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The Antarctic krill is a pivotal species in the Southern Ocean ecosystem, primarily

due to its extraordinary nutritional content and plentiful resources. Studying the

distribution of these resources and their environmental impact factors is crucial

for the successful development of Antarctic krill fisheries. Traditional

methodologies such as acoustic measurements, however, often face

limitations in their capacity to provide a comprehensive and uninterrupted

assessment. Moreover, the six-month duration of polar nights in polar regions

presents significant challenges for traditional satellite observations. In this

context, LiDAR, an active remote sensing observation method, offers a

promising alternative. Known for their high resolution, flexibility, and efficiency,

LiDAR systems can obtain detailed information on diurnal ocean parameters in

polar regions on a vast scale and in a systematic way. Our study utilizes the

spaceborne LiDAR system, CALIPSO, to successfully attain continuous Antarctic

krill CPUE over the past decade, using various models such as the generalized

linear model (GLM), artificial neural network (ANN), and support vector machine

(SVM). A comparative analysis of the prediction results reveals that while both

ANN and SVM models outperform the GLM, the SVM’s prediction capabilities are

somewhat unstable. Our findings reveal CALIPSO’s potential in overcoming

challenges associated with traditional satellite observations during polar

winters. In addition, we found no obvious pattern of interannual variation in

krill CPUE, with high values predominantly occurring from February to May. This

suggests that krill is mainly located around the South Shetland Islands during

January-April, before moving offshore towards South Georgia in May-June. A

substantial krill aggregation community is found in the South Atlantic waters,

indicating high potential for krill fishing. The optimum mix layer depth range for

high krill CPUE is 270-390 m, with a chlorophyll concentration of approximately

0.1 mg m-3. The optimum sea surface temperature range is between -1.4-5.5°C,
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and the sea ice coverage range is approximately 0-0.1×106 km2. The predicted

Antarctic krill bioresource has risen from 2.4×108 tons in 2011 to 2.8×108 tons in

2020. This increase in krill biomass aligns with the biomass of krill assessed

by CCAMLR.
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1 Introduction

Antarctic krill (Euphausia superba), is a small crustacean (Santa

Cruz et al., 2018) that is one of the largest known single living

resources on Earth (Siegel et al., 1998; Nicol and Foster, 2003; Dai

et al., 2012). Antarctic krill are widely distributed in the waters of the

circum-Antarctic continental shelf, especially in the waters

surrounding the Antarctic Peninsula. It feeds on phytoplankton

and is a major food source for higher trophic level organisms

(Santa Cruz et al., 2018), and is therefore a keystone species in the

Southern Ocean ecosystems (Nicol et al., 2008; Stowasser et al., 2012;

Zhu, 2012). Due to the high nutritional value (Yoshitomi et al., 2007;

Ericson et al., 2018), abundant resources and key ecological status,

Antarctic krill has a huge commercial development value (Guoqin

et al., 2022), and its resource distribution and environmental impact

factors are the important content of the research of scholars from

various countries (Siegel, 2005; Li et al., 2022).

The krill resource has been assessed several times. In 1981,

FIBEX (First International BIOMASS Experiment) conducted the

first large-scale biomass survey of krill resources by acoustic

assessment, and the results showed that the biomass of krill in the

sea area between 15°E and 30°E, south of 62°S, was 9.05×105 tons

(Hampton, 1985). In 1985, Law (Laws, 1985) based on the predator

consumption method combined with the P/B coefficient gave a krill

biomass of about 8.46×108 tons. In the same year, Clark (Clarke,

1985) derived a krill biomass of 1.80 to 9.00×108 tons from

phytoplankton consumption based on the bait method. Siegel

(Siegel, 2005) synthesized acoustic data collected from multiple

surveys, evaluated the density of acoustic detections and estimated

biomass in different sea areas, and derived results that the total krill

biomass in Antarctic waters ranged from 6.74×107 to 2.97×108 tons.

The Commission for the Conservation of Antarctic Marine Living

Resources (CCAMLR) reassessed the biomass of Antarctic krill in

the fishing area 48 in 2010 and determined that the biomass of krill

in the area was 6.03×107 tons (Ccamlr, 2010).

The acoustic method is the official krill stock assessment

method used by CCAMLR, with the advantages of wide sampling

range, high resolution, and high accuracy of the assessment results

without causing harm to krill. However, there are some

disadvantages of this method such as poor accuracy of acoustic

data within 20m of the sea surface due to background noise (Yang
02
and Zhu, 2018). Large-scale acoustic resource assessments are

routinely carried out in the Antarctic by scientific survey vessels

and are therefore more costly. Commercial krill fishery data have

also been used for resource assessment, however commercial krill

fishery operations are concentrated in time and operate at different

spatial scales, which may affect the accuracy of krill resource

assessment. As an active remote sensing technology, LiDAR has

the advantages of high resolution, flexibility and efficiency (Renhe,

1994; Liu et al., 2015), and is capable of obtaining information on

the vertical structure of phytoplankton and marine environmental

factors, such as temperature, sea ice and chlorophyll, on a large scale

and periodically (Sullivan et al., 2010; Behrenfeld et al., 2017; Chen

and Pan, 2019; Yunfeng et al., 2020). Cloud aerosol lidar and

infrared pathfinder satellite observations (CALIPSO) launched by

NASA provides imagery that supports the characterization of the

vertical structure of plankton near the ocean surface (Lu et al.,

2021). The orthogonally polarized cloud aerosol lidar (CALIOP)

carried on CALIPSO is the first dual-polarized lidar to provide a

global vertical profile of diurnal elastic backscatter (Lu et al., 2014).

Yang et al. (2022) studied the characterization and formation

conditions of phytoplankton thin layers in the northern Gulf of

Mexico using airborne LiDAR data obtained from NOAA. Chen

et al. provided a comprehensive understanding of the vertical

distribution of optical properties in different seas from the East

China Sea to the South China Sea using a LiDAR system (Chen

et al., 2022; Zhang and Chen, 2022).In addition, LiDAR is capable of

acquiring high-resolution data at night and at high latitudes (Liu

et al., 2018). Zhang et al. (2023) proposed an innovative feed-

forward neural network (FFNN) model for inversion of subsurface

particle backscattering coefficient (bbp), chlorophyll concentration

(Chl), and total particulate organic carbon (POC) from satellite-

borne lidar. The interannual variability of ecosystems in polar

regions was analyzed by estimating the nonlinear relationship

between lidar signals and bio-optical parameters through FFNN.

In this paper, based on the relationship between the krill CPUE

and environmental factors, we combined the active and passive

remote sensing data to establish a krill CPUE inversion model and

prediction, with a view to providing continuous and stable krill

habitat distribution and stock assessment data. In the following

part, the data and methods are described in Section 2; the modeling

results of several approaches are compared and the spatial
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distribution of the climatic state months of Antarctic krill is plotted

in Section 3; the effects of various environmental factors on

Antarctic krill are discussed in Section 4; and finally, conclusions

and perspectives are presented in Section 5.
2 Materials and methods

2.1 Study area

The Antarctic region is divided into three main fishing areas

(Figure 1A): fishing area 48, 58 and 88. According to the CCAMLR

conservation measures, fishing area 58 and 88 have been closed to

fishing since 1997 and 1993, respectively, so the study area for this

paper is fishing area 48. There are six subareas in area 48 (Figure 1B),

of which fishing is currently only conducted in subareas 481 to 484,

and the fishery in subarea 486 is an exploratory fishery.
2.2 In-situ and remote sensing data

Antarctic krill fishery data were obtained from CCAMLR

(https://www.ccamlr.org/), which include year, month, fishing

area, catch(tons) and fishing effort (day). The time span is from

2011 to 2020, with a monthly resolution and the statistics of krill

production are shown in Figure 1C.
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Environmental factor data (Figure 1D) include mixed layer depth

(MLD), chlorophyll (CHL), sea surface temperature (SST), and sea

ice extent (SIE). MLD and SST data are derived from the monthly

global physical variable reprocessing product ARMOR3D L4

published by the Copernicus Marine Environmental Monitoring

Service (http://resources.marine.copernicus.eu/product-detail/

MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012) .

Chlorophyll data consist of both passive and active remotely sensed

data, with passive remotely sensed data derived from monthly

averaged MODIS-Aqua Level 3 data at a resolution of 4 km (http://

oceancolor.gsfc.nasa.gov). The active remote sensing data are from

the orthogonally polarized cloud aerosol lidar (CALIOP) developed

by NASA and the National Center for Space Studies (CNES), which

includes the CALIPSO Level-1B V4.10 product and the Level-2

Merged Layer V4.20 product (http://orca.science.oregonstate.edu/

lidar_nature_2019.php). SIE data are from the Copernicus Climate

Change Service (https://climate.copernicus.eu/sea-ice).
2.3 CPUE inversion method

The research method of this paper mainly includes matching

the krill CPUE with MLD, CHL (MODIS), SST and SIE according

to the time scale, and substituting the matched data into the GLM,

ANN and SVM models for modeling, respectively. The relationship

between environmental factors and CPUE was calculated and
B

C D

A

FIGURE 1

The designated fishing areas established by the CCAMLR (A), as well as the specific subarea within fishing area 48 (B); Statistical chart of the global
production of Antarctic krill in fishing area 48 between the years 2011 and 2020 (C) and the distribution of climatic states for environmental factors
in fishing area 48 (D).
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compared to validate the effects of the three models. Then, the

particle backscattering coefficient (bbp) of CALIPSO was processed,

and the feed-forward neural network (FFNN) model was used to

establish the relationship between bbp and CHL of MODIS, and to

invert the diurnal CHL data of Antarctic region. Finally, the

inverted diurnal CHL data were matched with MLD, SST and SIE

according to the CHL latitude/longitude resolution (2°×1°) and

input into the optimal model for krill CPUE prediction. Nominal

CPUE and predicted CPUE were sorted out by calculating the

coefficient of determination (R2) and root mean square error

(RMSE), and the correlation between the two was calculated, so

as to analyze the influence of spatial and temporal factors and

environmental factors on the krill CPUE and to evaluate its

resources. The flow chat is shown in Figure 2.

First, the Antarctic krill catch data need to be standardized to

express the abundance of krill fishery resources in terms of nominal

CPUE, and krill CPUE (t/d) is defined as the total catch (t) per day

(d), year i, month j, k longitude, l latitude. The CPUE (Equation 1) is

calculated as.

CPUEi,j,k,l =  o
Catchi,j

oEi,j
(1)

Where oCatchi,j,k,l represents the total catch (t) in the ith

year, jth month, kth longitude, and lth latitude, oEi,j is the

corresponding operation duration.

2.3.1 Generalized linear model
The GLM model is one of the most commonly used methods in

fisheries data standardization studies, which is simple to operate

and can be calculated by user-friendly software (Rodrıǵuez-Marıń

et al., 2003). GLM models can be used to establish the relationship

between response variables and predictor variables and can handle

different types of response variables. Therefore, the GLM is able to

handle both continuous and discrete data and is highly flexible and

applicable. GLM assumes that the expected value of the response

variable is linearly related to the explanatory variables (Hua et al.,

2019), and is described as Equations 2, 3:

g(mi) =  XT
i b (2)
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mi = E(Yi) (3)

Where g is the link function, Xi is the explanatory variable for

the ith response variable, Yi is the ith random variable, and b is the

parameter vector.

In this paper, the CPUE is assumed to follow a lognormal

distribution, so the GLM is denoted as Equation 4:

Ln(CPUEi,j,k,l + 1) = k + a1yeari + a2monthi +

a3MLDi + a4CHLi + a5SSTi+

a6SIEi + a1interactions + ϵi,j,k,l

(4)

where interactions refer to effect of the spatio-temporal

explanatory variables; a1~a6 are model parameters; ϵ is the

residual, assumed to be normally distributed. Explanatory

variables are time (year, month) and environmental factors

(MLD, CHL, SST, SIE). Year and month are discrete variables,

while the other variables are continuous. To avoid CPUE of 0, a

constant 1 is added to CPUE before logarithmic transformation.

2.3.2 Artificial neural network
Compared with the traditional GLM model, ANN has better

nonlinear mapping ability, capable of performing complex logic

operations and nonlinear relationship realization (Yang et al.,

2015). In the past decades, many authors (Maier and Dandy, 2001;

Suryanarayana et al., 2008; Contractor and Roughan, 2021) have

applied artificial neural network techniques to characterize

oceanographic processes. ANN contains three layers: input layer,

hidden layer and output layer. Among them, the input layer receives

raw data or feature vectors, the hidden layer processes and transforms

the data, and the output layer produces the final result. In ANN, each

neuron has an activation function which is used to convert the input

signal to the output signal, so it is able to form different networks with

different connections to build simple models (Li et al., 2015; Sadeghi

et al., 2019), the overall model is given by the Equation 5:

ŷ =  wo,0 +oo−1
j=I+1f (oI

i=1xiwj,i + wj,0)wo,i (5)

Where wj,i is the connection weight from node j to i, o is the

output node, and f is the logistic function ( 1
1+e−x ).
FIGURE 2

Flow chart of CPUE inversion method.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1287229
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhong et al. 10.3389/fmars.2024.1287229
In this paper, the network is constructed using MATLAB

artificial neural network toolbox functions. The network is a two-

layer feedforward network, including input, hidden and output layers,

with a sigmoid transfer function in the hidden layer and a linear

transfer function in the output layer. There are six nodes in the input

layer, which are: year, month, MLD, CHL, SST, and SIE, and one

node in the output layer corresponds to the output variable of krill

CPUE. The input data is divided into three parts: 80% for training,

10% for validation, and 10% for testing, and the data is divided in a

randomized manner. The size of the hidden layer was set to 4 layers

and the training algorithm was Levenberg-Marquardt.

2.3.3 Support vector machine
SVM model (Rifaldi and Setiawan, 2019) is a commonly used

machine learning algorithm, mainly for classification and regression

problems, which is uniquely suited for dealing with complex

problems with finite samples, high dimensionality, and nonlinear

data. It maps the independent variables to a high-dimensional

feature space through a nonlinear mapping and finds an optimal

classification surface in the high-dimensional feature space such

that the error obtained from this optimal classification surface is

minimized for all training samples (Zan et al., 2004). SVM has been

used to describe fishery processes such as flow prediction (Asefa

et al., 2006), hydroacoustic classification of fish populations (Bosch

et al., 2013), CPUE normalization (Yang et al., 2020) and fish

species classification (Morris et al., 2001).

The MATLAB support vector machine regression model

(fitrsvm) function was used whose model is given by the

Equation 6:

f (x,w) =om
i=1wi ∅i (x) + w0 (6)

The Gaussian function was chosen as the sum function to

compute the elements of the Gram matrix, which is computed as

Equation 7:

G(xj, xk) = exp   ( − xj − xk
�
�

�
�2) (7)

where G(xj, xk) is assumed to be an element (j, k) of the Gram

matrix, xj and xk are p-dimensional vectors that represent the

observations j and k in the predictor X.

2.3.4 CHL inversion by CALIPSO observations
The CALIPSO CHL inversion method refers to the method

described by Zhang (Zhang et al., 2023) to preprocess CALIPSO

data and use feedforward neural network (FFNN) method to invert

CHL, more calculation process can refer to Zhang’s research. The

description of calculation process is simply described as follows:

Step 1: the polarization beam splitter (PBS) photomultiplier

tube (pmt) was used to detect the backscattered signal at 532 nm,

and the measured signal was deconvoluted and corrected with the

following Equation 8:

b 0(z) = ½F�−1b(z) (8)

where b 0(z) is the real backward scattering signal, b(z) is the
receiver output, and ½F� is the matrix form of the transient function.
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Step 2: the effect of polarization crosstalk due to non-ideal

characteristics is eliminated as Equations 9, 10:

b∥,⊥ =
b∥,m

1 − CT
(9)

b⊥,c = b⊥,m − CT � b∥,c (10)

where b∥,c and b⊥,c are the corrected parallel and vertical

signals, respectively.

Step 3: the subsurface column integral backscattering bW+ of the

vertical component is calculated as Equation 11:

bW+ = dT
bS

1 − dT=dw
(11)

where bW+ is the vertical component of the subsurface column-

integrated backscatter, dw is the subsurface column-integrated

depolarization ratio, and bS is the lidar surface backscatter.
Finally, the FFNN algorithm was used to derive CHL directly

from bW+ (Zhang et al., 2023). The FFNN model employs a

multilayer perceptron utilizing a backpropagation network (MLP

BPN). The model consists of an input layer and an output layer, and

the input layer consists of 10 hidden layers (Sharma et al., 2020),and

each hidden layers possess 100 nodes. The activation function of the

neurons in the hidden layer was chosen to be an S-shaped function,

while the output layer uses a linear function that allows the

production of final results. To train the model, the RMSprop

optimization algorithm was used, which consists of dividing the

gradient by the running average of its nearest size. Daytime

backscatter measurements from the CALIPSO lidar in 2008, as

well as the CHL product from Aqua/MODIS, were used to train the

model. To ensure compatibility with MODIS data, the CALIOP

variables were averaged over a distance of 9 km along the track. The

dataset was then randomly divided, of which 70% was used for

FFNN training, 15% for model validation, and the remaining 15%

for evaluation. It is worth noting that no evaluation data was

involved in the training process. The matched data covered a

wide range of global marine areas. Subsequently, the FFNN

algorithm was used to invert the CHL for the period from 2011

to 2020.
3 Results

3.1 Model validation and comparisons

The data were divided into two sets: the overall data of the 48

districts and the data ensemble of the sub-districts of the 48

districts, and the two sets of data were brought into the three

models of GLM, ANN and SVM for modeling respectively.

Regression analysis (Figure 3) of predicted CPUE versus nominal

CPUE for the three models showed that for both data sets, the GLM

model R2 was the lowest of the three models at 0.29 and 0.16,

respectively, and the ANN and SVM models had comparable R2.

For the overall data of the 48 districts, the SVM model R2 is higher

at 0.47, and the ANN model R2 is 0.44; for the data ensemble of the
frontiersin.org
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48 sub-districts, both the ANN model and the SVM model R2

are 0.53.

Figure 4 shows the annual and monthly changes in nominal and

predicted CPUE using three different models. Of the three methods,

the ANN predicts the interannual CPUE trend (Figure 4A) is most

consistent with nominal CPUE. The GLM and SVM models

predicted similar trends in CPUE, but both were opposite to

nominal CPUE. The ANN predicted higher CPUE values, which

were on average 100 t/d higher than the nominal CPUE. It basically

stayed at 1,000 t/d from 2011-2014, then slightly decreased and

stayed around 800 t/d from 2015-2017, reaching a maximum value

of 943 t/d in 2019, and then decreased again. The CPUE predicted

by the GLM model gradually declined since 2011 and reached a

minimum value of 668 t/d in 2014.The CPUE predicted by the SVM

model declined from 727 t/d in 2011 year by year till a minimum

value of 609 t/d in 2016, and then increased year by year and

reached a maximum value in 2020. From the monthly scale change

(Figure 4B), the CPUE predicted by the SVM model is the most

consistent with the trend of nominal CPUE. The CPUE predicted

by the ANN model has a larger difference from the nominal CPUE,

with the ANN predicted CPUE being higher than the nominal

CPUE by an average of 839 t/d in January to April, and lower than

the nominal CPUE by an average of 280 t/d in May to December.

From the annual scale changes in each subarea (Figures 4C–H),

it can be seen that the ANN predicted CPUE lower than the

nominal CPUE in subareas 481, 482, and 483, and the predicted

CPUE in subareas 484, 485, and 486, had smaller errors from the

nominal CPUE. The GLM predicted CPUE significantly higher

than the more nominal CPUE in subareas 483 through 486. The gap

between CPUE and nominal CPUE predicted by the SVM model is

small, but the predicted values of krill in subarea 484 for 2011 and

subarea 486 for 2016 are negative. From the monthly scale changes

(Figures 4I–N), it can be found that the errors between predicted
Frontiers in Marine Science 06
CPUE and nominal CPUE by the three models are similar to the

annual changes. High values of krill CPUE mainly occurred in areas

481, 482 and 483, with CPUE in area 481 increasing month by

month from January to the highest value in June. There was no

obvious pattern of CPUE change in area 482, with higher CPUE in

February and September; high CPUE in area 483 mainly occurred

from June to September. Subareas 484 and 485 had fewer months of

fishing operations and very low CPUE, while area 486 was a

research fishery and CPUE was negative. Subarea 486 is a

research fishery and also has low CPUE values. Similar to the

annual variation, the SVM predicted negative CPUE in March and

April in Area 483 (Figure 4K) and in January, May, September, and

November in Area 486 (Figure 4N), so the ANN model was

subsequently selected for krill CPUE prediction.
3.2 Predicted results

3.2.1 Results of CALIPSO chlorophyll inversion
Figure 5 shows the distribution of MODIS and CALIPSO CHL in

Antarctica in December and June. In December, the CALIPSO

diurnal data (Figure 5A) showed significantly higher CHL

concentrations in the Argentine Basin and the Mid-Atlantic, Indian

Ocean (60°E-90°E, 30°S-50°S), Ross Sea, and South Pacific (150°W-

180°W, 55°S-65°S). The distribution is consistent with MODIS

(Figure 5C), but the coverage of CALIPSO data is significantly

higher in the Antarctic Circle than in MODIS. At night

(Figure 5B), CHL concentrations were higher in Atlantic waters

(60°W-30°W, 30°S-50°S). In June, MODIS data were missing. The

CALIPSO data (Figures 5E, F) showed higher daytime CHL

concentrations in the Argentine Basin, with a percentage of daily

variation of less than 30%. Within the Antarctic Circle (south of 66°

S), nighttime data coverage is higher than daytime.
B C

D E F

A

FIGURE 3

Regression analysis results of the three models; (A–C) is the result of area 48; (D–F) is the result of subarea 48;.
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3.2.2 Krill CPUE prediction results
Three sets of input data were obtained by matching CALIPSO

daytime and nighttime CHL and MODIS CHL data with other

environmental factors, respectively, and brought into the ANN

model for krill CPUE prediction. Figures 6–8 present the

distribution of CPUE predicted by the three sets of data for each

month for krill, respectively. It is obvious that MODIS data are

missing from May to July (Figures 8E–G), and in the other months,

MODIS data have similar distribution and temporal and spatial

trends as those predicted using CALIPSO daytime CHL data. This

suggests that CALIPSO CHL data can be effective data for predicting

krill CPUE and compensate for the lack of MODIS data. There are

two main phosphorus aggregations in fishing area 48. A small

aggregation located near the Antarctic Peninsula (65°W-45°E, 60°S-

66°S) in January, which gradually increases in size and shifts eastward

as the months increase (March to May). The size of the aggregation

decreased from June onwards and the aggregation disappeared by
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October. Another large krill aggregation was located in the South

Atlantic at 10°W-20°E, 50°S-60°S, which gradually increased in size

and concentration and shifted westward as the months changed, with

a maximum in March, followed by a gradual decrease in size and

finally disappearance of the aggregation in November. Although

there are fewer CHL data from June to October, it can still be seen

that the center of aggregation of this krill aggregation group is

gradually shifting to the northwest, and it can be seen from

Figures 6I–K that the aggregation group is finally located mainly in

the sea area of 20°W-10°W, 50°S-55°S.

Figure 9 compares the results and significance of CPUE predicted

by CALIPSO andMODIS data at different spatial and temporal scales

and with different environmental factors. The results show that year

has a small effect on CPUE and month has a significant effect on

CPUE. Except for 2015 and 2017, the predicted values of CALIPSO

data were on average 149 t/d higher than those of MODIS data.

Except for June and July, the predicted values of CALIPSO data were
FIGURE 4

Comparison of annual and monthly changes of CPUE predicted by three models with nominal CPUE: (A) is the annual change of the area 48; (B) is the
monthly change of the area 48; (C–H) is the annual change of the subareas, corresponding to 481-486, respectively; (I–N) is the monthly change of the
subareas, corresponding to 481-486, respectively.
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on average 102 t/d lower than the predicted values of MODIS data.

The high values of CPUEmainly appeared in the months of March to

April at about 1000 t/d, and then CPUE decreased significantly with

the increase of months. From the spatial distribution, the range of

CPUE higher than 500 t/d is concentrated in 67°S-55°S, 20°W-30°E.

Among them, the CPUE has a small peak of about 500 t/d at a
Frontiers in Marine Science 08
longitude of 40°W, and then decreases rapidly to 400 t/d, and then

increases again, and stays at 700 t/d after reaching a second peak

value (about 800 t/d) at about 10°W.

Among the four environmental factors, CPUE was higher when

MLD and SST were specific ranges and negatively correlated with

CHL and SIE. At first, krill CPUE remained around 500 t/d at MLD
B C D

E F G H

I J K L

A

FIGURE 6

Spatial distribution of climatological monthly Antarctic krill CPUE predicted using daytime CHL data from CALIPSO, with panels (A–L) corresponding
to January to December.
B

C D

E F

G H

A

FIGURE 5

Comparison of active CALIPSO CHL and passive MODIS CHL distribution in the Antarctic. (A) CALIPSO daytime data in December; (B) CALIPSO
nighttime data in December; (C) MODIS data in December; (D) percent difference between CALIOP CHL and MODIS CHL in December. (E) CALIPSO
daytime data in June; (F) CALIPSO nighttime data in June; (G) MODIS data in June; (H) percent difference between CALIOP CHL and MODIS CHL
in June.
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FIGURE 8

Spatial distribution of climatological monthly Antarctic krill CPUE predicted using CHL data from MODIS, with panels (A–L) corresponding to January
to December.
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A

FIGURE 7

Spatial distribution of climatological monthly Antarctic krill CPUE predicted using nighttime CHL data from CALIPSO, with panels (A–L)
corresponding to January to December.
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depths of 0-200 m, then increased rapidly with depth to around 2000

t/d at 270-390 m, and then declined rapidly. Similarly, krill CPUE

increased rapidly with SST from -1.7°C to 1.7°C and CPUE increased

from 36 t/d to about 750 t/d, followed by a slow decline. For CHL,

CPUE was highest at about 800 t/d with CHL of 0.1 mgm-3, and then

decreased to less than 200 t/d when CHLwas greater than 1.7 mgm-3.

CPUE was highest at about 600 t/d with SIE of 0, and then only 120 t/

d with SIE of 0.1, followed by no significant CPUE with increasing

SIE change, keeping at about 50 t/d.

The importance comparison (Figure 9I) reveals the order of

importance of the environmental factors, during the daytime the
Frontiers in Marine Science 10
order of importance was: SIE, MLD, SST and CHL. At night MLD

turned out to be the most important factor, being 0.1 higher than

during the daytime, while SIE decreased by 3.27. This phenomenon can

be attributed to the reduced density in stable surface waters in the

Antarctic Marginal Sea as ice melts and low-salinity freshwater is

injected (Meguro et al., 2004). This reduced density limits vertical

mixing and leads to a reduction in the thickness of the mixed layer.

Consequently, this favorable condition facilitates extensive

phytoplankton colonization of the stable water column, leading to a

significant increase in primary productivity (Marrari et al., 2006, 2008).

This increase in productivity in turn attracts krill populations to forage.
B

C D

E F

G H
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A

FIGURE 9

Comparison of the predicted CPUE results from CALIPSO and MODIS data at different spatial and temporal scales and different environmental
factors and the band importance contrast: (A) is year; (B) is month; (C) is latitude; (D) is longitude; (E) is MLD, (F) is CHL, (G) is SST, and (H) is SIE, (I)
is importance contrast.
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4 Discussions

4.1 Comparison of ANN, GLM and
SVM methods

According to the results of the study, for the subarea data, the

CPUE predicted by the GLM was significantly different from the

nominal CPUE. The main reason is that the GLM model can only

target the expected value of the response variable in a linear

relationship with the explanatory variables, while in reality, there is

a nonlinear relationship between Antarctic krill CPUE and many

factors. In addition GLM has requirements on data structure, and in

the presence of outliers or nonlinearities, GLM simulation and

prediction errors are larger (Walsh and Kleiber, 2001; Denis et al.,

2002). Figure 4 indicates that the difference between the CPUE

predicted by SVM and the nominal CPUE trend is much smaller,

however, there are negative values of CPUE predicted by the SVM

model for the prediction of the subregion 48 data, which may be due

to overfitting caused by the parameter settings. The advantages of

SVM are good generalization ability, robustness and good

performance for high dimensional data and small sample problems.

when dealing with large-scale datasets SVM may face the problem of

high computational complexity. The predictive performance of SVM

models varies widely across studies (Larranaga et al., 2006; Pang et al.,

2006), and the selection of the optimal model needs to be determined

based on the data type (Verikas et al., 2011).
4.2 Spatial and temporal distribution
pattern on CPUE

Antarctic krill CPUE peaked in 2016 and then decreased

significantly, and one of the reasons for the decrease in krill

populations in 2017 may have been influenced by the 2015/2016

El Niño event. In the report on the state of the global climate in

2015, the World Meteorological Organization (WMO) noted that

the 2015 El Niño was one of the three strongest El Niños and the

longest El Niño process in the observational record (Zhai et al.,

2016). Brown’s study (Brown et al., 2010) on the growth of krill at

different temperatures showed that the intermolt period of krill

declined significantly with increasing temperature, and that there

was a regression of the sexual maturity stage. Tarling et al (Tarling

et al., 2006). modeled the prediction of krill growth using factors

such as food source, temperature, body length, sex, and sexual

maturity, and the result showed that the growth rate of krill

decreased with increasing temperature. In addition, changes in

the global climate, rising temperatures, melting sea ice, and other

changes are exerting some stress on krill maturation, reproduction,

and population replenishment. Combining the maps of fishing area

distribution (Figure 1B) and the predicted monthly spatial

distribution of CPUE for Antarctic krill (Figure 6), it was found

that subareas 481 and 482 had higher CPUE in January-April,

mainly in the South Shetland Islands (Hewitt et al., 2004), and

moved offshore of South Georgia (Comiso and Steffen, 2001) in

May-June, thus subarea 483 is higher in May-August and subarea

486 is higher in both January-August.
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4.3 Impact of environmental factors
on CPUE

There are fewer studies on the relationship between krill CPUE

and MLD, but the mixed layer is a vertical mixed layer with almost

uniform depth, temperature and salt formed by solar radiation,

precipitation and wind (Sun et al., 2007). There have been studies

on the relationship between depth and temperature and salt in krill.

Hu (Hu et al., 2019) studied the relationship between vertical

distribution of Antarctic krill and light, vertical temperature and

salt. He pointed out that during the daytime, Antarctic krill were

mostly distributed in the 40-120 mwater layer, mostly gathered in the

thermocline and saline transgression layer, while during the

nighttime phase, they were mainly distributed in the two water

layers of 20-40 m and 180 m depths, and mostly gathered outside

the thermocline and saline transgression layer. Chlorophyll, sea

surface temperature and sea ice (Chen et al., 2011) are the main

environmental factors affecting the distribution of polar fisheries, and

many scholars have investigated the effects of environmental factors

on the distribution of Antarctic krill resources. The results of this

study showed that the high value of krill CPUE was around 0.1 mgm-3

at CHL, which is in line with the results of previous studies. Atkinson

et al (Atkinson et al., 2008). suggested that CHL in the main habitat of

Antarctic krill ranged from 0.5 ~ 1.0 mg/m3, and Zhang et al (Zhang

et al., 2020). suggested that the optimal CHL in Antarctica was 0.13 ~

0.83 mg/m3. Zhu (Zhu, 2012) suggested that high CPUE values usually

occur in waters with CHL between 0 ~ 0.2 mg/m3. There is a strong

correlation between SST and krill fishery, and seasonal changes in SST

lead to spatial and temporal changes in krill fishery. The results of the

present study show that the temperature range of high values of CPUE

for Antarctic krill is -1.4~5.5°, and the mean annual temperature is

2.57°, which is basically consistent with the results of the previous

studies. Zhang’s study (Zhang et al., 2020) on the relationship between

CPUE and SST and CHL concentration in the Antarctic krill fishery

(fishing area 48) pointed out that the optimum SST of the fishery was

-1.8~1.2°C. Dai (Dai et al., 2012) also pointed out in his study that the

interannual variation of krill CPUE was highly correlated with SST

when SST was 0~1°C (R2 = 0.82). The effect of sea ice on krill CPUE is

manifested by the negative correlation between summer krill CPUE

and the average sea ice extent in the winter-spring (July-November) of

the previous year (Chen et al., 2011). The winter-spring sea ice extent

not only affects krill growth, but also influences the timing and extent

of Antarctic krill fishing operations, which in turn affects the CPUE of

the Antarctic krill fishery.
4.4 Antarctic krill resource assessment

In this study, assessment calculations of krill resources were

carried out based on CPUE predicted by CALIPSO diurnal CHL.

Figure 10 shows the Antarctic krill biomass from 2011 to 2020, with

a general zigzag upward trend in krill biomass. It rises from 2.25 to

2.65 × 108 tons in 2011 to 2.53 to 3.02 × 108 tons in 2020, which is

basically in line with the official CCAMLR assessment of krill

biomass of 0.6 to 4.2 × 108 tons.
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The limitations of traditional acoustic assessment are the high

cost of the assessment, the need for research vessels or fishing vessels

equipped with fishing vessel fish finder collectors for acoustic data

collection, and the sea ice cover in some parts of the Antarctic, which

limits the range of vessel data collection. In contrast, fishing vessel

acoustic imaging contains a large number of abiotic signals and has

the disadvantage of being time-consuming and inefficient. Studies

using acoustic methods for resource assessment usually focus on the

Antarctic Peninsula (subarea 481) and cannot cover the whole 48

fishing areas. For example, based on krill acoustic imaging data,

Wang Teng assessed the krill resource in the waters of the South

Orkney Islands to be about 4.79×105 t by adopting the traditional

integral unit method and a new cluster-based assessment method

(Wang, 2018). Dai proposed to hard combine the remote sensing

observation data and other environmental factors for in-depth study

to improve the interaction between krill resource abundance and

environmental factors (Dai et al., 2012).

In this study, resource assessment of the entire 48 fishing areas

was realized using satellite-based LiDAR data, demonstrating the

feasibility of using active LiDAR for Antarctic krill stock assessment.

Active LiDAR can fill in the missing data at high latitudes, with the

advantages of high efficiency and high accuracy (Chen et al., 2020)

thereby compensating for the high cost and limited assessment range

of acoustic assessment. The spatial distribution of krill CPUE reveals

that the krill aggregation group in the South Atlantic waters is located

in subarea 486, which is currently used only for scientific research and

not for commercial fishing, and therefore the Antarctic krill has a

large potential biological resource for fishing.

5 Conclusions

In this study, GLM, ANN and SVM models were selected for

modeling by combining MLD, CHL, SST and SIE data and

Antarctic krill CPUE. The results showed that the ANN and SVM

models predicted better results than the GLM, with R2 of 0.44 and

0.47, respectively. CALIPSO diurnal and MODIS CHL data were

used to bring into the model and the CPUE predictions were

compared. The results showed that the data predicted using

CALIPSO had a smaller gap with MODIS and were able to

effectively fill the data gap of MODIS in polar winters. There was

no obvious pattern of interannual variation in krill CPUE; high

CPUE values mainly occurred from February to May. Its spatial
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distribution was in January-April, mainly in the South Shetland

Islands, and moved offshore towards South Georgia in May-June.

The biomass of Antarctic krill was assessed to increase from 2.25 to

2.65 × 108 tons in 2011 to 2.53 to 3.02 × 108 tons in 2020, which is

generally consistent with the official CCAMLR assessment of krill

biomass of 0.6 to 4.2 × 108 tons. The use of LiDAR data can

effectively work in polar regions and at night, can effectively fill the

gap of passive remote sensing, and can realize all-weather

uninterrupted detection and inversion of krill biological resources,

which can effectively make up for the shortcomings of the high cost

of acoustic resource assessment and the need for field detection. In

the future, the modeling accuracy of active remote sensing data and

CPUE can be further improved to provide more accurate resource

assessment data.
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