data, which focuses on studying the

evolution and impact of fishing effort distribution, as well as the

characteristics of fishing hotspots. The second kinds of approach

involve predicting fishing effort distribution using mathematical

models, machine learning, or deep learning techniques.

Statistical analyses in fisheries has largely focused on historical

data analysis to discern patterns in fishing effort distribution.

Vianna et al. (2020) noted a stable catch trend in the Marshall

Islands from 1950 to 1990, followed by a decrease in catches despite

increased effort in the 2000s. De la Puente et al. (2020) observed in

Peruvian fisheries that fishing efforts grew faster than catches from

1950 to 2018, leading to unsustainable fishing practices. Russo et al.

(2019) reported a yearly decline in Italian fishing efforts in the

Mediterranean from 2006 to 2016. Li et al. (2021) identified high-

effort fishing zones near the South China Sea coast, while Russo

et al. (2020) studied the effects of maritime zone regulations on

Adriatic Sea fishing patterns. These studies, however, do not predict

future fishing effort distributions.

Recent advancements in fisheries research have seen a shift

towards using mathematical models or artificial intelligence to

predict fishing efforts. Chen et al. (2017) proposed an entry-

fishing model based on Gaussian distributions that correlated the

index of entry-fishing with sea surface temperature (SST) or sea

surface temperature anomaly (SSTA). Cimino et al. (2019) crafted a

system to forecast fishing activities within Palau’s exclusive

economic zones, taking into account a range of oceanic and

climatic variables, which helped identify periods of peak fishing.

Yuan et al. (2021) developed a deep learning approach employing

Convolutional Neural Networks (CNN) andMulti-layer Perceptron

(MLP), enabling monthly predictions of fishing efforts in the

Western and Central Pacific based on environmental factors and

VMS data. Zhao et al. (2021) explored the use of deep learning to

understand and predict weekly short-term fishing effort

distributions, utilizing the chronology of fishing activities among

trawlers. These diverse methodologies underscore the growing

emphasis on predictive studies of fishing effort distributions.
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While previous studies have made progress in predicting fishing

effort distribution on a monthly or weekly scale, there is still a lack

of prediction at the daily level for the upcoming week. Furthermore,

the influence of marine hydrological factors, such as sea surface

temperature, height, salinity, and ocean current on fish activity

patterns have not been analyzed quantitatively. These factors play

significant roles in shaping the distribution of fishing effort (Leitão,

2023). Although some research has considered hydrological factors

in fishing effort distribution prediction, there is a lack of

comprehensive analysis regarding the correlation between

evolution in hydrological factors fields and fishing effort

distributions. Additionally, suitable methods to effectively

integrate hydrological factors into the prediction of fishing effort

distribution have not been adequately designed, resulting in limited

applicability of the coarse predictions.

Facing these limitations, this study introduces HyFish, a prediction

system of day-level fishing effort distribution for the upcoming week

that incorporates historical VMS and hydrological factors datasets. The

ability to predict fishing effort distributions on a daily basis for the

upcoming week will present a significant advancement in fisheries

management. This granular level of prediction offers detailed insights

into the evolving dynamics of fishing effort distributions. By providing

day-to-day predictions, such intricacies as daily fluctuations, peak

periods, and potential shifts in fishing patterns become discernible,

offering a comprehensive understanding of fishing effort distributions

over the upcoming week. More importantly, these daily predictions

serve as a crucial tool for fishery administrations, furnishing them with

timely alerts about changes in fishing activities. This immediacy allows

for swift and effective management decisions, enabling authorities to

regulate trawler activities on a much shorter timescale than previously

possible. Such proactive governance not only aids in sustainable fishery

management but also helps in mitigating overfishing and preserving

marine ecosystems, ensuring a balanced approach between

exploitation and conservation. To achieve accurate prediction,

HyFish has to express three kinds of constraints in its

prediction model.
(1) Hydrological factor constraints: It needs to quantify and

represent the influence of key hydrological factors,

including sea surface temperature, height, salinity, and

ocean current, on fish effort distribution. Furthermore, it

may take different delays for the evolution of different

kinds of hydrological factors affecting the fishing

effort distribution.

(2) Spatial constraints: The fishing behavior exhibits both

proximity and remote characteristics. Proximity refers to

fishing vessels engaging in continuous fishing activities in

adjacent areas. Conversely, the remote characteristic

describes the phenomenon where fishing vessels travel

significant distances after fishing in one area and

subsequently resume fishing in distant areas.

(3) Temporal constraints: The fishing activities of vessels

display periodicity patterns. The fishing habits of

fishermen are traditionally formed under tidal

conditions. Therefore, the fishing activities also exhibit a

periodic pattern.
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HyFish is structured into two primary components to address

the outlined constraints: the hydrological impact assessment and

the prediction model. The first component uses spatiotemporal

correlation analysis to measure the influence of each hydrological

factor on fishing effort distribution and to determine the time lags

associated with these factors, effectively addressing hydrological

constraints and laying the groundwork for the prediction model.

The second component is divided into two modules: the

Encoder and the Decoder. The Encoder, consisting of fusion

blocks and an Long Short-Term Memory (LSTM) network,

focuses on feature extraction. It processes historical data of fishing

effort distributions along with hydrological factor fields. The fusion

blocks, employing deep residual networks, extract latent features

from these inputs, with convolution operations handling spatial

constraints. Attention mechanisms are integrated to evaluate the

relevance of various hydrological factors in predicting fishing effort

distribution. The LSTM network then discerns the temporal

relationships within the fused features daily and outputs these

hidden features.

The Decoder, also based on LSTM, is responsible for the day-

by-day prediction of the forthcoming week’s fishing effort

distribution. It utilizes the hidden features produced by the

Encoder and the current fishing effort distribution as inputs.

Trained on the dataset from September 2015 to May 2016, the

model exhibits a daily prediction error ratio between 5.0% and

6.2%, with an overall average error ratio of 6.0% across all weeks

from September 2016 to May 2017.

The main contributions can be summarized as follows:
Fron
(1) We have developed a day-level fishing effort distribution

system for the next week, called HyFish, which fuses VMS

data and hydrological factor field sequences. The system

incorporates a well-designed deep learning network to

accurately predict fishing effort distribution.

(2) We have quantified the impact of evolving hydrological

factor fields on fishing effort distribution through

spatiotemporal correlation analysis and calculated the

delays in impact for different hydrological factors. We

have quantified the impact of evolving hydrological factor

fie lds on fi sh ing e ffor t d i s t r ibut ion through

spatiotemporal correlation analysis and calculated the

delays in impact for different hydrological factors.

(3) Extensive experiments demonstrate that HyFish achieves

high accuracy in day-level prediction of fishing effort

distribution for the upcoming week.
2 Data and methods

2.1 Data

The study utilizes a VMS dataset collected from 1,899 otter

trawlers between September 2015 and May 2017. This dataset

covers the fishing areas of Zhoushan and Yushan in the East

China Sea, extending to additional zones within the coordinates
tiers in Marine Science 03
of 120°-130°E and 25°-35°N. The VMS data, which tracks the

trajectory of active fishing vessels, was compiled by the Zhejiang

Oceanic and Fishery Bureau, China. Data acquisition was done

through the BeiDou Satellite System, recording at a three-minute

interval. Each VMS entry includes key details such as vessel

identification, timestamp, longitude, latitude, speed, and course.

For analysis, the fishing areas are divided into spatial cells, each

with a resolution of 0.1° × 0.1°. The fishing effort data are aggregated

daily. We filter out the fishing records using the threshold method

proposed in (Hong et al., 2019). These records, representing three-

minute intervals of fishing effort, are then allocated to the

corresponding grid and date. Thus, for any given date, we

calculated the fishing effort distribution, with the unit of

measurement for each grid being in minutes.

Moreover, the study incorporates a hydrological factor dataset

sourced from the Copernicus Climate Data Store. The hydrological

factors analyzed include sea surface height (SSH), sea surface

temperature (SST), sea surface salinity (SSS), and ocean current

(Current). The specific Copernicus products utilized are

SEALEVEL_EUR_PHY_L4_MY_008_068 for SSH and Current,

MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013 for SSS,

and GLOBAL_MULTIYEAR_PHY_001_030 for SST. Each of these

datasets features a spatial resolution of 0.125° × 0.125° and a daily

temporal resolution, with data structured in a grid-like format.

The geographical focus for both the VMS and hydrological

factor datasets is within the coordinates of 120°E-130°E and 25°N-

35°N, ensuring consistency in the study area. The sizes of the VMS

and hydrological factor datasets are approximately 18.90 GB and

7.39 GB, respectively.

Given that the fishing cessation period for otter trawlers is from

June to August, we divided the two datasets into non-overlapping

train and test datasets. The train dataset spans September 1, 2015 to

May 30, 2016, while the test dataset spans September 1, 2016 to May

31, 2017. The train dataset is used to quantify the impact of the

evolution of marine hydrological factor fields on fishing effort

distribution and to train the prediction model. The test dataset

will evaluate the prediction accuracy of HyFish.
2.2 Methods

This section provides an in-depth exploration of the design

details. We begin by providing definitions for key terms employed

in the paper and formulating the prediction problem. Then we

analyze the correlation between the evolution of hydrological factor

field and fishing effort distribution. Lastly, we provide the

comprehensive design of the prediction model.
2.2.1 Problem statement
We first introduce the basic notations utilized in the paper and

then formulate the prediction problem.

2.2.1.1 Fishing effort Distribution

Given a day t, assume that Xt ∈  RI�J
+ is a fishing effort

distribution partitioned evenly into I ×J grids, where a gird (i,j) is
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considered as a spatial region of 0.1°× 0.1° and each item X(i,j)
t ∈

 R+ denotes the fishing effort of this grid on day t. The historical

fishing effort distribution sequence for P days till day t can be

represented as Xt−P+1,t ∈  RP�I�J
+ .

2.2.1.2 Hydrological factor fields

Marine hydrological factor fields of SSH, SST, SSS and Current

on day t are defined as Ht ,Tt , St ,Ct , respectively. For example,

S(i,j)t ∈  R+ denotes the SSS value in grid (i,j) on day t, The historical
SSS sequence for a duration of P days till day t can be represented as

St−P+1,t ∈  RP�I�J
+ . We use Mt to represent the combination of all

hydrological factor fields. i.e. Mt = (Ht ,Tt , St ,Ct ).

2.2.1.3 Impact lag

The aggregation of fish stock will be influenced by evolution in

marine hydrological factor fields, which in turn indirectly impacts

the fishing effort distributions. However, the impact of marine

hydrological factor fields on fishing effort distribution may have

different delays, called impact lag, denoted by d*H , d*T , d*S , d*C
for SSH, SST, SSS and Current, respectively. We use d∗ to label the

impact lags for all hydrological factor fields. i.e. d* = d*H , d*T , 

d*S , d*C .

2.2.1.4 Problem statement

Take the historical fishing effort distribution sequence Xt−P+1,t

and marine hydrological factor fields sequences Mt−d∗−P+1,t−d∗ =

 (Ht−d∗H−P+1,t−d
∗
H
,Tt−d∗T−P+1,t−d

∗
T
,  St−d∗S−P+1,t−d∗S ,Ct−d∗C−P+1,t−d

∗
C
) a s

inputs, we construct the prediction model F in Equation 1 to

predict the future fishing effort distribution sequence. X̂ t+1, t + L

for L days.

bX t+1,t+L = FQ (Xt−P+1,t ,Ht−d*H−P+1,t−d*H
,T

t−d*T −P+1,t−d*T
,

S
t−d*S −P+1,t−d*S

,C
t−d*C −P+1,t−d*C

)
(1)

Q denotes all the learnable parameters of the prediction model.

The choices of P and L will be discussed later in this section.

2.2.2 Hydrological impact quantification
The impact lag represents the delayed effect of evolution in

marine hydrological factor fields on the evolution of fishing effort

distribution. To determine the impact lag, it is crucial to understand

the relationship between the evolution in marine hydrologic factor

fields and the fishing effort distribution.

To quantify this relationship, we first conduct a correlation

analysis in the temporal dimension, calculating the relationship

under different impact delays for each spatial grid. Then, we focus

on the spatial dimension and select an optimal impact delay across

all the grids for each hydrological factor.

Let’s take the impact of the Sea Surface Salinity (SSS) on the

fishing effort distribution sequence for grid (i, j) as an example. We

introduce our methods to calculate the correlation for this grid.

Assuming that the train dataset contains N days, the correlation for
Frontiers in Marine Science 04
different time lags ds between the fishing effort distribution

sequence on day t and the corresponding previous salinity

sequence can be calculated as Equation 2.

CorrSSS(i,j)t (ds) =
Cov

�
X(i,j)
  t−P+1,t , S

(i,j)
t−ds−P+1,t−ds

�
sX(i,j)

  t−P+1,t
sS(i,j)t−ds−P+1,t−ds

(2)

P is the length of the sequence. Cov denotes the covariance

operation, and s denotes the standard deviation of a sequence. ds is

limited in the range of 0 to dmax.

After calculating for all spatial grids and all possible ds, we

determine the optimal impact delay across all the spatial grids. We

create a set of correlations and a set of strong correlations for all

values of ds in Equations 3 and 4, respectively. A strong correlation

is defined as a correlation value higher than 70%. The optimal

impact delay is chosen as the value of ds which corresponds to the

highest spatial ratio of strong correlation r as demonstrated in

Equation 5. The operation ∥∥ is to calculate the size of the set.

CorrSSS(ds) = CorrSSS(i,j)t (ds)
���CorrSSS(i,j)t (ds), for   t ∈ (P,N), i ∈ ½1, I�, j ∈ ½1, J�

n o
(3)

NCorrSSS(ds) = CorrSSS(ds)jCorrSSS(ds) > 0:7f g (4)

r =
‖NCorrSSS(ds) ‖
‖CorrSSS(ds) ‖

, d*s = max ds (r) (5)

Since the delay in the impact of marine hydrological factors on

fish aggregations is mostly about two weeks (Rubenstein, 2021), we

set dmax = 14. The entire process of solving for d∗s is summarized in

Algorithm 1. d*H , d*T and d*C are calculated in the same way.
input:duration of days N, fishing effort distribution

sequence X1,N, hydrological factor sequence S1,N

output: impact lag d∗
S

for each lag ds do

for each grid (i,j) do

for t = p + ds - 1 to N do

Calculate CorrSSS(i,j)
t (dS) between X

(i,j)
t−P+1,t and

S(i,j)
t−dS−P+1,t−dS

according to Equation 2.

CorrSSS(dS) ←  CorrSSS(i,j)
t (dS)

Filter NCorrSSS(dS)  =  CorrSSS(dS)  >  0:7

d∗
s  ←maxdS

 ( ∥NCorrSSS(dS) ∥ = ∥CorrSSS(dS) ∥ )
Algorithm 1. Hydrological impact quantification and impact
lag calculation.
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2.2.3 Model design
We propose a predictive model for forecasting the future fishing

effort distribution sequence. Figure 1 presents the sketch of the model.

The model follows a sequence-to-sequence structure (Britz et al., 2017)

and comprises two primary components: Encoder and Decoder. The

Encoder is first responsible for extracting spatial features from marine

hydrological factor field sequence and fishing effort distribution sequence

for each time step. It further utilizes LSTM (Long Short-TermMemory)

(Gers et al., 2000) to learn the sequential features across the timeline. The

Decoder, also employing LSTM, is responsible for generating predictions

day-by-day the future fishing effort distribution over a specified

period (L days). It takes the learned features from the Encoder and

current fishing effort distribution as inputs to make predictions.

2.2.3.1 Encoder

The historical fishing effort distribution sequence and

hydrological factor sequence display clear spatiotemporal patterns.

To effectively capture these patterns, the Encoder module is

specifically designed to extract spatiotemporal features and fuse them.

The Encoder consists of two key components: LSTM and

Fusion. The LSTM network serves as the backbone network,

receiving spatial features extracted at each time step and

capturing the temporal relationships among these steps. It

generates encoded feature representations that guide the Decoder

network. Fusion blocks are incorporated at each time step to extract

features from both the fishing effort distribution sequence and the

hydrological factor sequences with corresponding impact lags.
Frontiers in Marine Science 05
The Fusion block serves four functions. Firstly, it aims to extract

fishing effort distribution features, capturing both local proximity

and remote dependency. Local proximity refers to the tendency of

nearby grids to have similar fishing effort distributions because

vessels engage in continuous fishing activities across neighbor grids.

On the other hand, remote dependency refers to the scenario where

vessels steam to distant regions for subsequent fishing activities

after fishing in one area. Although these locations may be

geographically far apart, they are temporally adjacent in terms of

fishing activities.

To capture the local spatial proximity in the fishing effort

distribution, a convolutional neural network (CNN) with a 3x3

convolutional kernel is employed for feature extraction on fishing

effort distribution. To address remote dependencies in fishing

behavior, the CNN is stacked to enlarge the receptive field,

enabling the establishment of correlations between grids that are

far apart. Additionally, the inclusion of residual blocks helps

overcome the issue of gradient vanishing or exploding that may

arise from stacking multiple CNNs. The fishing effort distribution of

each time step is projected into multiple channels, where each

channel captures specific aspects or features via CNN.

Subsequently, a Conv1x1 operation is applied to reduce the

channel dimension to 1, further extracting features and the

resulting feature is reshaped into a vector, denoted as xt. This

process effectively extracts the spatial features from the fishing

distribution Xt for each time step t. The whole step can be

summarized as Equation 6.
FIGURE 1

Sketch of the prediction model. The model is divided into two parts, Encoder and Decoder. The Encoder is responsible for extracting features from
historical sequences, while the Decoder is responsible for making predictions. The Encoder consists of LSTM network and Fusion Blocks, with the
Fusion Block expanded in the gray block in the bottom left corner. It extracts features from hydrological factor distributions through Enchyd and
extracts features from fishing effort distributions through Encfish. The Decoder takes the current day’s fishing effort distribution as input, still utilizing
Encfish to extract its features, and then makes daily predictions for the next week. Enchyd, Encoder for hydrological feature; Encfish, Encoder for VMS
sequence’s features of trawlers.
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xt = Encfish(Xt ) (6)

The second function of the Fusion block is hydrological feature

extraction. Under different impact lags, the hydrological features

extraction network is constructed with the residual blocks, which

effectively capture the complex spatial patterns in the hydrological

factors. For the given hydrological factor field input, Ht−d∗H ,Tt−d∗T ,

St−d∗S ,Ct−d∗C , features extraction network is performed on each of

these inputs individually. Similar to the fishing effort feature

extraction, each input is projected into multiple channels with the

first Con1x1 block. Subsequently, residual blocks are applied to

extract high-level hydrological features. However, in contrast to the

fishing effort feature extraction, a pooling layer is introduced to

compress hydrological features. Finally, a Conv1x1 operation is

employed to reduce the channel dimension to one, and then

the output is reshaped into a one-dimensional vector, denoted as

ht−d∗H , tt−d∗T , st−d∗S and ct−d∗C respectively. This process allows for the

extraction of spatial hydrological features from the input

hydrological factor fields for each time step. The whole step can

be summarized as Equation 7:

h
t−d*H

, t
t−d*T

, s
t−d*S

, c
t−d*C

= Enchyd(Ht−d*H
,T

t−d*T
, S

t−d*S
,C

t−d*C
) (7)

The third function of the Fusion block focuses on emphasizing

the importance of different hydrological factors. Given that different

hydrological factors have varying degrees of impact on fishing effort

distribution, we introduce the attention mechanism to weight the

importance of different hydrological factors in Equations 8, 9.Wk is

a weight matrix and bk is the bias terms of neurons. Both of them

are learnable parameters.

zK = WT
k tanh Wk · kt−d*K

+ bk

� �
, k = h, t, s, cf g,K = H,T , S,Cf g

(8)

aK =
exp(zK )

SKexp(zK )
(9)

The last function is to combine the higher-level hydrological

features and the higher-level fishing effort distribution feature

through weighted concatenation using the learned parameters to

obtain the fusion feature yt, as shown in Equation 10. The element-

wise multiplication symbol ⊗ is used to denote the weighting

process.

yt = concat   xt , ht−d*H
⊗ aH , tt−d*T

⊗ aT , st−d*S
⊗ aS, ct−d*C

⊗ aC

� �
(10)

The LSTM component is designed to capture temporal

relationships from the high-level fusion features along different

time steps. LSTM is well-suited for processing sequential data due to

its strong memory and modeling capabilities. The LSTM is modeled

in Equation 11. ft denotes the output of LSTM.

ft = LSTM   (yt−P+1,…, yt−1, yt ) (11)

The entire encoder processes the historical fishing effort features

along with the hydrological features and generates an output, which

is transferred to the Decoder.
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2.2.3.2 Decoder

The Decoder is designed to generate the fishing effort

predictions for the future t + 1 to t + L days. It still utilizes

LSTM as the core component. LSTM’s memory units allow it to

retain and propagate previous states. This capability is crucial for

generating coherent outputs, particularly when there are

dependencies between different parts of the output sequence. The

Decoder generates the prediction for the future L days using

recursive ways. Specifically, it takes the hidden state ft from the

Encoder’s output and the current fishing effort distribution Xt as

inputs. It generates the hidden state ft+1 and predict the fishing

effort distribution on day t +  1, X̂ t+1. Then it takes ft+1 and X̂ t+1

as inputs and generates ft+2 and X̂ t+2 for the subsequent day’s

prediction. This recursive process allows the Decoder to predict

fishing effort distribution for the future L days. The recursive

prediction can be summarized as Equations 12, 13. Here f is the

hidden state and the range of l is 1 to L.Encfish refers to the effort

extraction module mentioned in the Encoder and FC refers to the

full connected layer shown in Figure 1.

ft+l = LSTM   Encfish X̂ t+l−1
� �

, ft+l−1
� �

(12)

X̂ t+l = FC(ft+l) (13)

After designing the model, we choose the values of the model

parameters, including the length of the input sequence (P), the

number of residual blocks (b) in the feature extraction network of

fishing effort distribution and hydrological factor, and the length of

the output sequence (L).

To determine the value of P, we analyzed of the distribution of

voyage durations for all vessels in the train and test dataset, as

shown in Figure 2. We observe that approximately 90% of voyage

durations are within two weeks. To ensure that the input contains

most of the complete voyage, we set P to two weeks.
FIGURE 2

CDF (Cumulative Distribution Function) of voyage duration of
all trawlers.
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To determine the residual block number of the feature

extraction network, we analyzed the distribution of the number of

grids covered by a vessel in a single day’s operation, as shown in

Figure 3. The analysis revealed that approximately 90% of vessels

cover six or fewer grids in their daily voyages. Based on this

observation, we set b as 3, which let the spatial perceptive field of

3 × 3 convolution operation cover six grids. This choice allows the

model to capture the desired spatial region, as well as eliminating

the impact of unrelated grids.

To determine the value of L, we analyze the temporal patterns of

fishing effort in hotspot grids, as depicted in Figure 4. We observe

that the fishing effort in these regions exhibits a recurring cycle of

approximately two weeks. Taking into account the voyage duration

distribution depicted in Figure 2 and the periodic trends evident in

Figure 4, our objective was to ensure accurate and dependable
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predictions while offering ample time for fishery management

authorities to adapt fishing strategies. To achieve this, we set L to

7 days. This decision facilitates the accurate anticipation of fishing

efforts over the upcoming week.

2.3 Evaluation methods
The proposed model is trained using the VMS dataset in the

East China Sea, which covers the period from September 1, 2015, to

May 30, 2016, alongside associated hydrological factor datasets

obtained from the Copernicus Climate Data Store. This training

dataset is utilized for two primary purposes: firstly, to evaluate the

impact lag in the influence of marine hydrological factors on fishing

effort distributions, and secondly, to train the prediction model. The

loss function used for training is defined in Equation 14, where Q
represents all learnable parameters. X̂ t+l is a prediction for fishing

effort distribution on day t + l, and Xt+l is the ground truth. We

conducted our training using PyTorch version 1.7.0 on an NVIDIA

RTX 3090Ti GPU. For optimization during the training process, we

employed the Adam optimizer. The initial learning rate was set at

1e-3, and the mini-batch size was chosen as 8.

L(Q) = 1
Lo

L

l=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(I,J)

(i,j)=(1,1)(X̂
(i,j)
t+l − X(i,j)

t+l )
2

I � J

s
(14)

To assess the prediction accuracy, we use the test dataset of the

VMS dataset spans September 1, 2016 to May 31, 2017 with the

corresponding hydrological factor datasets. We employ Root

Mean Squared Error (RMSE) and prediction Error Ratio (ER)

across various time periods for evaluation. For any given day t
within the prediction period, RMSEt and ERt represent the RMSE

and ER for that specific day, as calculated in Equations 15 and 16,

respectively. In these equations, X̂ t (i,j) denotes the predicted

fishing effort, and Xt (i,j) indicates the actual fishing effort in grid

cell (i,j) for day t.
FIGURE 4

Daily fishing effort variation in a hotspot region.
FIGURE 3

CDF of grid number trawlers span in a day.
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For a predicted week beginning on date t, RMSEt and ERt are

defined as the average RMSE and ER over the seven days of that

week, computed as Equations 17 and 18, respectively. Here, L

represents the prediction length, i.e., L = 7 days.

Lastly, RMSEt and ER are calculated as the average RMSE and

ER over all weeks within the test period, as shown in Equations 19

and 20, respectively. In this context, n is the number of weeks in the

test period.

RMSEt =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(I,J)

(i,j)=(1,1)(X̂
(i,j)
t − X(i,j)

t )2

I � J

s
(15)

ERt =
RMSEt

1
IJo(I,J)

(i,j)=(1,1)X
(i,j)
t

(16)

RMSEt =
1
Lo

L

l=1

RMSEt+l (17)

ERt =
1
Lo

L

l=1

ERt+l (18)

RMSE =
1
no

n

i=1
RMSE7i+1 (19)

ER =
1
no

n

i=1
ER7i+1 (20)

To demonstrate HyFish ’s superior performance, we

conducted a comparative analysis with several predictive

methods. These studies are categorized into four types:

statistical time series prediction, recurrent network prediction,

temporal graph-convolution prediction, and spatiotemporal

prediction. Given the scarcity of existing methods specifically

tailored for fishing effort prediction, we also included urban

traffic prediction models in our comparison. All comparative

methods undergo training and testing using the identical dataset

and platform as HyFish. Given that existing methods only allow

for week-level prediction of fishing effort distributions, our

comparison mainly focuses on the accuracy metrics for week-

level predictions, e.g., RMSEt and ERt . Besides, the results are

obtained by meticulously optimizing the parameters for each of

the comparative methods. The methods included in the

comparison are detailed as follows.

2.3.1 Statistical Time Series Prediction
ARIMA (Kumar and Vanajakshi, 2015) is a well-known

model for forecasting time series which combines moving

average and auto-regressive components for modeling time

series. ARIMA (Kumar and Vanajakshi, 2015) is a well-known

model for time series forecasting that integrates moving average

and auto-regressive components. It takes the traffic data recorded

by sensors as input and predicts future data from these sensors.

For comparison, we conceptualize each grid as a sensor and

utilize ARIMA to predict future fishing efforts for each

individual grid.
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2.3.2 Recurrent Network Prediction
LSTM (Shi et al., 2015) represents a standard form of a

recurrent neural network, designed to forecast future values based

on historical time series data. In our comparative analysis, we adapt

the LSTMmodel to predict future fishing effort distributions. This is

achieved by feeding the historical sequence of fishing effort

distributions into each timestep of the LSTM. Consequently, the

output from the LSTM network provides the predicted future

fishing effort distribution.
2.3.3 Temporal Graph-convolution Prediction
T-GCN (Zhao et al., 2019) merges the capabilities of a graph

convolutional network with a gated recurrent unit. This

combination is designed to effectively capture both the complex

topological structures and the dynamic temporal changes in traffic

data. In its standard application, T-GCN conceptualizes a road

network as a grid graph, with each road segment representing a

grid. The traffic flow on each segment is treated as the

characteristic feature of that grid. In our experiment, we

analogize each grid in the fishing effort distribution to a road in

a road network. Here, the fishing effort value in each grid is

analogous to the traffic flow on a road, thereby constructing an

input and output format that is compatible with the T-

GCN model.
2.3.4 Temporal Spatiotemporal Prediction
DMVST-Ne (Yao et al., 2018) presents a taxi demand

prediction model that employs a multi-view spatial-temporal

prediction framework. This framework is adept at modeling both

spatial and temporal relationships and incorporates a semantic view

to capture correlations among regions that exhibit similar temporal

patterns. In the context of our scenario, the transition of fishing

efforts across various grids can be analogized to the total taxi

demand across different areas. This parallel allows us to apply the

principles of DMVST-Net to the prediction of fishing effort

distributions, adapting its methodology to suit the dynamics of

fishing activities.

ST-SSL (Ji et al., 2023) concentrates on improving the

representation of traffic patterns to accurately reflect spatial and

temporal heterogeneity. It introduces a spatial-temporal self-

supervised learning framework specifically for traffic prediction.

In its typical application, ST-SSL segments an urban area into grids,

calculates the traffic flow in each grid region, and then predicts

future urban traffic over a specified period. For evaluation, we adapt

this methodology to our scenario by treating the fishing effort in

different grids as analogous to traffic flow in urban areas. This

adaptation allows us to apply ST-SSL to forecast fishing

effort distributions.

Earlybird (Zhao et al., 2021) proposes a specialized system

aimed at predicting fishing effort distributions on a week-level

basis. Grounded in an understanding of the chronological fishing

relationships among trawlers, Earlybird employs a Convolutional

Neural Network (CNN) as its predictive model. This model is

distinctively designed to use the current week’s fishing behaviors

of ‘early birds’ as input, forecasting the upcoming week’s fishing
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effort distributions of all trawlers. This approach underscores the

importance of identifying specific behavioral patterns among

trawlers to accurately predict short-term fishing efforts.

To analyze the distinct contributions of each component in the

HyFish model, we conduct an ablation study. This study

systematically evaluates performance across various permutations

of network components and critical configurations. We test

fundamental elements like the Encfish feature extraction module,

which processes historical fishing effort distributions, and the

Enchyd module, which analyzes sequences from hydrological

factor fields such as Sea Surface Height (SSH), Sea Surface

Temperature (SST), Sea Surface Salinity (SSS), and current fields.

Key configurations assessed included the criteria for selecting input

sequences of hydrological factor fields—whether they correspond

with their impact delays or match the historical fishing effort

distribution period—and the activation of the attention network

in the fusion component.

The test networks fell into five primary categories: (1) A

network using only Encfish, focusing on historical fishing effort

distribution sequences and excluding hydrological factors. (2)

Networks incorporating Enchyd for a single hydrological factor

sequence, considering its specific impact lag. This resulted in four

unique networks, one for each factor. (3) Networks combining

Encfish with Enchyd handling two types of hydrological factors,

forming six different configurations. (4) Networks integrating

both Encfish with Enchyd with all possible inputs, differing in

hydrological field sequence selection—one matched the

historical fishing effort period, while the other is selected based

on impact lag. (5) The full HyFish model, which activates the

attention module in the fusion block, differing from the

above categories.

In total, we constructed 14 distinct networks based on these

combinations and key settings, allowing for a comprehensive

evaluation of each component’s individual and collective

contributions within the HyFish model. Each network is trained

and tested using the same dataset as HyFish.
Frontiers in Marine Science 09
3 Results and discussion

In this section, we begin by discussing the results of the impact

lag calculation, which determines the time lag between marine

hydrological features and the fishing effort distribution. Next, we

present the predictions of the fishing effort distribution and evaluate

the model’s performance through comparison with previous

methods and ablation experiments. Finally, we assess the design

parameters of HyFish.
3.1 Impact lag for each hydrological factor

We perform a correlation analysis on the entire train set to

determine the impact lag for each hydrological factor. The

correlation ratios r over different impact delays are shown

in Figure 5.

The correlation analysis reveals that the correlation ratio (r) for
SST and Current remains consistently above or around 0.8 within

the impact lags of 3-6 days. This finding confirms that the variations

in SST and Current fields have a significant and relatively short-

term impact on the distribution of fishing effort. The observed

influence can be attributed to the fact that variations in SST and

Current fields directly affect the flow patterns and energy exchange

in the marine environment, thereby modifying fishing activities.

The optimal impact lag of Current and SST are 3 and 4 days with

corresponding correlation ratios of 89% and 91%, i.e. d∗C = 3 and

d∗T = 4.

When examining SSS and SSH, their correlations become more

pronounced with larger impact lags, typically within the range of 5-7,

6-8 days, respectively. Compared to SST and Current, SSH and SSS

exhibit a slightly weaker influence with a longer time lag. This comes

from the relatively small variations in SSH and SSS in the short term.

Subtle changes in these factors may not have a significant immediate

impact on fish aggregation. However, over time, the cumulative

changes in SSH and SSS are more likely to affect fish aggregation
FIGURE 5

Correlation ratios over different impact delays. Larger r, higher impact of hydrological factor filed sequences on fishing effort distributions at that
impact delay. The impact delay corresponding to the maximum r labels the optimal impact lag d*.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1296146
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2024.1296146
and distribution patterns. Consequently, the optimal impact lags for

SSS and SSH are determined to be 6 and 7 days, respectively, with

corresponding correlation ratios of 86% and 85%, respectively. Thus,

d∗S = 6 and d∗H = 7 are identified as the optimal impact lags. Hence,

the optimal impact lags d*H = 7,  d*T = 4,  d*S = 6, and d*C = 3 will be

employed to determine the input sequences of the corresponding

marine hydrological field sequences in the predictive model.
3.2 Results of fishing effort
distribution prediction

To evaluate the performance of daily prediction, we first present

the ERt distribution for each day of all the predicted weeks. Then we

provide the weekly average prediction results and illustrate

specific examples.

Figure 6 displays the ERt distribution for each day of the

predicted week, showing that the ERt is lowest on the first day and

gradually increases as the time progress, reaching its maximum on
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the 7th day. This is because the model uses the historical fishing

effort distribution from the previous 14 days to predict the first

day, and then uses the prediction result of the first day as input to

predict the next day, and so on until the 7th day. This iterative

prediction process leads to error accumulation, resulting in the

increasing ERt.

Figure 7A shows the RMSEt and ERt across each week in the

test dataset. The RMSEt are all below 19, while the ERt are all below

10%. The average ERt is 5.96%, which proves that HyFish can

predict the distribution of future fishing effort accurately.

Specifically, we find that the largest and smallest RMSEt happen

in the 8th and 21st week, respectively. We visualize the actual and

difference (difference=|actualprediction|) fishing effort distributions

for each day in these two weeks in Figure 8. For the 8th week, from

Figures 8A, B, it can be observed that the predicted fishing effort

distribution is not significantly different from the actual

distribution, with a relatively small numerical gap. which confirm

that HyFish captures the trend of fishing effort distribution. We

further depict the average fishing effort over grids in Figure 7B.
BA

FIGURE 7

Prediction results for each week in the test period with ground truth. (A) Average prediction RMSE and ER per grid per day for every week in the test
period. (B) Ground truth of average fishing effort per grid per day for every week in the test period.
FIGURE 6

Prediction error ratio distribution for each day in the predicted week across all test period. ERt: prediction error ratio on day t in a predicted week.
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It shows the largest average fishing effort happens in the 8th week.

This explains the largest RMSEt in the 8th week because the deep

learning model exhibits deficiency to capture the future maximum.

The ERt of 8th week is relatively low of 5.91%.

In contrast, for the 21st week, Figures 8C, D display a more

noticeable difference between the predicted and actual fishing effort

distributions. This is primarily characterized by the predicted

fishing effort covering a broader fishing ground, and there are
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notable numerical disparities as well. Most fishing activities only

appear in the nearshore regions in Figure 8C. The reason is that this

week includes the Chinese Spring Festival, which is the most

important public holiday for the Chinese. Many fishing activities

stop during the Chinese Spring Festival. Previous research

(Kroodsma et al., 2018) also pointed out the lack of fishing

activities during the Chinese Spring Festival. Therefore, the 21st

week has the highest ERt (9.92%).
B C DA

FIGURE 8

Comparison between ground truth and the difference of predicted fishing effort distributions for two specific weeks. (A) Ground truth of fishing
effort distribution of the 8th week. (B) Difference (| actural prediction|) of fishing effort distributions for the 8th week. (C) Ground truth of fishing
effort distribution of the 21st week. (D) Difference (|actual - prediction|) of fishing effort distributions of the 21st week. The unit of measurement for
the hotness map is in minutes.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1296146
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2024.1296146
3.3 Results of comparison

Table 1 shows the results of HyFish compared to previous

research. Specifically, ARIMA and LSTM perform poorly (i.e., have

a RMSE of 131.786 and 113.465, respectively), as they only consider

temporal dependence. T-GCN and DMVST-Net further consider

spatial features via graph convolution and semantic view, therefore

achieving better performance. However, they only concern with the

single input of traffic distribution. ST-SSL achieves better performance

because it comprehensively considers spatial and temporal

heterogeneity. Earlybird achieves the best performance because it

takes into account the fishing characteristics of the vessels. It

introduces the concept of “fishing chronology among trawlers” and

tracks early birds to make targeted predictions for the fishing effort

distribution. However, these methods have not taken into account the

impact of hydrological factors. In contrast, HyFish not only effectively

incorporates hydrological factors into the fishing effort distribution

prediction through correlation analysis, but also utilizes a sophisticated

network architecture. As a result, HyFish outperforms these methods,

achieving a lower RMSE of 16.936 and a lower ER of 6.0%.

Figure 9 further compares the week-by-week prediction on

RMSEt of all the comparing methods for visual clarity. They all have

the lowest RMSEt in the 21st or 22nd week due to the low average

fishing effort distribution during the period of the Chinese Spring

Festival. ARIMA and LSTM exhibit high variances on RMSEt across

all weeks. T-GCN, DMVST-Net, ST-SSL and Earlybird have lower
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RMSEt and variance, compared to the ARIMA and LSTM. The

RMSEt of HyFish are almost the lowest for all the weeks. Moreover,

it shows that the proposed method achieves more stability in

prediction compared to all the other models.
3.4 Results of ablation study

The results for each network proposed in the ablation study are

systematically compared in Table 2. In this table, every row represents

the outcomes of a specific combination of network components within

HyFish. Row 1 is the least desirable, with an RMSE of 18.311 and an ER

of 6.50%. But it still leads to more accurate predictions than previous

methods in Table 1. This improvement can be attributed to the

adoption of multiple residual blocks within Encfish, which effectively

addresses both the proximity and remote challenges in fishing behavior.

By observing the results, it’s evident that Rows 2-5 in Table 2 yield

better accuracy than using only the fishing effort distribution as input

(Row 1), and the combination of Encfish + Enchyd, utilizing historical

fishing effort distributions and the SST field (Row 5), yields the most

favorable results, achieving an (RMSE) of 17.889 and an (ER) of

6.34%. This indicates the contributions of all hydrological factor fields

to the prediction and highlights that the improvement from SST is the

most significant. This observation not only aligns with the conclusion

from Section 3.1, but also corresponds to the significant and immediate

influence of SST on fishing effort distribution (Iiyama et al., 2018).
FIGURE 9

Average prediction RMSE compared with previous methods for every week in the test period. All methods performed best in the 21st or 22nd week.

RMSEt : Average prediction RMSE for a specific week t.
TABLE 1 The average RMSE, ER compared with different methods.

Metrics ARIMA LSTM T-GCN DMVST-Net ST-SSL Earlybird HyFish

RMSE 131.786 113.465 88.277 53.973 28.312 19.221 16.936

ER (%) 49.83 43.23 31.25 17.40 11.20 7.00 6.00
The best results are labeled bold.
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Notably, the predictions of Rows 6-11 surpass those obtained by

using only one hydrological factor. Besides, Encfish + Enchyd with

historical fishing effort distributions, SST, and Current fields (Row

11) performs the best with an RMSE of 17.548 and an ER of 6.23%.

This illustrates the effectiveness of combining any pair of

hydrological factors and underscores that the combination of SST

and Current provides the most notable improvement. This

observation is consistent with the findings in Section 3.1, where it

was concluded that both SST and Current exhibit shorter impact

lags and stronger influence on fishing effort distribution.

As presented in Table 2, the performance of integrating features

from all hydrological factor fields (Row 12) surpasses that of using

only two hydrological factors. This indicates the utility of

combining all factor fields for predicting fishing effort

distribution, as well as validating the efficacy of the Enchyd
module. Furthermore, when comparing Row 12 and Row 13, it is

evident that the performance of Row 12 (RMSE of 17.424), which

incorporates impact lag, is significantly better than Row 13 (RMSE

of 17.945). Additionally, it can be observed that the performance of

Row 13, which does not incorporate impact lag, suddenly drops to a

level similar to using only Current (Row 4). Referring to Figure 5,

the impact lag for SSH and SSS is 6 to 7 days. Therefore, without

using impact lag, the input historical sequences only contain half of

the sequences that have impact on fishing effort distribution as

demonstrated by correlation analysis. This leads to a significant

decrease in the contribution of these two factors to predictions and

results in a reduction in prediction accuracy. It validates the

usefulness of impact lag.

Encompassing all modules of HyFish, Row 14 demonstrates

the lowest error for RMSE. We also plotted the weights of the four

hydrological factors captured by the attention mechanism at

different time steps of LSTM in Encoder as shown in Figure 10.
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It is evident that the attention mechanism consistently computes

the weights at different time steps effectively, and each

hydrological factor has an impact on fishing effort distribution,

with SST and Current exhibiting the highest influence weights,

followed by SSH and SSS. This observation aligns with the findings

in Section 3.1 and confirms the effectiveness of integrating the

attention mechanism.
3.5 Results of parameters evaluation

In this section, we study how the input sequence length for

Encoder, the output sequence length for Decoder and the layers for

feature extraction network affect the performance of HyFish.

Figure 11A shows the RMSE. with respect to the input sequence

length (P) for Encoder. We can see that when the length is 14 days,

our method achieves the best performance. This is because the

sequence of 14 days includes the majority of complete voyage of

trawlers, allowing the model to learn adequate temporal

dependencies, which tends to result in a decrease in RMSE.

However, as the sequence length reaches around 20 days, there is

a decline in performance. One potential reason is that when

considering longer time dependencies, the model may overfit.

Figure 11B illustrates the impact of the output sequence length

(L) on prediction. We can observe that the RMSE fluctuates slightly

when the output sequence length is 1-4 days. As the output length

exceeds four days, the RMSE slightly increases but remains at a

relatively low level. However, when the output sequence length

surpasses seven days, the error significantly increases and continues

to rise thereafter. Since the decoder operates in an iterative

prediction manner, longer output sequences lead to more

accumulated errors. We set L to 7, providing sufficient forward-
TABLE 2 Ablation studies.

Row Module Effort SSH SST SSS Current Impact
Lag

Attenti-
on

RMSE ER

1 Encfish ✓ 18.311 6.50%

2 Encfish + Enchyd
(one

hydrological factor)

✓ ✓ ✓ 18.196 6.45%

3 ✓ ✓ ✓ 18.163 6.43%

4 ✓ ✓ ✓ 17.947 6.37%

5 ✓ ✓ ✓ 17.889 6.34%

6 Encfish + Enchyd
(two

hydrological factors)

✓ ✓ ✓ ✓ 17.871 6.33%

7 ✓ ✓ ✓ ✓ 17.814 6.31%

8 ✓ ✓ ✓ ✓ 17.757 6.29%

9 ✓ ✓ ✓ ✓ 17.740 6.28%

10 ✓ ✓ ✓ ✓ 17.665 6.26%

11 ✓ ✓ ✓ ✓ 17.548 6.23%

12 Encfish + Enchyd
(all

hydrological factors)

✓ ✓ ✓ ✓ ✓ ✓ 17.424 6.15%

13 ✓ ✓ ✓ ✓ ✓ ✓ 17.945 6.37%

14 HyFish ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16.936 6.00%
f
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looking information for fishery management authorities to make

dynamic adjustments.

Our intuition is that the deeper the network, the more spatial

features it can capture. However, increasing the network depth also

means more parameters to learn, which may lead to overfitting. In

section 2.2.4, we empirically set the number of residual blocks as 3

(b=3), inspired by Figure 3, which is enough to cover most of the

daily voyages of fishing vessels. To validate the reasonableness of

this number, we plotted the RMSE with different combinations of

the numbers of residual blocks. From Table 3, we can observe that

initially, as the number gradually increases, the prediction error

decreases. The best RMSE is achieved when the numbers of residual

blocks for Encfish and Enchyd are both set to 3. However, further

increasing the depths leads to a decline in performance due to

overfitting of the prediction model.
3.6 Potential applications

Due to its high prediction accuracy, HyFish not only excels in

tracking the evolving patterns of fishing effort but also offers a range
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of potential applications when integrated with various types of data.

For instance (Cimino et al., 2019), utilized historical fishing effort

data to monitor activities within protected areas. Similarly, Russo

et al. (2019) employed historical fishing effort data to study its

impact on key benthic species, thereby uncovering crucial trends in

yield, productivity, and the overexploitation rates of demersal

stocks. When integrated with data on protected regions or

benthic species, HyFish can assist fisheries management in

preemptively directing fishing activities in critical areas on a

detailed timescale. This can aid in ensuring the sustainable

development of biological resources through dynamic

adjustments in fishing quotas and other policy measures.

Moreover, as shown in studies by (De la Puente et al., 2020) and

(Ellis and Wang, 2006), the analysis of historical fishing effort and

catch volume is crucial for assessing the economic impact of fishing

activities in a specific region. Beyond analyzing historical data,

HyFish can also offer forecasts of future target catches for economic

evaluations, especially when integrated with data on fishery

resource distributions.

Although our system concentrates on the otter trawlers in the

East China Sea, the system has the potential to migrate to other
BA

FIGURE 11

Prediction RMSE corresponding to different lengths of model input and output. RMSE: average prediction RMSE over all weeks in the test period.

(A) RMSE with respect to input sequence length for Encoder. (B) RMSE with respect to output sequence length for Decoder.
FIGURE 10

Weight distribution of attention on four hydrological factors at different time steps of LSTM in Encoder. The larger the weight, the greater the impact
of the change in the hydrological factor on the fishing effort distribution.
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regions. The migration only requires determining the parameters of

spatial resolution, voyage period, and the number of grids crossed

by fishing vessels in a day. By employing local hydrological factors

and conducting correlation analysis, the impact lag can be

calculated, followed by retraining the model to predict the fishing

effort distribution for the new area.

Furthermore, the presence and abundance of biological resources

like plankton and microorganisms are key factors to determine the

location and timing of fishing activities. Changes in species

distribution, driven by migration, breeding cycles, or environmental

shifts, significantly influence fishing efforts. It is important to quantify

how the distribution of biological resources impacts fishing effort

distribution. However, data from marine biological resource surveys

are often constrained by the methods used and typically cover a

narrower spatial and temporal range compared to hydrological factor

data. Additionally, the distribution of biological resources is to some

extent influenced by hydrological factor fields. Consequently, our

current focus is on the impact of hydrological factor fields in

predicting fishing effort distribution. In future work, we aim to

delve deeper into the quantitative impact of biological resources on

fishing effort distribution and incorporate this understanding into our

prediction model through advanced deep-learning components.
4 Conclusion

This study introduces HyFish, a predictive system designed for

daily forecasting of fishing effort distributions in the upcoming

week. We start with an extensive spatiotemporal analysis to

quantify the relationship between hydrological factors and

fishing efforts, establishing a foundation for our deep-learning

model. The model employs residual networks and Long Short-

Term Memory (LSTM) networks, adeptly handling the spatial and

temporal dynamics of fishing activities and the influence of

hydrological factors. When applied to a comprehensive dataset

from the East China Sea, HyFish demonstrated remarkable

precision, achieving a daily prediction error ratio of just 5.6%

consistently throughout the evaluation period. Looking ahead, our

future research will focus on integrating biological resource

distribution into the model, aiming to further enhance its

predictive capability.
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TABLE 3 RMSE with respect to different number of Resbloks in Encfish
and Enchyd.

Number of Resblocks in Enchyd

2 3 4

Number of Resblocks in Encfish 2 18.917 18.351 18.225

3 17.808 16.936 17.022

4 17.957 17.439 17.406
Enchyd: Encoder for hydrological feature; Encfish: Encoder for VMS sequence’s features
of trawlers.
The best result is labeled by bold font and underline.
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