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Ocean-driven interannual
variability in atmospheric CO2

quantified using OCO-2
observations and atmospheric
transport simulations
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Scott C. Doney4 and Gretchen Keppel-Aleks1*

1Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor,
MI, United States, 2Department of Earth and Environmental Sciences, Columbia University, New York,
NY, United States, 3Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States,
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Interannual variability (IAV) in the atmospheric CO2 growth rate is caused by

variation in the balance between uptake by land and ocean and accumulation of

anthropogenic emissions in the atmosphere. While variations in terrestrial fluxes

are thought to drive most of the observed atmospheric CO2 IAV, the ability to

characterize ocean impacts has been limited by the fact that most sites in the

surface CO2 monitoring network are located on coasts or islands or within the

continental interior. NASA’s Orbiting Carbon-Observatory 2 (OCO-2) mission has

observed the atmospheric total column carbon dioxide mole fraction (XCO2)

from space since September 2014. With a near-global coverage, this dataset

provides a first opportunity to directly observe IAV in atmospheric CO2 over

remote ocean regions. We assess the impact of ocean flux IAV on the OCO-2

record using atmospheric transport simulations with underlying gridded air-sea

CO2 fluxes from observation-based products. We use three observation-based

products to bracket the likely range of ocean air-sea flux contributions to XCO2

variability (over both land and ocean) within the GEOS-Chem atmospheric

transport model. We find that the magnitude of XCO2 IAV generated by the

whole ocean is between 0.08-0.12 ppm throughout the world. Depending on

location and flux product, between 20-80% of the IAV in the simulations is

caused by IAV in air-sea CO2 fluxes, with the remainder due to IAV in atmospheric

winds, which modulate the atmospheric gradients that arise from climatological

ocean fluxes. The Southern Hemisphere mid-latitudes and low-latitudes are the

dominant ocean regions in generating the XCO2 IAV globally. The simulation

results based on all three flux products show that even within the Northern

Hemisphere atmosphere, Southern Hemisphere ocean fluxes are the dominant

source of variability in XCO2. Nevertheless, the small magnitude of the air-sea

flux impacts on XCO2 presents a substantial challenge for detection of ocean-

driven IAV from OCO-2. Although the IAV amplitude arising from ocean fluxes

and transport is 20 to 50% of the total observed XCO2 IAV amplitude of 0.4 to 1.6

ppm in the Southern Hemisphere and the tropics, ocean-driven IAV represents

only 10% of the observed amplitude in the Northern Hemisphere. We find that for
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all three products, the simulated ocean-driven XCO2 IAV is weakly anti-

correlated with OCO-2 observations, although these correlations are not

statistically significant (p>0.05), suggesting that even over ocean basins,

terrestrial IAV obscures the ocean signal.
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1 Introduction

The ocean regulates the uptake, storage, and build up of carbon

in the atmosphere on annual to millennial timescales, helping

mitigate climate change by significantly modulating the long-term

trend in the atmospheric CO2 growth rate. The ocean took up on

average, 3.0 ± 0.4 PgC yr−1 or 29% of the total anthropogenic CO2

emissions for the decade beginning in 2011, and cumulatively has

sequestered over 1/3 of fossil emissions since the industrial era (Le

Quéré et al., 2018; Friedlingstein et al., 2022). Although terrestrial

ecosystems play the major role in modulating interannual

fluctuations in the atmospheric CO2 growth rate (Keppel-Aleks

et al., 2014), when taking into account land-use change emissions to

the atmosphere, which counteract the residual terrestrial sink, the

ocean is the only long-term sink for anthropogenic carbon

(Ballantyne et al., 2012; Crisp et al., 2022).

Interannual variability (IAV) in the atmospheric CO2 growth

rate is superimposed on the long-term positive trend. The

atmospheric CO2 surface network shows a decadal-average

growth rate of 2.41 ± 0.26 ppm/y (mean ± 2 std dev) on an

annual basis due to the impacts of internal climate variability

during 2003–2016 (Buchwitz et al., 2018). This IAV has been

shown to reflect, primarily, variations in the rate of terrestrial

CO2 uptake due to climate stressors (Luo et al., 2022) and

disturbance (Keppel-Aleks et al., 2014), but also embodies IAV in

net ocean carbon exchange and fossil fuel emissions (Doney et al.,

2009; Crisp et al., 2022). The global ocean carbon flux IAV is

estimated at about 0.3 PgC/yr (equivalent to about 0.15 ppm CO2

mixed into the global atmosphere), with the tropical Pacific Ocean

which is modulated by El Niño-Southern Oscillation (ENSO),

accounting for a large fraction of the variability (Rödenbeck et al.,

2014; Bennington et al., 2022). However, the influence of key

regions of ocean flux IAV on spatial patterns of atmospheric CO2

IAV may be obscured unless local scale variations in atmospheric

CO2 are analyzed.

The net flux of CO2 between the atmosphere and the ocean is a

function of (1) wind-driven gas exchange kinetic rates and (2) the

difference of the partial pressure of CO2 in the air and the ocean

surface (DpCO2), with the ocean component being far more

regionally heterogeneous (Wanninkhof and McGillis, 1999; Garbe

et al., 2014). Local variations in oceanic pCO2 are related to physical
02
or biogeochemical processes including sub-surface water upwelling,

which can enrich the surface water in CO2, temperature-driven

solubility variations, alkalinity (which is closely related to salinity

and controls the speciation of dissolved inorganic carbon), and

phytoplankton photosynthesis and respiration (Doney et al., 2009;

Crisp et al., 2022). These variables are all affected by interannual

climate variability (McKinley et al., 2020). Because the response of

the global carbon cycle to climate fluctuations may provide insight

into the long-term response to climate change, understanding the

global and regional characteristics of ocean-driven atmosphere CO2

IAV can help to improve our understanding of the climate–carbon

cycle processes and our ability to project the fate of the ocean CO2

sink in the future.

Although studies have suggested that ocean flux IAV may

impart an observable impact on atmospheric CO2 IAV (Crisp

et al., 2022), gaps remain in quantifying the influence from the

ocean since most atmospheric CO2 observations are made on land

and coasts, with fewer island and ship-based measurements in the

remote open ocean. Early research deduced that the CO2 flux

variation over the ocean, especially the equatorial Pacific Ocean,

is one of the main causes of the atmospheric CO2 IAV (Francey

et al., 1995). Later studies based on inverse models, seawater system

measurements, and air-sea CO2 flux estimates (Feely et al., 2002;

Rödenbeck et al., 2003) suggested air-sea CO2 flux is not the

primary driver for interannual to seasonal variations in

atmospheric CO2. Nevison et al. (2008) used an atmospheric

transport model with an underlying mechanistic ocean flux model

to show that the amplitude of atmospheric IAV owing to ocean

fluxes was around 10% of the IAV amplitude at northern

hemisphere surface stations, and up to 50% of the observed IAV

in the Southern Hemisphere. In neither hemisphere however, was

the IAV owing to ocean fluxes highly correlated with the

observations (Nevison et al., 2008). Setting aside uncertainties

within the atmosphere, there remain substantial uncertainties as

to the magnitude of air-sea CO2 flux variability itself based on ocean

biogeochemical models (Hauck et al., 2020; Fay and McKinley,

2021), observation-based flux products (McKinley et al., 2020;

Bennington et al., 2022; Hauck et al., 2023) and atmospheric CO2

inverse models (Peylin et al., 2013).

Quantifying ocean-driven atmospheric CO2 IAV remains

challenging since direct observations of pCO2 in surface waters and
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the corresponding difference with the atmosphere are sparse, and

leading to large spatiotemporal gaps. CO2 fluxes can be estimated/

calculated? from observation-based pCO2 products. There are many

such products available, each of which estimate near global 1°x1°,

monthly pCO2 fields from the sparse pCO2 measurements available,

using various techniques including statistical interpolation, linear and

non-linear regressions, and machine learning-based methodologies

(Rödenbeck et al., 2015). For all products, the CO2 flux is then

calculated from the interpolated pCO2 fields (Fay et al., 2021). Here,

we focus on only three representative data-based flux products

(Landschützer et al., 2014; Rödenbeck et al., 2014, 2016, Denvil-

Sommer et al., 2019) which are described in more detail below.

Robust estimates of mean and seasonality can be derived from

observation-based products (Fay and McKinley, 2021; Gloege et al.,

2021), while significant uncertainties in terms of higher and lower

frequency variability remain (Rödenbeck et al., 2015; Hauck et al., 2020;

Bennington et al., 2022).

New space-based observations of the column-integrated CO2

mole fraction, XCO2, from NASA’s Orbiting Carbon Observatory 2

(OCO-2) mission may provide a unique vantage to observe the

atmospheric imprint of IAV in air-sea CO2 fluxes. OCO-2 is

NASA’s first dedicated Earth remote sensing satellite to study

atmospheric carbon dioxide from space (Eldering et al., 2017). It

was designed to collect space-based measurements of atmospheric

CO2 with high precision and near-global coverage (Crisp et al.,

2012, 2017). Compared to surface in-situ CO2 observations, such as

from the NOAA greenhouse gas network, which is mostly sited in

coastal, island, and inland locations, OCO-2 can observe directly

over the open ocean, which may improve the spatiotemporal

attribution of ocean fluxes.

The research presented here leverages these two advances in

carbon cycle data products to answer the following scientific

questions: (1) What are the fingerprints of ocean carbon fluxes on

IAV of atmospheric CO2, and from what regions are these imprints

most prominent? (2) What differences emerge from different

observation-based products, and how large are these differences

compared to the IAV owing from atmospheric transport? (3) Is the

IAV signal from ocean fluxes detectible in column CO2 observed

from the state-of-the-art OCO-2 satellite? To answer these

questions, we run atmospheric transport simulations with

underlying air-sea fluxes from several observation-based products.

We use the output from these simulations to quantify the imprint of

regional and global sea-air CO2 fluxes on atmospheric CO2 IAV. As

a final step, we use OCO-2 observations of XCO2 to contextualize

the simulated ocean-driven XCO2 variations.
2 Data and methods

2.1 Datasets

2.1.1 Observation-based products fluxes
Gridded air-sea CO2 fluxes estimated from observation-based

products for near-global surface ocean pCO2 have been developed

from the same sparse in situ pCO2 data using a variety of

interpolation/mapping methods (Rödenbeck et al., 2015; Fay
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et al., 2021). For each product, the sea–air CO2 flux is calculated

through gas exchange parameterization, using calculated values of

the gas transfer velocity and the solubility of CO2 in seawater for

near-surface salinity and observed values of sea surface temperature

and dry air mixing ratio of atmospheric CO2. We use the Global

Carbon Budget (GCB; Friedlingstein et al., 2022) ocean fluxes from

2019 for three products that use different spatial interpolation

methods and provide the best temporal and spatial coverage over

the past 4 decades from 1982 to 2018, and then add a three year

extension analysis based on the GCB 2022 products. We use the

JENA product (Rödenbeck et al., 2014), which is obtained by fitting

a simple data-driven diagnostic model of ocean mixed-layer

biogeochemistry to surface-ocean CO2 partial pressure data from

the SOCAT database. Second, we use the Self-Organizing Map

Feed-Forward Neural Network (SOMFFN) product, which is based

on a combination of self-organizing maps (Landschützer et al.,

2013, 2014, 2016). Finally, we use the Copernicus Environment

Monitoring Service product (CMEMS; LSCE-FFNN-v1), which is a

two-step neural network model for the reconstruction of surface

ocean pCO2 over the global ocean (Denvil-Sommer et al., 2019). In

these networks of models, the information travels forward in the

neural network, through the input nodes then through the hidden

layers (single or multiple), and finally through the output nodes.

JENA has a resolution of about 4° × 5° spatially at daily time scale,

while SOMFFN and CMEMS are reported at 1° × 1° on a monthly

basis. For consistency among the three products, we averaged the

JENA ocean fluxes to monthly mean. Each product covers the

global ocean but excludes some coastal areas and/or the Arctic.

When comparing the three observation-based products, we only

include the flux regions that are in common among the three

products. For example, when comparing JENA global XCO2 with

SOMFFN and CMEMS XCO2, we only sum tracers from the flux

regions common to all three models. We omit the tracers from the

Far North and Far South to ensure that differences do not arise due

to spatial extent of the modeled fluxes.

We divide the ocean into 7 subregions (Figure 1) based on the

oceanic biome regions proposed by Fay et al. (2014)

(Supplementary Figure S1), defined by climatological criteria and

analyze these flux products (Supplementary Figure S2) aggregated

to the ocean subregions. Supplementary Figure S2 shows the annual

trends of the global integrated fluxes based on the three ocean

products. Oceanic biomes are classified from climatological sea

surface temperature, spring/summer chlorophyll-a concentrations,
FIGURE 1

The tracers defined for the tagged simulations based on ocean
biome regions in Fay et al., 2014.
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ice fraction, and maximum mixed layer depth (Fay et al., 2014). The

biome regions partition the surface ocean into regions of common

biogeochemical function and are consistent with a variety of

observational and modeling studies assessing air-sea CO2 fluxes

and primary productivity.

2.1.2 OCO-2 observations
We analyze IAV in dry air, column-average mole fraction XCO2

inferred from OCO-2 satellite observations. The OCO-2 observatory

was launched in July 2014 and has measured passive, reflected solar

near-infrared CO2 and O2 absorption spectra using grating

spectrometers since September 2014 (Eldering et al., 2017). XCO2

data are retrieved from the measured spectra using the Atmospheric

CO2 Observations from Space (ACOS) optimal estimation algorithm,

which is a full physics algorithm that solves for XCO2 and other

physical parameters, including surface pressure, surface albedo,

temperature, and water vapor profile in its state vector (O’Dell et al.,

2018). The satellite is in a polar and sun-synchronous orbit that repeats

every 16 days, with three different observing modes of OCO-2, namely

nadir (land only, views the ground directly below the spacecraft with

insufficient signal to noise over the ocean), glint (ocean and land, views

the spot with directly reflected sunlight resulting in a higher ocean

signal), and target (sites of specific interest, primarily for validation)

(Crisp et al., 2012, 2017). We use the version 10 OCO-2 Level 2 bias-

corrected XCO2 data product from 2014 September to 2022, (From

Goddard Earth Sciences Data and Information Services Center

Archive: https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/

summary), which has been validated with collocated ground-based

measurements from the Total Carbon Column Observing Network

(TCCON). After filtering and bias correction, the OCO-2 XCO2

retrievals agree well with TCCON in nadir, glint, and target

observation modes, and generally have absolute median differences

less than 0.4 ppm and RMS differences less than 1.5 ppm (O’Dell et al.,

2012; Wunch et al., 2017).

We characterize IAV from OCO-2 XCO2 in Guan et al. (2023).

In that analysis, we determined optimal spatiotemporal scales for

aggregating the observations to detect IAV variability in light of

other sources of error. We evaluated IAV signals against the

TCCON ground-truth network, confirming that the IAV inferred

from OCO-2 is robust given the small magnitude of IAV compared

to other sources of variance (Mitchell et al., 2023). Further, the

OCO-2 IAV timeseries show similar zonal patterns of OCO-2

XCO2 IAV timeseries compared to GOSAT space-based

observation and ground-based NOAA ESRL in situ data. The

analysis by Guan et al. (2023) validates that the OCO-2 satellite

provides new capabilities for discerning atmospheric XCO2 IAV.
2.2 Methods

2.2.1 GEOS-Chem simulations
We simulate atmospheric XCO2 generated by ocean carbon

fluxes using GEOS-Chem (Bey et al., 2001), an offline global

chemical transport model driven by meteorological input from

the Goddard Earth Observing System (GEOS) of the NASA
Frontiers in Marine Science 04
Global Modeling and Assimilation Office (GMAO) and developed

by an extensive global community of researchers. It has been widely

used for gas flux inversion and source attribution studies, including

for CO2, CH4, and CO (e.g., Nassar et al., 2010; Fisher et al., 2017).

We use the version 12.0.0 of GEOS-Chem, released in Aug 2018.

To simulate atmospheric CO2 fields from individual subregions,

we modify the GEOS-Chem code base to tag the source regions and

separately track different CO2 tracers originating from each region

(Lin et al., 2020). This approach is possible since CO2 is a passive

tracer that is not involved in atmospheric chemical reactions. In the

simulation, each CO2 tracer corresponds to the influence of ocean

CO2 fluxes from one tagged region, and the simulation using the

JENA product has two more tracers than SOMFFN and CMEMS

since the JENA product has slightly larger data coverage in both the

far North and the far South.

The meteorological inputs for GEOS-Chem come from the

Modern-Era Retrospective analysis for Research and Applications,

80 Version 2 (MERRA2) reanalysis. We run simulations for 1982-

2021 at 2° latitude by 2.5° longitude resolution with 47 vertical levels

up to 0.01 hPa on a hybrid eta (sigma-pressure) grid. The ocean flux

products were rescaled to 2° latitude by 2.5° longitude resolution

using the GEOS-Chem rescaling module. Convective transport in

GEOS-Chem is simulated with a single-plume scheme (Wu et al.,

2007) while boundary layer mixing in GEOS-Chem uses the non-

local parameterization (Lin and McElroy, 2010) which draws on the

mixing depths, temperature, latent and sensible heat fluxes, and

specific humidity. Although some bias in the vertical distribution of

CO2 has been shown in GEOS-Chem for northern high latitudes

(Schuh et al., 2019), similar tagged transport runs have been shown

to generally capture seasonal cycles in surface CO2 as well as

gradients between surface and mid-tropospheric CO2 across a

range of latitudes (Lin et al., 2020). The model is initialized with

a globally-uniform atmospheric CO2 mole fraction equal to 350

ppm and allowed to spin-up for 3-years using cyclostationary ocean

fluxes. Time-varying ocean fluxes are then applied beginning in

1982. We calculate XCO2 in the GEOS-Chem runs by integrating

the dry air mole fraction for the 47 model layers accounting for

pressure differences with height. Because we are interested in

isolating the impact of ocean-atmosphere CO2 exchange, we do

not simulate the imprint of either fossil or terrestrial biospheric CO2

exchange on XCO2.

In a sensitivity study, we isolate the impact of atmospheric

transport IAV, rather than air-sea flux IAV, on the resulting IAV in

XCO2. For this analysis, we simulate XCO2 from the seasonal

climatology of air-sea CO2 fluxes averaged over the 40-year

period of the GEOS-Chem simulation, maintaining time-varying

atmospheric transport from the MERRA2 reanalysis. Together with

the baseline experiment using time-varying air-sea fluxes and time-

varying transport, we can distinguish the effect of dynamical-driven

variation, flux-driven variation, and the combination of both.

2.2.2 Timeseries analysis
We characterize spatiotemporal patterns of OCO-2 detected

XCO2 by first aggregating OCO-2 observations to monthly averages

on a 5° by 5° grid equatorward of 45° and to a 5° by 10° grid
frontiersin.org
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poleward of 45° from 2014.08 (August) to 2021, which overlaps

with the simulation time period. Our analysis shows that averaging

XCO2 observations at these scales minimizes the effect of retrieval

error and mitigates influences caused by missing measurements due

to cloud cover in the tropics and weak winter sunlight in polar

regions (Guan et al., 2023). We similarly aggregate GEOS-Chem

model output at this scale when compared to OCO-2. We use a

consistent process to calculate IAV from the OCO-2 XCO2

(Equation 1), and GEOS-Chem XCO2 (Equation 2), but we note

that we must account for an additional term in the multi-decadal

GEOS-Chem simulations since curvature in the long-term

atmospheric growth trend must be taken into account. The

methodology is based on approaches used in Keppel-Aleks et al.

(2014) and NOAA curve fitting methodology (Thoning et al., 1989).

IAVOCO−2(x, y, t) 

=  Raw(x, y, t)  –  Trend(x, y, t)  −  Seasonal(x, y,m) (1)

IAVGEOS−Chem(x, y, t) 

=  Raw(x, y, t)  –  Trend(x, y, t) −Multi − Decadal (x, y, t)

−  Seasonal(x, y,m) (2)

In these equations, (x,y) denotes a specific gridcell, t denotes a

specific time, and m denotes a monthly average. We first fit a third-

order polynomial to the Raw timeseries to calculate the trend at each

location. For the GEOS-Chem simulation, since polynomial fitting

does not fully capture the long-term trend over multiple decades, we

apply a Fast Fourier Transform 10-year low-pass filter to remove

decadal-scale variability. We calculate a mean seasonal cycle by taking

the average value of all January, February, etc. data after removing the

long-term trends. Finally, we remove the mean seasonal cycle from

the detrended timeseries at each gridcell to obtain the IAV anomaly

timeseries. We calculate the IAV amplitude as the standard deviation

of the IAV anomaly timeseries. An identical method is used to

calculate IAV from the gridded fluxes.
3 Results

Figure 2 shows the global distribution of air-sea CO2 flux IAV

amplitude (calculated as the standard deviation of IAV anomalies)

over 40 years from 1982 to 2021 in the observation-based products.

The three observation-based products show broadly similar

magnitudes and spatial patterns in air-sea flux IAV in the

Northern Hemisphere and Southern Hemisphere low to mid

latitudes (Supplementary Figure S3). The flux IAV amplitude is

highest over the northern midlatitude ocean, Eastern Pacific, and

Southern Ocean, with the largest inter-product differences in the

northern hemisphere. In the Southern Hemisphere, the zonally

integrated air-sea flux IAV is largest at 60°, around 0.6-0.7 mol m-2

y-1. The flux IAV decreases by almost a factor of three in the

subtropical regions in both hemispheres to around 0.2 mol m-2 s-1.

The large zonal IAV and the small zonal standard deviation around

a latitude circle in the Southern Ocean, especially for SOMFFN and

CMEMS (shading in Figures 2D, F), is due to the fact that in the
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Northern Hemisphere, though there is larger flux IAV amplitude

(solid blue line in Figures 2D–F), there is also more variability from

gridcell to gridcell (shaded blue area in Figures 2D–F). Thus, the

gridcell-level variability partially cancels when integrated around a

latitude band, leading to a smaller northern ocean impact on

atmospheric XCO2. Consequently, the Southern Hemisphere has

a bigger imprint of atmospheric XCO2 IAV, as we will show below.

The XCO2 timeseries simulated from global air-sea fluxes (i.e.,

the sum of all tagged regions) shows IAV that ranges from +/-0.2

ppm for JENA (Figure 3) with smaller variations from +/-0.1 ppm

for SOM-FFN and CMEMS. The IAV from the products is small

compared with the OCO-2 XCO2 IAV (Guan et al., 2023). Both

spatially averaged timeseries (Figure 3) and maps of IAV

(Supplementary Figure S4) are notably different across the three

observation-based flux products when propagated through an

atmospheric transport model. The simulated XCO2 from JENA is

different compared to that derived from the other two observation-

based flux products, due to differences especially in the Southern

Hemisphere fluxes. We note, however, that XCO2 simulated from

any one flux product is generally coherent across latitude bands.

The corresponding globally averaged XCO2 IAV amplitude is about

0.11 ppm for JENA, but less than 0.07 ppm for SOMFFN and

CMEMS (Figures 4A–C). Each data product shows the ocean-

driven XCO2 IAV amplitude largest over the tropical Pacific and

the Southern Ocean. When the IAV amplitude is calculated for the

period from September 2014 to 2021, the overlapping period

between OCO-2 observations and observation-based products, the

amplitude is similar for SOMFFN and JENA (around 0.12 ppm

globally averaged), and similar for CMEMS (around 0.08 ppm). The

difference in simulated IAV for a given observation-based product

calculated across two different time periods suggests that the ocean

may leave a larger imprint on XCO2 IAV in recent years compared

to historical averages.

The Southern Hemisphere oceanic regions are the dominant

contributors to XCO2 IAV across the three models. We calculated

the XCO2 IAV amplitude arising separately from each regional

tracer, then determined the region that contributes the largest and

second largest IAV amplitude to each global atmospheric gridcell

(left-hand column of Figure 5 and Supplementary Figures S5–7).

Across all three models, the Southern Hemisphere low- and mid-

latitude regions are the primary contributors to IAV over 70-95% of

the global area (Table 1), including large swaths of the Northern

Hemisphere for SOMFFN and CMEMS. In fact, the SOMFFN

simulation shows that Northern Hemisphere ocean regions are

not a dominant contributor to XCO2 IAV even locally. In contrast,

the XCO2 IAV from the simulation with JENA and CMEMS fluxes

show a modest contribution from the Northern Hemisphere, with

the mid latitude region emerging as the dominant contributor to

about 15% of the global area. The dominant region in each gridcell

accounts for up to 60% of the atmospheric XCO2 IAV amplitude for

CMEMS (Figure 5F), and roughly 35-50% of the IAV amplitude for

SOMFFN and JENA (Figures 5B, D), suggesting more equable

contributions from different regions. The second most-dominant

contributors to atmospheric CO2 IAV are similarly the Southern

Hemisphere, or tropics or Northern Hemisphere mid-latitude

across all three ocean-flux-GEOS-Chem simulations (Table 2).
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Not all IAV in XCO2 arises from IAV in local surface fluxes;

IAV in patterns of atmospheric transport is also an important

contributor to XCO2 IAV. We calculate the relative contributions of

ocean flux variability and IAV in atmospheric transport from

GEOS-Chem simulations with climatological monthly-mean

cyclostationary ocean CO2 fluxes as surface boundary conditions.

IAV in these simulations arises only from IAV in atmospheric

transport acting on the spatial gradients in XCO2 set up by the

climatological annual cycle of ocean air-sea CO2 exchange. All three

products show nearly identical spatial patterns in the XCO2

amplitude arising from cyclostationary air-sea CO2 fluxes

(Figures 6A–C), suggesting that seasonal flux patterns result in

similar atmospheric gradients (Landschtzer et al., 2023) across the

three models. The western Pacific warm pool is a hotspot for

dynamics-driven variability, likely due to ENSO-driven changes
Frontiers in Marine Science 06
in atmospheric transport, and this region has an IAV amplitude of

0.07-0.08 ppm across all three simulations. Given the large

variability in the magnitude of IAV among SOMFFN, JENA, and

CMEMS (Figure 4), the ratio of dynamics-driven variations to total

IAV diverged among the ocean-flux-GEOS-Chem simulations

(Figures 6D–F). For SOMFFN and CMEMS, which showed

smaller IAV when driven with interannually varying fluxes,

transport contributes about 50% of IAV in the Southern

Hemisphere subtropics and subpolar regions, and 50-80% of IAV

in the tropics and high latitudes of both hemispheres. For JENA,

which had high IAV in the full simulations (Figure 4B), transport

contributes less than 20% of total IAV except in the tropical Pacific,

where it contributes 50%.

In the atmospheric transport simulations with cyclostationary

fluxes, the Southern Hemisphere mid-latitude region is the
B
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A

FIGURE 2

Map of ocean flux IAV amplitude (A–C) and latitudinal profile of zonal mean flux IAV amplitude (D–F). More intense colors signify more IAV while
lighter colors indicate lower IAV regions. The IAV amplitude is calculated from the standard deviation of the IAV timeseries. The zonal mean IAV is
obtained by averaging the IAV timeseries for all longitudes within the specified latitude band, while the shading shows the standard deviation of the
IAV timeseries among all longitudes, indicating the coherence of flux IAV around a latitude circle. (A, D) show results for SOMFFN; (B, E) show results
for JENA and (C, F) show results for CMEMS (E, F) product.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1272415
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guan et al. 10.3389/fmars.2024.1272415
dominant contributor to IAV for about 60% to 96% of the global

area. Consistent across the three observation-based products, the

second dominant contributor is the Southern Hemisphere low-

latitude region. These results suggest that IAV in transport interacts

most strongly with atmospheric gradients set up by Southern

Hemisphere fluxes. JENA and CMEMS show that the Northern

Hemisphere mid latitude regions are also important contributors

when run with cyclostationary fluxes, and are the dominant

contributor to roughly 15% to 25% of the global area. Figure 7

shows that in the cyclostationary simulations, the influence of

Northern and Southern Hemisphere regions are more localized to

the originating hemisphere. Taken together with the results from

the time-varying fluxes, these results suggest that IAV in the

Southern Hemisphere fluxes is synergistic with IAV from

atmospheric transport, whereas, in the Northern hemisphere, IAV

in the fluxes counteracts the IAV due to transport alone.
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The ocean-driven XCO2 IAV simulated by the three

observation-based products is largely unrelated to observed

patterns of IAV as observed by OCO-2, which includes other

sources of IAV. The OCO-2 IAV amplitude, which is of order 1

ppm for the 2014-2021 period, was an order of magnitude larger

than that simulated from any of the three-ocean observation-based

products which is of order 0.1ppm (Figures 4, 8). A possible

explanation could be that the OCO-2 observations contain the

imprint not only of ocean fluxes but also land and fossil emissions.

The OCO-2 XCO2 IAV amplitude, calculated as the standard

deviation of the IAV timeseries, suggests that XCO2 interannual

variability over ocean basins is smaller than that over continents

(around 0.4 ppm vs 1.2 ppm; Figure 8), although this may be due to

larger error variance due to complex topography and land surface

albedo variations (Guan et al., 2023; Mitchell et al., 2023). We

calculate the correlation coefficient, slope, and fractional ratio
B

C

D

A

FIGURE 3

Ocean XCO2 IAV timeseries averaged for zonal bands from three different observation-based products. (A) 20 – 60°N, (B) 0 – 20°N, (C) 0 – 20°S,
(D) 20 – 60°S. The background shading indicates the Multivariate ENSO Index (MEI), which is positive during El Niño phases.
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B C

D E F

A

FIGURE 4

Ocean XCO2 IAV amplitude based on simulation from 1982 to 2021 (top row) and during the period of overlap with OCO-2 (September 2014
through the end of 2021) (bottom row) using (A, D) SOMFFN (B, E) JENA and (C, F) CMEMS ocean observation-based products as input surface CO2

fluxes to GEOS-Chem atmospheric transport runs.
B

C D

E F

A

FIGURE 5

The most influential ocean subregions at different locations based on simulations from 1982 to 2021 with time-varying (A) SOMFFN, (C) JENA, and
(E) CMEMS fluxes. The dominant tracer is identified by calculating the XCO2 IAV amplitude for each gridcell caused by a single tracer and then
ranking them. The fraction of the overall IAV amplitude accounted for by the dominant tracer is shown in the right-hand column for (B) SOMFFN,
(D) JENA, and (F) CMEMS.
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between simulated XCO2 IAV and OCO-2 XCO2 IAV (Figure 9,

Supplementary Figure S8) at the gridscale to explore where the

imprint of the ocean might be detectible. Over most of the planet,

the observed XCO2 IAV is only weakly correlated with the XCO2

IAV simulated from ocean fluxes, with many regions showing a

slight negative correlation. These correlations are generally not

statistically significant, with p>0.05. Simulations from the three

different flux products show different meridional patterns of

correlation, with JENA simulations showing slight positive

correlations within the tropics and CMEMS showing slight

positive correlations in the Southern Hemisphere, although we

note these relationships are not statistically significant. Across all
Frontiers in Marine Science 09
regions, the slope between the observed and simulated XCO2 IAV is

less than 0.2 units? (Figures 9D–F), consistent with the magnitude

of the observed IAV being dominated by terrestrial signals. The

maps of correlations and slopes suggest that detecting ocean IAV

directly from space-based measurements is challenging given other

sources of variability. Disentangling these multiple impacts to

differentiate between plausible ocean flux products, such as the

three analyzed here, will require a combination of observations

and modeling.

Previous analysis of OCO-2 observations over the tropical

Pacific suggested that space-based observations can detect an

ocean-driven decrease in XCO2, potentially as large as 0.5 ppm,
TABLE 1 The percentage of global area or global gridcells for which each ocean flux region is the dominant driver of IAV in simulations with time-
varying ocean fluxes and time-varying atmospheric transport.

Flux Contribution Percentage
of Global

NH
high-lat

NH
mid-
lat

NH
low-lat

Equatorial SH
low-lat

SH
mid-lat

SH
high-lat

SOMFFN 1st contributor Area 1% 3.2% 4.8% 91%

Gridcells 1.6% 2% 3.1% 93.3%

2nd contributor Area 25.9% 2.2% 3.8% 48.1% 7.2% 12.8%

Gridcells 33.2% 1.5% 2.5% 35.5% 5.5% 21.8%

JENA 1st contributor Area 12.1% 18.2% 1% 54.3% 14.4%

Gridcells 22.6% 14.2% 0.6% 37.6% 25%

2nd contributor Area 3.6% 15.7% 2% 28% 50.7%

Gridcells 3.4% 25% 1.3% 34.7% 35.6%

CMEMS 1st contributor Area 16.4% 1.4% 5.9% 12.3% 64%

Gridcells 25.5% 0.9% 3.8% 8% 61.8%

2nd contributor Area 13.4% 2.6% 3.4% 47.1% 30.9% 2.6%

Gridcells 11.3% 1.7% 2.2% 46.3% 34.9% 3.6%
f

TABLE 2 Same as Table 1, except for simulations with cyclostationary ocean fluxes and time-varying atmospheric transport.

Products Contribution Percentage
of global

NH
high-lat

NH
mid-
lat

NH
low-lat

Equatorial SH
low-lat

SH
mid-lat

SH
high-lat

SOMFFN 1st contributor Area 1% 3% 96%

Gridcells 0.6% 1.9% 97.4%

2nd contributor Area 42.6% 3.4% 50.5% 3.5%

Gridcells 45.2% 2.1% 50.4% 2.3%

JENA 1st contributor Area 16.3% 6.2% 2.9% 74.6%

Gridcells 23% 3.9% 1.9% 71.2%

2nd contributor Area 30.5% 2.3% 45.7% 21.5%

Gridcells 25.5% 1.5% 46.7% 26.3%

CMEMS 1st contributor Area 25.8% 6% 10.2% 58%

Gridcells 31.2% 3.8% 6.7% 58.3%

2nd contributor Area 16.9% 0.2% 4.8% 45.4% 32.5% 0.2%

Gridcells 14% 0.1% 3.1% 46.9% 35.6% 0.3%
r
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during the initial phases of the strong 2015 El Niño (Chatterjee

et al., 2017). Our simulations show that atmospheric XCO2

decreases over the Nino 3.4 region during the strong 1997-1998

El Niño (by about 0.3 ppm), but show a weaker decrease (about

0.1ppm) during 2015-2016 El Niño. The decrease in the

atmospheric XCO2 IAV timeseries corresponds to the reduced

ocean outgassing over the Niño 3.4 region (up to 1.5 mol/m2/y)

(Figure 10), which is roughly similar between the two El Niño

periods and leads to similar decreases in the tropical XCO2 tracer

(Supplementary Figure S9). During the strong 1997-98 El Niño,

however, a temporary reduction in Northern Hemisphere CO2

outgassing also reduced XCO2 over the Niño.4 region, amplifying

the apparent response (Supplementary Figure S9). As expected,

XCO2 anomalies during the two El Niño events are mainly driven

by changes in the air-sea CO2 flux rather than changes in the

atmospheric circulation (Supplementary Figure S10). However,

these flux-driven anomalies are small (less than +/- 0.03 ppm).

Our simulations suggest that even during strong El Niño events,

detecting the direct atmospheric imprint of changes in ocean

outgassing within the tropics will be challenging given the small

direct signal predicted from all three observational flux products,

compounding variability from other ocean and terrestrial regions,

and retrieval uncertainties in XCO2.
Frontiers in Marine Science 10
4 Discussion

We simulate ocean-driven IAV in atmospheric CO2 based on

three estimates of air-sea CO2 fluxes from interpolated observation-

based products. Although these observation-based products all use

the same ocean pCO2 data to estimate gridded fluxes and show

largely similar spatial patterns offlux IAV, they result in very different

estimates of atmospheric XCO2 IAV over the 40 year period from

1982-2021 (Figures 3, 4A–C). The inter-model spread was much

reduced when looking at the four years from 2014-2021 overlapping

with OCO-2 observations (Figures 4D–F). Our results largely

corroborate the results from Nevison et al. (2008), who showed a

small imprint for the ocean on atmospheric CO2 IAV. Our results

show that even in the remote Southern Ocean, which shows large

IAV in the fluxes, the atmospheric IAV signature imparted by the

ocean is small.

Further, our simulations show that up to 80 percent of the IAV

of the IAV in atmospheric XCO2 results from IAV in atmospheric

transport acting on atmospheric gradients derived from

cyclostationary ocean fluxes (Figure 6), not from IAV in the

ocean fluxes themselves. The three observation-based products

showed a very similar pattern of transport-induced IAV, with the

dominant spatial contributors (SH low-lat and SHmid-lat) showing
B

C

D

E

F

A

FIGURE 6

The ocean XCO2 IAV amplitude from transport-only simulations based on (A) SOMFFN, (B) JENA, and (C) CMEMS. The ratio of total IAV generated by
transport alone for (D) SOMFFN, (E) JENA, and (F) CMEMS.
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high consistency among the three data products (Table 1). This is

somewhat expected, since the MERRA/GEOS-Chem atmospheric

transport patterns were common among all three simulations, but

also requires that the three observation-based products provide

similar mean spatial seasonal patterns in oceanic CO2 fluxes

(Supplementary Figure S11).

Our study shows that atmospheric XCO2 IAV is affected most

strongly by air-sea CO2 fluxes in the Southern Hemisphere

(Figure 7), although the observation-based products show

tradeoffs between the Southern Hemisphere low- and mid-

latitude regions in terms of which region dominates. In the

simulations with time-varying air-sea fluxes, the Southern

Hemisphere, and to a lesser extent the tropics, dominate ocean-

driven XCO2 IAV even in the Northern Hemisphere. This pattern

generally holds in the simulations with cyclostationary fluxes,

although the Northern Hemisphere regions have a relatively

larger contribution.

Given the small signature of ocean fluxes on atmospheric XCO2

IAV, attributing ocean-induced IAV based on space-based

observations will be challenging. Mitchell et al. (2023) provide a
Frontiers in Marine Science 11
detailed assessment of time and space scales of variation in OCO-2

XCO2 over North American land and coastal ocean using a

geostatistical approach. They identify synoptic scale variations as

contributing up to 2 ppm2 variance, mesoscale transport, and

correlated error as contributing up to 1 ppm2 variance, and

random noise as up to 1 ppm. Given that our simulations suggest

the imprint of ocean IAV is less than 0.1 ppm, these results suggest

that directly observing ocean IAV is not possible with the current

technology for space-based remote sensing of atmospheric CO2.

Rather, XCO2 observations will require precision better than 0.1

ppm, or 0.025% on a ~400 ppm background to detect and attribute

ocean-driven variation.

Furthermore, because transport is an important contributor to

the patterns of atmospheric CO2 IAV, using methods such as

atmospheric inversions to back out ocean fluxes in an optimal

estimation framework requires fidelity in atmospheric transport

modeling (Schuh et al., 2019). Here, patterns of atmospheric

transport-induced IAV from cyclostationary air-sea CO2 fluxes

(Figure 6) are similar because all flux products were transported

through the same GEOS-Chem transport model. The choice of a
B

C D

E F

A

FIGURE 7

The most influential ocean subregions at different locations based on simulations with cyclostationary (A) SOMFFN, (C) JENA, and (E) CMEMS ocean
fluxes. The dominant tracer is identified by calculating the XCO2 IAV amplitude for each gridcell caused by each region and then ranking them. The
fraction of the overall IAV amplitude accounted for by the dominant region is shown in the right-hand column for (B) SOMFFN, (D) JENA, and
(F) CMEMS.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1272415
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guan et al. 10.3389/fmars.2024.1272415
different transport model would likely result in different spatial

patterns, albeit with a similarly small magnitude compared to the

IAV amplitude of the observations.

During the four years from 2014-2021 overlapping with OCO-2

observations, all three observation-based flux products show amulti-year
Frontiers in Marine Science 12
decrease in the net ocean flux. There is low correspondence between the

simulated XCO2 IAV driven by ocean fluxes with total IAV detected

from OCO-2. We hypothesize that multi-decadal variability in air-sea

CO2 fluxes may be more detectable in atmospheric XCO2 than the year-

to-year variability presented here, but testing this hypothesis requires

ongoing space-based observations of XCO2.

Our results temper the optimistic results from Chatterjee et al.

(2017), who showed that a large ocean flux signal could be discerned

from space-based XCO2 data. Our study shows that the Southern

Hemisphere oceans were the largest ocean-driven XCO2 IAV in our

simulations (Figure 4), and that tropical Pacific that was most

sensitive to IAV in atmospheric transport (Figure 6).

Nevertheless, all three ocean products we analyze suggest a smaller

XCO2 IAV than what was observed for the 2015-16 El Niño. These

results suggest that flux anomalies associated with changing modes in

ocean oscillations in other basins may impart smaller variations in the

atmosphere that are difficult to detect using OCO-2 or a similar satellite.
5 Conclusions

We evaluate the imprint that air-sea CO2 fluxes from the whole

ocean and different oceanic subregions leave on the atmospheric

XCO2 interannual variation. We simulate ocean-driven XCO2 using
FIGURE 8

Observed OCO-2 XCO2 IAV amplitude, determined as the standard
deviation of the IAV timeseries. Data equatorward of 45° are
averaged at 5° by 5° resolution, and data poleward of 45° are
averaged at 5° by 10° resolution based on Guan et al. (2023).
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FIGURE 9

(A–C) The correlation coefficient between simulated ocean XCO2 IAV and OCO-2 IAV for (A) SOMFFN, (B) JENA, and (C) CMEMS data products. (D-
F) The ratio of IAV amplitude between simulated oceanic XCO2 IAV and OCO-2 XCO2 IAV, for (D) SOMFFN, (E) JENA, (F) CMEMS.
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the GEOS-Chem atmospheric transport model and air-sea CO2

fluxes estimated from observation-based surface pCO2 products

and compare against the observed total XCO2 IAV based on OCO-

2 column-mean CO2 observation from late 2014 to 2022. The ocean-

driven IAV amplitude (standard deviation) in atmospheric XCO2

caused by air-sea CO2 exchange and IAV in atmospheric transport is

generally between 0.08 and 0.12 ppm. While this magnitude is up to

40% of the total IAV in OCO-2 XCO2 over the tropical and

subtropical ocean basins, it is well below random noise in

individual OCO-2 soundings and systematic errors in the satellite

observations themselves. These results indicate that direct

observation of air-sea CO2 flux variations from total column XCO2

would be very challenging with current space-based sensors.
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FIGURE 10

Ocean IAV timeseries averaged over the Niño 3.4 region for three years centered on two strong El Niño events: 1997-1998 in blue; 2015-2016 in
black. Year 1 and Year 3 are shaded blue, and Year 2 is shaded with green. Left Column shows the Ocean Flux IAV whereas the right column shows
the simulated ocean XCO2 IAV. (A, D) SOMFFN, (B, E) JENA, (C, F) CMEMS.
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