
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Leslie New,
Ursinus College, United States

REVIEWED BY

Todd Atwood,
U.S. Geological Survey, United States
Denys Yemshanov,
Natural Resources Canada, Canada
Stephanie Snyder,
Northern Research Station(USDA),
United States

*CORRESPONDENCE

Megan C. Ferguson

megan.ferguson@noaa.gov

SPECIALTY SECTION

This article was submitted to
Marine Conservation and Sustainability,
a section of the journal
Frontiers in Marine Science

RECEIVED 04 June 2022

ACCEPTED 28 February 2023
PUBLISHED 21 March 2023

CITATION
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Place-based approaches to marine conservation identify areas that are crucial to

the success of populations, species, communities, or ecosystems, and that may

be candidates for special management actions. In the United States, the National

Oceanic and Atmospheric Administration defined Biologically Important Areas

(BIAs) for cetaceans (whales, dolphins, and porpoises) as areas and periods that

individual populations or species are known to preferentially use for certain

activities or where small resident populations occur. The activities considered to

be biologically important are feeding, migrating, and activities associated with

reproduction. We present an approach using spatial optimization to refine the

BIA delineation process to be more objective and reproducible for conservation

planners and decision makers who wish to use various spatial criteria to address

conservation or management objectives. We present a case study concerning

feeding bowhead whales (Balaena mysticetus) and bowhead whale calves in the

western Beaufort Sea to illustrate themechanics and benefits of our optimization

model. In the case study, we incorporate spatial information about whales’

relative density and optimally delineate BIAs under different thresholds for

minimum patch (cluster) size and total area encompassed within the BIA

network. Results from our case study showed three consistent patterns related

to minimum cluster size (contiguity) and maximum area threshold for both BIA

types and all months: (1) cells with the highest whale density were selected when

contiguity or maximum area thresholds were small; (2) for a given area threshold,

the number of whales inside BIAs was inversely proportional to cluster size; and

(3) the number of whales inside BIAs initially increased rapidly as the area

threshold increased, but eventually approached an asymptote. Additionally,

information on temporal variability in a BIA may influence the development of

conservation, management, monitoring, or mitigation methods. To provide

additional insight into the ecological characteristics of the BIAs selected during
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the optimization step, we quantified inter-annual variability in whale occurrence

and density within individual BIAs using statistical techniques. The bowhead

whale BIAs and associated information that we present can be incorporated with

other relevant information (e.g., objectives, stressors, costs, acceptable risk, legal

constraints) into conservation and management decision-making processes.
KEYWORDS

Beaufort Sea, marine spatial planning, place-based conservation, reserve design,
Bering-Chukchi-Beaufort Seas bowhead whale, Western Arctic bowhead whale, inter-
annual variability
1 For example: Federal Register / Vol. 86, No. 75 / Wednesday, April 21,

2021 / Rules and Regulations, beginning on page 21082: Endangered and

Threatened Wildlife and Plants: Designating Critical Habitat for the Central

America, Mexico, and Western North Pacific Distinct Population Segments of

Humpback Whales.
1 Introduction

Anthropogenic activities in the marine environment are

increasing in number, geographic extent, and often duration,

resulting in increased potential risk to marine ecosystems

worldwide. Due to the rapid rate of ecological changes occurring

in sensitive ecosystems such as the Arctic, there is an urgency in

making conservation and management decisions on where and

when to allow human activities and how to minimize or mitigate the

effects of those activities on marine species. Our goal is to address

the critical first step in this decision-making process: developing a

structured, repeatable site selection framework that can incorporate

spatial and temporal characteristics of a marine species based on

purely ecological information.

Place-based approaches tomarine conservation andmanagement

have the potential to increase the protection of marine species within

the overarching framework of systematic marine spatial planning (di

Sciara et al., 2016). Marine spatial planning may be defined as “a

process of analyzing and allocating parts of three-dimensional marine

spaces to specific uses, to achieve ecological, economic, and social

objectives that are usually specified through the political process”

(Ehler and Douvere, 2007). Efforts to identify marine areas that meet

specific ecological criteria include Canadian Ecologically or

Biologically Significant Marine Areas (EBSAs; DFO, 2004), UN

EBSAs (Dunn et al., 2014; Johnson et al., 2018), Australian

(Commonwealth of Australia, 2014) and United States (US)

(Ferguson et al., 2015b) Biologically Important Areas (BIAs), Key

Biodiversity Areas (KBAs; IUCN, 2016), and Important Marine

Mammal Areas (IMMAs; IUCN Marine Mammal Protected Areas

Task Force, 2018), among others. These place-based approaches were

designed to be transparent and provide numerous benefits to

ecosystems, natural resource conservation and management,

economics, and society. Cetaceans (whales, dolphins, and

porpoises) pose challenges to conservation and management efforts

due to (1) the dynamic nature of marine environments; (2) the

species’ vast geographic ranges, which often cross jurisdictional

boundaries; and (3) the potential for far-reaching socioeconomic

implications of associated conservation and management decisions.

Some conservation protocols directly consider socioeconomic factors

in their delineation criteria (e.g., KBAs, and US Endangered Species

Act (ESA) Critical Habitat designations).
02
In the US, the National Oceanic and Atmospheric

Administration (NOAA) undertook an expert elicitation process

in 2011 to identify BIAs for 24 cetacean species, populations,

or stocks in seven regions within US waters using data collected

through 2012 (Ferguson et al., 2015b; https://oceannoise.noaa.gov/

biologically-important-areas). The second round of the BIA

delineation and scoring process, known as BIA II, is underway.

For a comprehensive overview of the BIA delineation and scoring

methods and intended use, see Harrison et al. (2023); we provide a

concise summary here. For simplicity, hereafter “species” is used to

refer to species, populations, or stocks and “BIA” implies NOAA’s

BIAs. BIAs delineate areas and periods that individual species are

known to preferentially use for certain activities or where small

resident populations are found. For this purpose, the activities

considered to be biologically important are feeding, migrating,

and activities associated with reproduction, such as mating, giving

birth, and calf rearing. BIAs do not include buffer zones, which are

defined as areas outside the species’ known concentration area that

serve to enable a precautionary approach to management or to

provide a gap between the animals and adjacent anthropogenic

activities. NOAA’s BIA delineation criteria do not consider

socioeconomic factors and BIAs have no inherent or direct

regulatory power. A BIA represents the best available ecological

information about a species.

BIAs can be considered in regulatory and management

decisions under existing authorities to minimize or mitigate the

impacts of anthropogenic activities on cetaceans and to achieve

conservation goals. BIAs have been used in US stock assessments

(e.g., Muto et al., 2020), management decisions1, and impact

analyses, such as those required for offshore energy and military

activities under the ESA, US Marine Mammal Protection Act

(MMPA), and National Environmental Policy Act (NEPA). In

addition to providing input into marine spatial planning efforts,

BIAs may identify information gaps and help to prioritize future
frontiersin.org
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research and modeling efforts to better understand cetaceans, their

habitat, and ecosystems.

In contrast to many products derived through marine spatial

planning such as marine reserve designs, BIA designation is an

abstract tool intended to highlight specific areas and periods that are

preferentially and fundamentally important to a species. Given the

purely ecological criteria for BIA delineation, assigning costs to

alternative delineations is neither straightforward nor required. In

practice, however, there likely is a maximum total area that can be

allocated to BIAs: if the entire ocean is designated as a BIA, the

value of designation might be deflated.

The BIA delineation process shares three essential questions

that are also relevant to reserve design (Carr et al., 2003): How large

should an area be? How many areas should there be? Where should

the areas be located? The answers to these questions depend on the

spatial and temporal scales and associated variability of the

ecosystem components, and on the characteristics of each species.

The answers are also influenced by the methods used to observe the

species and analyze existing information about the species. These

are questions that may be definitively answered with combinatorial

optimization methods; they cannot be definitively answered with

statistical analyses.

To identify specific areas and periods in which a species

undertakes biologically important activities, we often rely on

making inference from a sample of information about a species,

representing only a fraction of its range and moments in time. It is

difficult to directly observe cetaceans, especially large whales,

because they spend most of their time underwater. Furthermore,

the type, quantity, and quality of data available to delineate BIAs

varies by species, region, and period. In the first BIA delineation

process (van Parijs et al., 2015), experts determined geographic

boundaries for BIAs primarily by drawing polygons around data

derived from various sources, including aerial and vessel-based line-

transect, non-systematic, and photo-identification surveys; shore-

based surveys; satellite telemetry; historical whaling records; passive

acoustic monitoring; opportunistic observations; and spatially

explicit density surface models (e.g., Clarke et al., 2015; Ferguson

et al., 2015a; Ferguson et al., 2015b; Ferguson et al., 2015c).

Although thoroughly documented, the methods were relatively

subjective and lacked repeatability.

For some species in certain regions and periods, sufficient data

exist to estimate the relative or absolute density of individuals

engaged in specific activities. This is the case for the Western Arctic

stock of bowhead whales (Balaena mysticetus) in the western

Beaufort Sea, which was studied using aerial line-transect surveys

every autumn from 1979 to 2019 and summer from 2012 to 2019

(Clarke et al., 2020). Western Arctic bowhead whales undertake

annual migrations from wintering areas in the Bering Sea, through

the Bering Strait to the Chukchi Sea in spring (Moore and Reeves,

1993; Citta et al., 2021). Most whales continue eastward past Point

Barrow and spend the summer feeding in the eastern Beaufort Sea

and Amundsen Gulf, although some whales are found in the

western Beaufort Sea during summer (Ferguson et al., 2021). In

late summer or autumn, most whales migrate westward across the

western Beaufort Sea, back through the Chukchi Sea, completing

their annual cycle in the Bering Sea. This stock is listed as
Frontiers in Marine Science 03
endangered under the ESA and depleted under the MMPA. It is

also a valued spiritual, cultural, nutritional, and economic resource

for Alaska Natives (Braund et al., 2018).

The goal of this paper is to introduce a combinatorial

optimization method, integer programming, as an objective and

repeatable modeling framework that allows the incorporation of a

variety of spatial criteria in the marine BIA delineation process.

These spatial criteria can include contiguity, connectivity,

dysconnectivity, proximity, external edge-to-area ratio, or total

area. While many spatially-explicit models for finding an exact

(i.e., global) optimal solution (Possingham et al., 1993; Underhill,

1994) have been proposed for terrestrial reserves in the refereed

literature (e.g., Önal and Briers, 2002; Fischer and Church 2003;

Önal and Briers, 2003; Önal and Briers, 2005; Önal and Briers, 2006;

Snyder et al., 2007; Marianov et al., 2008; Önal and Wang, 2008;

Tóth et al., 2009; St. John et al., 2018; Yemshanov et al., 2019;

Yemshanov et al., 2020), similar combinatorial models for spatial

marine reserves are largely lacking (although see e.g., Rassweiler

et al., 2012). In contrast to methods that use spatial smoothing

functions to identify marine important or core areas based on

predicted species densities (Clarke et al., 2020) or utilization

distributions (i.e., probability densities; Citta et al., 2015), our

proposed model can capture both observed species densities and

the desired spatial contiguity of the resulting BIAs, and the solution

may be found in practical time.

The premise of this study is that introducing combinatorial

optimization methods such as integer programming to marine site

selection has the potential to change how we manage our oceans.

Integer programming is a prescriptive modeling approach that can

identify proven optimal sets of conservation or management actions

given quantitative objectives, criteria, and constraints. Integer

programming can complement descriptive, statistical modeling

approaches such as kernel density estimation (KDE) or resource

selection functions (RSFs) in ecology. As an example of the

flexibility of prescriptive models, they may input raw count data,

simple summary statistics, or the outputs of statistical tools like

KDE (e.g., O’Brian et al., 2012) or RSFs that attempt to describe the

system that we wish to optimize.

An important distinction exists between the concept of

connectivity vs. minimum or maximum contiguity in the context

of spatial reserve design. Unlike in Jafari et al. (2017) or Conrad

et al. (2012), our study does not concern a fully connected network.

One reason for this choice is that fully connected networks are more

expensive than those where the connectivity restriction is relaxed

and only some minimum contiguity threshold is enforced. Thus, the

connectivity problem tackled in the above papers is markedly

different from the contiguity problem that we present here. In

Jafari and Hearne (2013), a modified formulation of the max flow

problem is proposed in which the number of contiguous regions

that is desired can be controlled with a constraint. However, the

question remains: how does one decide the number of contiguous

regions that would be optimal? While one could start with one

region and sequentially increase the number of regions by one until

the total number of cells is reached, and then determine which

scenario would be feasible and produce the highest objective

function value, this strategy would require potentially solving as
frontiersin.org
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many integer programs as there are cells on the landscape. Lastly,

Yoshimoto and Asante (2018) proposes a way to decompose a

graph representation of a landscape (a network of nodes and arcs)

using the max flow problem, but they solve a third type of problem

that is distinctly different from ours. Their model addresses a

forestry problem in which adjacent forest stands, represented by

polygons, can be harvested simultaneously (or within a specific

timeframe called a green-up period) as long as the combined areas

do not exceed a predefined limit. This area limit is what can be

conveniently represented as the max flow in their network

formulation. However, in our present problem we are considering

a minimum contiguity threshold, not a maximum threshold. It is

not immediately obvious how to reformulate Yoshimoto and

Assante’s (2018) max flow model into a min flow model that

would address our contiguity problem.

To demonstrate the mechanics and the benefits of our proposed

optimization model, we use Western Arctic bowhead whales for a

case study in which we illustrate how BIA contiguity and total area

thresholds can be captured in spatial optimization. Our objectives

for this illustrative case study are two-fold. First, to delineate

important bowhead whale feeding habitat and calf rearing areas

using the proposed integer programming framework that maximize

the number of whales in selected areas under the constraints of

spatial contiguity and total area. NOAA’s BIA delineation criteria

explicitly address only monthly or seasonal variability. However,

other characteristics of a BIA’s temporal variability may influence

the development of conservation or management actions, such as

monitoring or mitigation methods, as certain methods may be

better suited for specific patterns of temporal variability. Therefore,

to provide additional insight into the ecological characteristics of

the BIAs selected during the optimization step, our second objective

is to quantify inter-annual variability for each BIA. Our results

ultimately should be considered alongside at least three additional

factors in the decision-making process: (1) information about

ex is t ing and predic ted stressors to the spec ies ; (2)

socioeconomics, including identification and quantification of
Frontiers in Marine Science 04
objectives and acceptable costs and risks by relevant interested

parties, such as environmental non-governmental organizations,

co-management partners, industry (e.g., offshore energy,

commercial fisheries, shipping, tourism), and other stakeholders;

and (3) constraints of existing laws or international agreements.

The remainder of this paper is structured as follows. We begin

with a detailed description of our case study area and field methods.

This is followed by a formal introduction of our optimization

model. Next, we detail the post-optimization methods we used to

quantify inter-annual variability in BIAs. After presenting the

analytical results, we discuss the potential implications of our

findings for conservation and management.
2 Methods

2.1 Study area

The study area is in the western Beaufort Sea (140°-157°W),

including US and Canadian waters, extending from the coastline to

basin waters exceeding 2,000 m depth (maximum latitude 72°N)

(Figure 1). Most of the study area covers the inner (0-20 m) and

outer (20-50 m) continental shelf. Barrow Canyon is a dominant

bathymetric feature located along the western boundary of the study

area. The bathymetry of Barrow Canyon affects the hydrography of

the region, ultimately forcing the concentration and spatiotemporal

variability of nutrients, phytoplankton, and prey. This makes

Barrow Canyon a hotspot for seabirds and marine mammals

(Kuletz et al., 2015). Water around the outer continental shelf is

influenced by the Beaufort shelfbreak jet, a northern branch of

currents that advects nutrients and prey from the Bering Sea to the

Beaufort Sea (Pickart, 2004). On the shelf east and northeast of

Point Barrow, bounded offshore by Barrow Canyon, winds may

cause euphausiids (krill) to be upwelled and trapped (Ashjian et al.,

2010; Okkonen et al., 2020). Euphausiids are often the dominate

prey of bowhead whales harvested at Utqiaġvik, Alaska, in autumn,
FIGURE 1

Study area in the western Beaufort Sea. Unshaded hexagonal cells represent those that the spatial optimization models could select to be delineated
as Biologically Important Areas.
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whereas copepods tend to be the primary prey consumed by

bowhead whales harvested near Kaktovik, Alaska, in autumn

(Lowry et al., 2004; Sheffield and George, 2013; Sheffield and

George, 2021). The largest rivers draining into the western

Beaufort Sea are the Colville, Kuparuk, Sagavanirktok, Canning,

and Hulahula rivers. Freshwater discharged from these rivers may

create hydrographic fronts in the coastal environment, which, in

turn, may concentrate prey, thereby attracting a large number of

feeding bowhead whales at these particular locations (Okkonen

et al., 2018; Ferguson et al., 2021).
2.2 Aerial survey methods

A brief overview of the field methods is provided here. See

Clarke et al. (2019) and Clarke et al. (2020) for detailed information.

Line-transect aerial surveys were flown in the western Beaufort

Sea during summer (July-August) 2012-2019 and autumn

(September-October) 2000-2019 as part of the Aerial Surveys of

Arctic Marine Mammals (ASAMM) project. ASAMM was funded

and co-managed by the Bureau of Ocean Energy Management and

conducted and co-managed by NOAA. Systematic transects were

placed 19 km apart, based on a grid with a randomly selected start

point. Transects were approximately 80-175 km long, oriented

perpendicular to the coastline, to cut across isobaths, from shore

to beyond the 2,000-m isobath.

Surveys were flown in de Havilland Twin Otters and Turbo

Commanders, twin turbine aircraft with bubble windows on the left

and right sides, allowing unobstructed views from the horizon to the

transect directly beneath the aircraft. The aircraft were based out of

Utqiaġvik and Deadhorse, Alaska. Surveys were flown 305-460 m

above the sea surface, at 213 km/hr survey speed.

Each survey team comprised two primary observers and one

dedicated data recorder. The data recorder input sighting data into a

laptop computer, connected to a global positioning system, running

specialized, menu-driven ASAMM Survey software. Time and

position data (latitude, longitude, altitude) were automatically

recorded every 30 seconds (in time) or whenever a manual data

entry was recorded. Environmental and viewing conditions were

recorded every 5 minutes (in time) or whenever conditions

changed. Primary observers scanned the seascape with naked eye,

using binoculars only to check potential targets or to get a magnified

view of a confirmed target. Declination angles from the horizon to

each sighting were measured using handheld Suunto clinometers

once the sighting was abeam. A “sighting” was defined as all animals

of the same species within 5 body lengths of each other. Once the

declination angle was recorded, most sightings of large cetaceans

(anything larger than a beluga, Delphinapterus leucas) were circled

to determine a final group size estimate, confirm species

identification, look for calves, and determine behavior. Both

initial and final group size estimates were recorded in the

database; if group size could not be determined with certainty,
Frontiers in Marine Science 05
high and low estimates could also be recorded. The database

distinguished between calves initially detected from the trackline

and calves that were only detected during circling. Circling did not

commence in special circumstances, such as restrictions due to

weather, fuel, time of day, or duty hours, or in the vicinity of

sensitive wildlife or subsistence hunting activities. Sightings that

could not be positively identified to species were recorded at the

taxonomic level to which they could be identified (e.g.,

“unidentified cetacean”).

Bowhead whale demographic classification was based on

morphology and behavior. Most bowhead whale calves are born

in spring and early summer (April to June) (Tarpley et al., 2021),

although recently-born calves have been reported as late as August

(Koski et al., 1993). Small bowhead whales that have a streamlined

appearance, have small heads compared to their body lengths, are

light gray in color, or are in close association with adult bowhead

whales are likely to be calves born that year. Calves observed

without an adult nearby are likely associated with a cow that is

completely submerged, especially when feeding. In autumn, calves

are more rotund than calves observed in summer. If an individual’s

age class was uncertain, the animal was not designated as a calf in

the ASAMM database.

The complete list of cetacean behaviors and associated

definitions is provided in Clarke et al. (2020). Feeding behavior

for bowhead whales was defined as the “[a]nimal(s) diving

repeatedly in a fixed area, sometimes with mud streaming from

the mouth and/or defecation observed upon surfacing; synchronous

diving and surfacing or echelon formations at the surface, with

swaths of clearer water behind the whale(s), or surface swimming

with mouth agape”. Milling behavior was defined as “[t]wo or more

animals moving slowly at the surface with varying headings, in close

proximity (within 100 m) to, but not obviously interacting with,

other animals”. Bowhead whales feed on the seafloor, in the middle

of the water column, or at the surface of the water. Milling behavior

could be indicative of subsurface feeding. Behavior could also be

recorded as “swim” or “unknown” or left blank.

Data collected during the four survey modes transect, circling

from transect, Cetacean Aggregation Protocols (CAPs) passing, and

CAPs circling (Clarke et al., 2019) were used in the optimization

model introduced below in Section 2.3.1. During all four of these

survey modes, observers were actively surveying and all marine

mammal sightings and effort data were recorded. Transect effort

refers to systematic survey effort along a prescribed transect line.

Circling from transect occured when the aircraft diverted from flat

and level flight on transect to circle a localized area to investigate a

sighting or potential sighting. Standard line-transect survey

protocols were followed until large whale encounter rates

exceeded the observers’ ability to accurately record location and

declination angle to each sighting. In areas with extremely high

densities of large whales, CAPs was used, wherein the survey team

flew through the high-density aggregation in passing mode (without

circling) to collect accurate encounter rate data, and then flew back
frontiersin.org
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through the aggregation in closing (CAPs circling) mode to collect

information on group size, number of calves, and behavior (Clarke

et al., 2019; Clarke et al., 2020).
2.3 Analytical methods

The study area was divided into a lattice composed of hexagonal

cells with 25-km resolution (Figure 1). This analytical resolution

was chosen based on the resolution of the data, as transects are

spaced approximately 19 km apart, and on current understanding

of the scale of the ecological mechanisms that drive spatiotemporal

variability in bowhead whale density in the western Beaufort Sea

(Ferguson et al., 2021).

Only a subset of the entire ASAMM western Beaufort Sea

survey region was included in the analyses. The subset was

defined as all cells with at least one sighting of a feeding or

milling bowhead whale or a bowhead whale calf any time from

July through October 2000-2019. Because the marine environment

is dynamic and we wanted to examine whether it was optimal to

include cells without sightings to support spatially cohesive

networks, cells without any bowhead whale sightings that were

surrounded by cells with bowhead whale sightings were also

included in the analyses.

For transect and CAPs passing survey modes, the total

kilometers surveyed, observed encounter rate (number of whales

per kilometer) of feeding or milling (equivalently denoted by

feeding/milling) bowhead whales, and observed encounter rate of

bowhead whale calves were summarized for each cell-month-year

combination. The number of whales on transect used to compute

encounter rate corresponded to the final group size associated with

records of feeding and milling whales or the total number of calves,

including calves sighted during circling. The number of whales on

CAPs was computed following the methods detailed in Appendix A

of Ferguson (2020). Feeding/milling whale models were based on

ASAMM data from 2000 to 2019. Calf models were limited to data

from 2012 to 2019, when the western Beaufort Sea study area was

surveyed consistently from July through October.

2.3.1 Delineating BIAs using spatial
optimization methods

Our first objective was to maximize the number of feeding and

milling bowhead whales or calves in selected areas, contingent upon

spatial contiguity and total area constraints. Spatial contiguity may

be desirable for both practical and ecological reasons. It may be

simpler to monitor, enforce, and adhere to fewer contiguous

management units than numerous dispersed islands of

management units. Additionally, spatial contiguity is often

associated with ecological integrity (e.g., IUCN, 2016) because it

minimizes edge effects and facilitates movement and dispersal

(Williams et al., 2005). Our optimization model can be

formulated for any maximum total area, allowing the analyst to

quantify the tradeoffs associated with alternative values.
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Linear binary integer programming problems seek to maximize (or

minimize) a linear objective function, a0x =on
i=1aixi, over all n-

dimensional vectors x = (x1,…, xn), where ximay take the value of 0

or 1, and the maximization is subject to a set of linear inequality

constraints (Bertsimas and Tsitsiklis, 1997). The vector a= (a1, …,

an) provides the value associated with each of the n decision

variables, x1, …, xn. This linear binary integer programming

problem can be expressed using vectors a, b, x, and matrix C as

maximize a’x
subject to Cx ≥ b

x ≥ 0

x ∈ {0,1}.

Inequalities such as Cx ≥ b are interpreted component-wise;

that is, for every i, the ith component of the vector Cx, which is c’ix,

is greater than or equal to the ith component bi of the vector b. A

vector x satisfying all the constraints is called a feasible solution. A

feasible solution x* that maximizes the objective function (that is,

a’x* ≥ a’x, for all feasible x) is called an optimal feasible solution or,

equivalently, an optimal solution. The value of a’x* is then called the
optimal value. Depending on the problem, there may exist only one,

multiple, or no optimal solutions. A key feature of this analysis is

that linear binary integer programming searches for a global

optimal solution. This contrasts with methods such as simulated

annealing (e.g., Airamé et al., 2003; Leslie et al., 2003), which seek

only an approximation of the optimum.

More specifically, the methods of Tóth et al. (2009) formed the

basis of the analysis. The following is a formal, mathematical

description of our optimization model formulation. We start with

the definitions of variables, model parameters, and other

mathematical objects (e.g., sets) that we use in the model:

Variables (both binary):

xi = 1 if cell i is selected, 0 otherwise;

yj = 1 if cluster j is selected, 0 otherwise.

Parameters:

di = relative density (encounter rate) of feeding/milling whales

or calves in cell i, defined as the number of whales observed per

square kilometer surveyed, assuming an effective strip width of

1 km;

ai = area of cell i;

Z = proportion of occupied cells enclosed by BIA boundaries,

where a cell is considered to be “occupied” if it had at least one

sighting of feeding/milling bowhead whales or calves (as

appropriate, depending on BIA type) during aerial surveys

conducted in the specified month, pooled across all years;

d = minimum di>0;

occ.cells = number of occupied cells;

Sets:

I = the set of all cells

Pi = the set of clusters that contain cell i;

Cj = the set of cells that comprise cluster j;

|Cj| = the number of cells that comprise cluster j (the cardinality

of cluster j);

C = the set of all possible clusters.
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Our integer programming model formulation is as follows:

Maxoidiaixi ½1�

Subject to:

1
occ : cellsoi

xi ≤ Z        for each i ∈ I ½2�

xi ≤oj∈Pi
yj          for each i ∈ I ½3�

oi∈Cj

xi ≥ Cj

�� ��yj   for each Cj ∈ C ½4�

oi∈Cj

xi − Cj

�� �� + 1   ≤ yj   for each  Cj ∈ C ½5�

1
d oi∈Cj

dixi ≥ yj          for each Cj ∈ C ½6�

xi ∈ 0, 1f g ½7�

yj ∈ 0, 1f g ½8�
The objective function [1] maximizes the total number of

bowhead whales detected during aerial surveys within the areas

enclosed by the selected BIAs.

Constraint [2] limits the maximum total area selected for BIAs

in terms of the proportion (Z) of occupied cells rather than a

proportion of the study area. Our rationale for defining the area

constraint this way is that the cells where bowhead whales are

known to engage in a particular activity are the ecological features of

interest, whereas study area boundaries may be somewhat arbitrary.

Constraint [3] ensures that any cell i can be selected to be part of

a BIA if and only if it is part of at least one feasible cluster of cells

that is selected as a BIA.

Inequality [4] states that variable yj corresponding to cluster j

may be set to 1 if every single cell in that cluster is selected.

Conversely, if yj is set to one, this forces all cells in Cj to be

included in the BIA. That is, if yj=1, then the right-hand side (RHS)

of this constraint will equal the cardinality of set Cj, which in turn is

the number of cells in cluster j. Because the left-hand-side (LHS)

simply sums the number of cells in cluster j that are selected, then

yj=1 will force all of them to be selected. If on the other hand yj=0,

then, per Inequality [4], the number of cells in cluster j that can be

selected must be strictly less than the cardinality of Cj (or,

equivalently the number of cells in cluster j). This enforces that yj
can turn on if and only if all of its elements (its cells) are selected.

If xi=1, then Inequality [3] forces at least one of the clusters that

contain cell i (set Pi) to take the value of 1. For each cluster in set Pi
that ends up with yj=1, all cells in that Cj will also be forced to take

the value of 1 per Inequality [4]. If on the other hand xi=0, then

Inequality [3] becomes inactive (i.e., the RHS can take any integer

value between 0 and the cardinality of Pi). However, if xi=0,

Inequality [4] is activated for each cluster in Pi. Namely,

Inequality [4] will force all yj’s representing clusters in Pi to be 0
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because they cannot possibly be protected if not all cells including

cell i are selected.

Inequality [5] works in concert with [4]. Not only does the

former allow but it forces yj=1 if all cells in Cj are selected. To see

this, consider a cluster that comprises four cells (in other words, the

cardinality of this cluster is 4, | Cj | = 4). If all cells in this cluster are

selected, then the sum on the LHS will equal 4. This makes the value

of the LHS of the inequality [5] equal to 1, which in turn forces yj to

be 1. Otherwise, the inequality [5] would not hold as 1 is not less

than or equal to 0.

Lastly, Inequality [6] ensures that only clusters with at least one

observed feeding/milling bowhead whale or bowhead whale calf can

be a BIA. Without [6], the model could allow empty (unoccupied)

clusters into the solution if there were space to add cells before

reaching the area threshold (Z) after all cells with applicable

bowhead whale observations had been included in the solution.

A single cell may be found in more than one cluster in the

optimal solution; that is, clusters in the optimal solution may

overlap. The objective function [1] and maximum area threshold

[2] operate at the cell level. Therefore, if a cell enters the optimal

solution because it is a member of overlapping clusters in the

solution, the number of whales in that cell will be counted only once

towards the value of the objective function, and the area of that cell

will be counted only once against the maximum area threshold.

Our recursive cluster enumeration algorithm proceeded as

follows. We use the notation:= to mean “defined to be equal to”.

Initialization: Set Index x:= 0, Index j:= 0. For each Cell i∋I
generate a list of cells Ai that are adjacent to Cell i: Ai ∀i∋I. Cells
were considered adjacent when they shared a common boundary.

Step 1: Is set I empty (I = {Ø})? If yes, Terminate. Otherwise, set

Index j:= j + 1, create a new empty Cluster j set area of Cluster j

equal to 0 (aj:= 0) and go to Step 2.

Step 2: Select any Cell i∋I and remove it from Set I (I:= \{i}).

Add Cell i to Cluster j (j∶=j∪i) and add the area of Cell i (ai) to the

area of Cluster j (aj∶=aj+1 ) Set x: = i.

Step 3: Does Cell x not have any adjacent cells (Ax = {Ø})? If yes,

go to Step 1. Otherwise, go to Step 4.

Step 4: Select any Cell c∋Ax that is not already included in

Cluster j. Add Cell c to Cluster j (j∶=j∪c, aj∶=aj+1) Go to Step 5.

Step 5: Does the area of Cluster j equal the minimum cluster

size amin (aj = amin)? If yes, save Cluster j as feasible cluster and go to

Step 1. Otherwise, set x:= c and then go to Step 3.

Post-processing: Remove identical clusters (combinations of

cells) and leave only one copy of each.

This model was formulated for different scenarios, where a

scenario was defined by the BIA type (feeding/milling or calf),

month (July, August, September, October), minimum cluster size

(1, 2, 3, 4, 5), and area threshold (Z = 0.1 to 1.2, by 0.1). Based on our

knowledge of bowhead whale distribution in the study area and the

spatial range of relevant biophysical processes that shape seasonal

spatiotemporal variability in Arctic marine environments (Moore

et al., 2018), we set the upper limit for minimum cluster size to 5 cells.

Z was allowed to range up to 1.2 (delineation encompassing 120% of

occupied cells) to allow the models with minimum cluster size greater

than 1 to incorporate all occupied cells; the minimum cluster size

restriction sometimes required empty cells to be incorporated into the
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solution in order to allow an adjacent occupied cell to enter the

solution. Data for each model were pooled across years.

We solved our optimization model with a commercial integer

programming solver and mapped the BIA selections that resulted

from these model runs. For each BIA type and month, a single

scenario (contiguity threshold and area threshold) was selected

based on visual inspection as the basis for the inter-annual

variability analysis detailed in Section 2.3.2 below. Scenario

selection was based on the judgment of experts with 28 (JTC), 13

(MCF), and 12 (AAB) years of experience analyzing ASAMM data

or conducting ASAMM surveys in the western Beaufort Sea. Expert

elicitation is a common tool used in conservation science and

natural resource management in general (e.g., Danovaro et al.,

2020; Lettrich et al., 2020) and spatial planning in particular (e.g.,

Thomson et al., 2020). The rationale for selecting each scenario was

based on direct knowledge of the inherent patchiness in bowhead

whale density and ecological drivers of spatiotemporal variability in

bowhead whale density in the western Beaufort Sea.

The spatial optimization analyses were conducted in R version

3.62 (R Core Team, 2019) and CPLEX Studio version 12.9.0.0. The

following R packages were used: sp (Pebesma and Bivand, 2005;

Bivand et al., 2013), maptools (Bivand and Lewin-Koh, 2019), rgeos

(Bivand and Rundel, 2019), rgdal (Bivand et al., 2019), ggplot2

(Wickham, 2016), and dichromat (Lumley, 2013). The optimization

models were solved in CPLEX, using default parameters. We

instructed CPLEX to abort either if the default 0.01% optimality

gap or the 1 hour of runtime limit was reached. All analyses were

conducted on a PC laptop computer with an Intel(R) Core(TM) i7-

8650U CPU @ 1.90GHz 2.11 GHz processor.

2.3.2 Quantifying BIA inter-annual variability
Classifying areas according to their temporal characteristics can

provide insight into the methods needed to monitor the ecosystem

and anthropogenic activities in the area, and to minimize or

mitigate risks to the ecosystem from human activities. For

example, the Convention on Biological Diversity created a

classification scheme to classify EBSAs into four categories

(Johnson et al., 2018): static features, groups of features,

ephemeral features, and dynamic features. However, there is no

clear way to rank the ecological significance of a feature based on

these temporal characteristics, so we did not incorporate them into

our optimization model. Because most BIAs were defined by month

and the remainder were defined by season, we focus the following

investigation of temporal variation on inter-annual variability.

Specifically, once we solved the monthly bowhead whale calf

and feeding spatial optimization models for each combination of

maximum area threshold and cluster size, we used expert

judgement to select a single characteristic scenario (i.e., maximum

area threshold and minimum cluster size) for each month and BIA

type (calves and feeding). Then, for each selected scenario, we used

statistical analyses to quantify inter-annual variability within each

of the BIA units identified by the optimization model. We define

inter-annual variability as the differences across years in bowhead

whale occurrence or density during a given month in a particular
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BIA unit. The BIA unit is defined as one or more cells sharing at

least one boundary with a neighboring cell that was delineated in

the selected scenarios described above. The two types of metrics

used to quantify inter-annual variability are: (1) empirical statistics

from observed bowhead whale sightings and survey effort; and (2)

the standard deviation of the random effect of year from generalized

linear mixed models (GLMMs).

The empirical statistical analysis follows the methods that Sigler

et al. (2017) used to identify persistent prey hotspots. For each

combination of BIA type, month, and spatial resolution, we

calculated the number of years in which at least one bowhead

whale (feeding/milling or calf, as appropriate) was sighted

(Ybowhead; “bowhead whale years”), the number of survey years in

which surveys were conducted (Ysurvey; “survey years”), and the

ratio of these two values, which we refer to as the proportion of

bowhead whale years (pbowhead):

pbowhead  ¼  Ybowhead=Ysurvey: ½9�
The second analysis of inter-annual variability was applied

independently to each BIA and involved a simple Poisson GLMM

with random effects for year (y ϵ {2000,…, 2019} for the feeding/

milling BIAs; y ϵ {2012,…,2019} for the calf BIAs):

loge½E(wi,y j gi,y)� = bi + gi,y + loge(kmi,y) ½10�
This formulation uses a natural logarithmic link function to

relate the expected number of bowhead whales (w) in BIA i and year

y to a linear predictor comprised of three terms: an overall mean

value (the fixed intercept) bi; a random effect for year, gi,y, which
represents the deviation around the mean that can be attributed to

inter-annual variability; and an offset for the natural logarithm of

the number of kilometers flown on transect and CAPs passing in

area i and year y. It is assumed that the random effect for year comes

from a normal distribution with zero mean and variance s 2
i,y

gi,y eN(0,s 2
i,y) ½11�

Only years with non-zero survey effort were included in each

GLMM. Because the number of whales on CAPs is not restricted to

integer values (Ferguson, 2020), wi was rounded to the nearest

integer for parameterizing the GLMMs. (Non-integer wi was only

an issue for one BIA in the September calf analysis and one BIA in

the October calf analysis.) Applying the inverse link function, exp(·)

to [10] gives:

E(wi,y j gi,y) = exp½bi + gi,y + loge(kmi,y)� ½12�
In [12] it is clear that the expected number of whales is

conditioned on the random effect for year, as is standard in

GLMMs. The statistical distribution for this model can be

represented as:

wi,y j gi,y e Pois exp½bi + gi,y + loge(kmi,y)�
� � ½13�

The investigation into inter-annual variability was conducted in

R version 3.62 (R Core Team, 2019), using package lme4 (Bates

et al., 2015) in addition to those packages detailed above.
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3 Results

We will first present the results of our aerial surveys as this

information was critical to formulating and parameterizing our

optimal BIA selection models whose solutions will be given next,

along with a description of the computational cost of running the

models. Lastly, we will describe the results of our inter-annual

variability analyses conducted based on these solutions to the

optimization models.
3.1 Survey effort and sighting summaries

The distribution and density of line-transect survey effort and

bowhead whale sightings (by activity state) differed by month and

year. We present a summary of the results here and provide

supplementary graphics in Appendix S1.

We begin with a summary of transect and CAPs survey effort

and bowhead whale sightings in the study area from 2000 to 2019,

the years used in the analysis of feeding and milling whales.
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September had the most survey effort overall (134,819 km) and

the highest median effort per cell (916 km); July had the least overall

(40,749 km) and the lowest median effort per cell (253 km)

(Table 1). Survey effort per cell and month (all years pooled)

ranged from a minimum of 22 km per cell in October to a

maximum of 1,637 km in September (Table 1, Appendix S1:

Figure S1). During each month, survey effort covered the

longitudinal range of the study area, extending to waters deeper

than 2,000 m, although it was mostly concentrated in waters from 0

to 200 m (Appendix S1: Figure S1). Summer (July and August)

survey effort was limited from 2000 to 2011, whereas autumn

(September and October) survey effort was more consistent across

all years (Appendix S1: Figure S2). Survey effort per cell by month

and year ranged from 0 km in some months and years, to a

maximum of 258 km in September 2015 (Appendix S1: Figure

S2). September generally had the most survey effort due to a

combination of factors, including weather and timing of the

bowhead whale migration.

From 2000 to 2019, September had the most feeding and milling

bowhead whales detected overall (687 whales) and per cell (121

whales), and the greatest percentage of occupied cells (37.67%)
TABLE 1 Summary of survey effort and bowhead whale sightings from aerial surveys in the western Beaufort Sea study area during transect and Cetacean
Aggregation Protocols (CAPs) survey modes from 2000 to 2019 (feeding and milling analysis years), and from 2012 to 2019 (calf analysis years).

July August September October

Transect and CAPs Survey Effort, 2000-2019

Total km 40,749 66,210 134,819 71,150

Minimum km per cell 23 47 53 22

Median km per cell 253 461 916 475

Maximum km per cell 925 841 1,637 1,092

Feeding and Milling Bowhead Whales, 2000-2019

% occupied cells per month 8.90% 31.51% 37.67% 19.18%

Total number observed 60 491 687 254

Minimum observed per cell 1 1 1 1

Median observed per cell 3 4 4 4

Maximum observed per cell 20 98 121 46

Transect and CAPs Survey Effort, 2012-2019

Total km 39,999 58,092 62,397 37,993

Minimum km per cell 23 38 18 0

Median km per cell 252 396 409 272

Maximum km per cell 632 641 921 685

Bowhead Whale Calves, 2012-2019

% occupied cells per month 19.18% 24.66% 40.41% 18.49%

Total number observed 45 52 129 40

Minimum observed per cell 1 1 1 1

Median observed per cell 1 1 2 1

Maximum observed per cell 5 3 7 4
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(Table 1; Appendix S1: Figure S3). There was considerable inter-

annual variability in the number of feeding and milling bowhead

whales per cell by month, with no observations during some

months in some years and the most observations per cell during

August 2016 and September 2017 (Appendix S1: Figure S4). August

was the month with the highest encounter rates per cell (Appendix

S1: Figure S5). The depth distribution of feeding and milling whales

was farthest offshore in July, closer to shore in August, and closest to

shore in September and October (Appendix S1: Figure S5).

Additionally, the distribution of feeding and milling activity

progressed westward from July through October (Appendix S1:

Figure S5). BIAs for bowhead whale feeding that were delineated in

the original effort (Clarke et al., 2015) are shown in Appendix S1:

Figures S3, S5.

The calf analyses were limited to data from 2012 to 2019.

Approximately 74% (433 of 582 calves) of the bowhead whale calves

recorded throughout the ASAMM study area during this period

were initially detected during circling effort. September was the

month with the most survey effort (62,397 km) and July had the

least (39,999 km) (Table 1). Combined transect and CAPs survey

effort per cell and month (2012-2019 pooled) ranged from 0 km to

921 km (Table 1, Appendix S1: Figure S6), and show patterns with

respect to depth and longitude consistent with those for the longer

time series beginning in 2000 (Appendix S1: Figure S1).

September had the most bowhead whale calves detected per cell

(7 calves), the greatest total number of calves throughout the study

area (129 calves), the broadest distribution of calves, and the highest

percentage of cells with calves (Table 1; Appendix S1: Figures S7,

S8), although the highest calf encounter rate occurred in August

(Appendix S1: Figure S9). Calves were observed in all months

except August 2018, although inter-annual variability in calf

sightings per cell is evident (Appendix S1: Figure S8). Calves were

encountered farther offshore and in the eastern half of the study

area during July, and their distribution moved closer to shore and

westward as the survey season progressed (Appendix S1: Figure S9).

The BIAs for bowhead whale reproduction that were delineated in

the original effort are shown in Appendix S1: Figures S7, S9.
3.2 BIAs delineated using spatial
optimization methods

3.2.1 Computational costs
Running the cluster enumeration algorithm for both BIA types

(feeding and calves), all four months, all twelve maximum area

constraints, and minimum cluster sizes 2, 3, 4, and 5 (2*4*12*4 =

384 total models) required approximately 4.5 hours of computing

time. The sum total time to find the optimal solutions for these 384

scenarios was approximately 19.5 hours. For these 384 scenarios,

the optimality gap was the binding constraint in all cases except for

13 scenarios that had a minimum cluster size of 5 and that reached

the maximum run-time limit of 1 hour. It took only two minutes to
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find the optimal solutions for all of the scenarios with minimum

cluster size of 1 (2 BIA types * 4 months * 12 max area thresholds =

96 total scenarios).

3.2.2 Model results
The number of possible clusters in the study area increased

nonlinearly with increasing minimum cluster size. The study area

comprised a total of 146 cells, including 331 pairs of cells sharing a

common border, 892 possible 3-cell clusters, 2,269 possible 4-cell

clusters, and 5,308 possible 5-cell clusters.

The optimization models resulted in three consistent patterns

with respect to minimum cluster size and maximum area threshold

for both BIA types and all months. First, cells with the highest

density were selected when contiguity or maximum area thresholds

were small (Appendix S2). Second, for a given area threshold, the

number of feeding/milling whales or calves inside BIAs was

inversely proportional to cluster size. This result occurred because

a smaller minimum cluster size provided the model with more

freedom to select cells with the highest whale densities (Figures 2, 3;

Appendix S2). As minimum cluster size increased, the model was

forced to select cells with zero observed whales to add clusters

containing relatively high densities of whales (Figures 2, 3;

Appendix S2). Third, the number of feeding/milling whales or

calves inside BIA boundaries initially increased rapidly as the area

threshold increased, but eventually approached an asymptote near

Z ≥ 1.0 (Figures 2, 3). This result reflects the models’ preference for

selecting the cells with the lowest density last. Scenarios selected for

further consideration in the analysis of inter-annual variability used

minimum cluster size of either 2 or 3, and area threshold of Z = 0.5

or 0.7 (Table 2).

Results from the September feeding/milling and calf models are

summarized here. Figures for both BIA types and all months, cluster

sizes, and area thresholds are presented in Appendix S2.

The selected scenario for September feeding/milling bowhead

whales was the 2-cell cluster optimization model with maximum

area threshold of Z = 0.7. At the lowest area threshold of 0.1, the

optimization model for feeding/milling bowhead whales in

September selected high density cells located in the nearshore

“krill trap area” east of Point Barrow and in coastal waters

between Prudhoe and Camden bays, which are influenced by

upwelling and freshwater discharge from rivers (Appendix S2:

Figure S12). As the area threshold increased, cells with lower

whale densities were incorporated into the solution, first

incorporating cells off Cape Halkett and east of Kaktovik, and

eventually adding all cells with observations of feeding/milling

bowhead whales.

The selected scenario for September bowhead whale calves was

the 3-cell cluster optimization model with maximum area threshold

of Z = 0.7. The September bowhead whale calf optimization model

selected cells with high calf densities in the vicinity of Camden Bay

under the lowest area threshold (Z = 0.1) (Appendix S2: Figure S33).

As the maximum area threshold was relaxed, solutions began to
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incorporate more cells on the inner continental shelf, stretching

eastward to the US-Canada border, before encompassing the lower

density cells in the central and western portions of the study area.

The relatively low density cells near Barrow Canyon were among

the last to be added to the solution.
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The September calf BIAs provide an instructive example of the

potential effects of cluster size on optimal delineation of BIAs. In the

selected scenario (minimum cluster size 3, maximum area threshold

Z = 0.7), there were no calf BIAs delineated in the nearshore cells

between Point Barrow and Smith Bay. However, two nearshore cells
FIGURE 2

Estimated number of feeding/milling bowhead whales (Eqn. 1) enclosed by Biologically Important Areas for spatial optimization models constructed for each
month (July-October), minimum contiguity threshold (cluster size 1-5), and maximum occupied area threshold (Z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.1, 1.2). The black horizontal line in each column represents the total number of observed feeding/milling bowhead whales for that month.
FIGURE 3

Estimated number of bowhead whale calves (Eqn. 1) enclosed by Biologically Important Areas for spatial optimization models constructed for each
month (July-October), minimum contiguity threshold (cluster size 1-5), and maximum occupied area threshold (Z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2). The black horizontal line in each column represents the total number of observed bowhead whale calves for that month.
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north and west of Smith Bay were included among the BIAs for the

scenario with minimum cluster size of 2 cells and maximum area

threshold Z = 0.7 (Appendix S2: Figure S32D).
3.3 Inter-annual variability in BIAs

Results from the September analyses of inter-annual variability

of feeding/milling and calf BIAs are summarized here. Analogous

figures for the remaining selected scenarios are provided in

Appendix S3.

The six BIAs delineated for feeding and milling bowhead whales

in the selected scenario for September were (from west to east) krill

trap, offshore Harrison Bay, Harrison Bay to Deadhorse, Camden

Bay, east of Kaktovik, and Demarcation Point (Figure 4A and
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Appendix 3: Figure S3). The number of bowhead whale years

ranged from 2 to 12 years (Figure 4B and Appendix 3: Figure S3).

The number of survey years ranged from 18 to 20 years (Figure 4B

and Appendix 3: Figure S3). The proportion of bowhead whale

years, pbowhead, ranged from 0.11 to 0.60 (Figure 4B and Appendix

3: Figure S3). BIAs ranked from highest to lowest GLMM fixed

intercept (bi) were: 1) krill trap; 2) Harrison Bay to Deadhorse; 3)

offshore Harrison Bay; 4) east of Kaktovik; 5) Demarcation Point;

and 6) Camden Bay (Figure 4B and Appendix 3: Figure S3). BIA

ranks based on pbowhead were similar, but not identical, to the bi
ranks (Figure 4B and Appendix 3: Figure S3). By contrast, BIA

ranks based on the standard deviation of the random effect for year

(si,y) were the reverse of the bi ranks (Figure 4B and Appendix 3:

Figure S3). These results suggest that the highest average density

(largest bi) bowhead whale feeding and milling areas in the study

area are also relatively stable, both in terms of occurrence (largest

pbowhead) and density (smallest si,y) from year to year.

The five BIAs delineated for bowhead whale calves in the

selected scenario for September were (from west to east) Barrow

Canyon, Cape Halkett, offshore Harrison Bay, central Alaskan

Beaufort, and eastern Alaskan Beaufort (Figure 5A and Appendix

S3: Figure S7). The number of bowhead whale years ranged from 3

to 8 yrs (Figure 5B and Appendix S3: Figure S7). Every BIA had 8

survey years (Figure 5B and Appendix S3: Figure S7). Values of

pbowhead ranged from 0.4 to 1.0 (Figure 5B and Appendix S3: Figure

S7). Although si,y for Cape Halkett and offshore Harrison Bay were

estimated to be zero (the GLMMs were singular; Figure 5B), this

result may be due to the small sample size. The relationships among

the different inter-annual variability metrics for bowhead whale

calves were more complicated than those for feeding and milling

bowhead whales. For example, the eastern Alaskan Beaufort BIA

had the highest of both pbowhead and si,y, but ranked third in bi
Figure 5B). In other words, calves are consistently found in the

eastern Alaskan Beaufort, but inter-annual variability in density is
A B

FIGURE 4

Results of the inter-annual variability analysis for each of the six Biologically Important Areas (BIAs) identified in the selected scenario for feeding/
milling bowhead whales in September. (A) Geographic location. (B) Summary statistics and GLMM parameter estimates. Parameter estimates are
color-coded based on their associated rank, from high (rank 1) to low (rank 6).
TABLE 2 Spatial optimization model scenarios selected for the analysis
of inter-annual variability in bowhead whale feeding/milling and calf
Biologically Important Areas (BIAs).

BIA Type Month Min Cluster Size Max Area
Threshold

Feeding/MillingCalves July 2 0.7

August 3 0.7

September 2 0.7

October 3 0.5

Calves July 3 0.7

August 3 0.7

September 3 0.7

October 2 0.7
Each scenario was uniquely defined by the BIA type, month, and spatial optimization model
specifications for the contiguity threshold (minimum number of cells per cluster) and
maximum area threshold.
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relatively large. Barrow Canyon ranked 2nd for si,y (relatively high

inter-annual variability in calf density), 3.5th for pbowhead, and last

for bi (relatively low average calf density).
4 Discussion

We provide an objective and reproducible analytical framework

for optimally delineating areas that are biologically important for

cetaceans that explicitly addresses size and spatial contiguity. We

also provide methods for characterizing the temporal variability in

cetacean occurrence or density in a given area. We hope that by

explicitly incorporating spatial and temporal characteristics of the

species into the BIA evaluation process, we have ultimately

produced an effective tool that can be incorporated with other

relevant information (e.g., project objectives, ecological stressors,

costs, acceptable risk, legal constraints) into conservation and

management decision-making processes. Additionally, we have

identified areas that have real ecological value to bowhead whales.

This, in turn, will help focus localized, collaborative investigations

to better understand the ecological mechanisms driving the

spatiotemporal variability in bowhead whale density in the

western Beaufort Sea.

Ecological mechanisms known to affect bowhead whale prey

density and availability in the September feeding/milling BIAs

identified here include a combination of local and remote drivers

(Ferguson et al., 2021). Local winds may generate upwelling and

affect the pathway of currents, mechanisms that establish the

physical conditions necessary to activate the krill trap near Point

Barrow (Ashjian et al., 2010; Okkonen et al., 2011; Okkonen et al.,

2020; Ashjian et al., 2021). However, even if the circulation patterns

are conducive to concentrating krill on the shelf, the krill trap can

activate only if krill are available to be trapped. This requires remote
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connections to the northern Bering Sea, because there are no known

self-sustaining populations of krill in the region surrounding Point

Barrow (Berline et al., 2008). Therefore, krill recruitment in the

northern Bering Sea and subsequent transport through the Bering

Strait and northward through the Chukchi Sea are essential to

complete the biophysical coupling generating the krill trap (Berline

et al., 2008). Wind-driven upwelling may also transport prey from

depth to nearshore areas where freshwater runoff from rivers may

create nearshore fronts that aggregate the prey (Okkonen et al.,

2018); this mechanism is likely largely responsible for the bowhead

whale feeding/milling BIAs that we identified in the central Alaska

Beaufort Sea. Spatial planning efforts that rely on BIAs should

consider the spatiotemporal characteristics of the ecological

mechanisms that drive spatiotemporal variability in species

density and habitat use because those characteristics may affect

site prioritization or the methods used for mitigation, monitoring,

conservation, or management.

The distribution of bowhead whale calves in the Beaufort Sea

exhibits spatiotemporal variability and demographic segregation

(Clarke et al., 2022). Clarke et al. (2022) examined bowhead whale

calf data from ASAMM surveys conducted from July to October

2012-2019 in the western Beaufort Sea (140°W-157°W). They

found that bowhead whale calves were primarily found east of

150°W in summer (July and August). The Canadian Beaufort Sea

(waters east of 141°W) is where the majority of Western Arctic

bowhead whales are presumed to be in summer, feeding. In

September, calves were broadly distributed throughout the

western Beaufort Sea study area. In October, calves were

primarily found west of 143°W. During August and September in

the western Beaufort Sea, calves were observed significantly farther

from shore than non-calves. As the Northwest Passage opens to

increased vessel traffic in offshore waters, calves may be at increased

vulnerability to vessel strikes both due to their offshore distribution
A B

FIGURE 5

Results of the inter-annual variability analysis for each of the five Biologically Important Areas (BIAs) identified in the selected scenario for bowhead
whale calves in September. (A) Geographic location. (B) Summary statistics and GLMM parameter estimates. Parameter estimates are color-coded
based on their associated rank, from high (rank 1) to low (rank 5). *Singular model; si,y estimated to be zero.
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and because they may spend longer periods at the surface compared

to accompanying adults who are feeding underwater (Clarke

et al., 2022).

Within the combinatorial optimization framework that we

invoke, there exists an optimal solution for a given data set under

a specified collection of constraints; statistical methods cannot

identify an optimal solution to the problem. The collection of

BIAs that comprise the optimal solution to the spatial

optimization model may be considered decision variables that can

be combined with additional information (e.g., ecological, social,

economic, legal) in subsequent analyses to determine which BIAs

should be incorporated into the final conservation or management

plan. For a narrowly defined conservation or management issue,

our basic optimization model could be modified to address a wide

variety of other factors, such as considerations about past or

predicted future changes to the marine environment (via a multi-

stage stochastic programming model), remote factors,

and connectivity.

Increasing contiguity and patch size have both ecological and

practical advantages. Oceanographic phenomena have

characteristic spatial and temporal scales that affect the

distribution, density, and movement patterns of cetaceans and

other marine life across multiple hierarchical scales (Haury et al.,

1978; Mannocci et al., 2017). At small spatiotemporal scales,

cetaceans track ephemeral prey patches over tens of meters. At

intermediate scales spanning tens to hundreds of kilometers,

cetaceans target ephemeral and seasonal oceanographic features

such as fronts, eddies, and the krill trap area east of Utqiaġvik. At

broad scales, cetaceans select persistent water masses and current

systems extending over thousands of kilometers that delimit their

geographic range. From the perspective of conservation, natural

resource management, impact analysis, and enforcement, it is

simpler to evaluate the potential effects of, and monitor, an

activity in a small number of relatively large areas than in a

multitude of small areas.

There are no consistent guidelines on the minimum or

maximum size of delineated areas in marine place-based

conservation or management schemes. Rather, it is widely

accepted that basic characteristics of each species, such as animal

density and habitat use, should inform the delineation process.

During the process of designing a marine reserve for the Channel

Islands in California, scientists recommended that 30-50% of all

representative habitats in each biogeographic region be included

(Airamé et al., 2003). This size range was determined after

considering conservation goals and risks from human threats and

natural catastrophes. As another example, there is no minimum or

maximum size requirement for a KBA: “The size of the KBA will

depend on the ecological requirements of the biodiversity elements

triggering the criteria and the actual or potential manageability of

the area” (IUCN, 2016). For UN EBSAs, as of 2021, 321 marine

areas meeting the EBSA criteria had been described and considered,

ranging in size from 1 km2 to 11.1 × 106 km2 (personal

communication, J. Cleary [Duke University, Marine Geospatial

Ecology Lab] to M. Ferguson on 26 August 2021). The different

optimal solutions to the optimization problem that our model

found under various combinations of contiguity and total area
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constraints may serve as a sensitivity analysis, allowing our results

to be applied to a broad range of conservation or management

problems: our optimization model can help planners analyze the

tradeoffs that would result from the use of different minimum patch

sizes or maximum network sizes.

In the present analysis, the area of a single hexagonal cell was

541 km2 and the range in areas delineated across all months for

both BIA types was 1,082 km2 (2 cells) to 12,990 km2 (24 cells). In

the inaugural BIA delineation process (Ferguson et al., 2015b; van

Parijs et al., 2015), the geographic extent of BIAs ranged from 117

km2 for one small resident stock of bottlenose dolphin (Tursiops

truncatus) in the Gulf of Mexico (LaBrecque et al., 2015) to 373,000

km2 for the fin whale (Balaenoptera physalus) feeding BIA in the

Bering Sea (Ferguson et al., 2015c). The average size of the first

round of BIAs for small resident populations was approximately

4,600 km2, although they were as small as 117 km2 for the Gulf of

Mexico bottlenose dolphin stock mentioned above and as large as

31,500 km2 for Bristol Bay belugas (Ferguson et al., 2015c).

The inter-annual variability analysis presented above provides

two quantitative metrics for comparing the persistence of bowhead

whale use in each BIA for feeding/milling and rearing calves.

Gaining a deeper understanding of the inter-annual variability in

bowhead whale use of an area can not only advance ecological

understanding of the underlying mechanisms causing the

variability, it can also help conservation planners and natural

resource managers evaluate potential threats to the species and

identify appropriate conservation, management, and monitoring

measures to mitigate or minimize impacts to the species (Johnson

et al., 2018; Johnson et al., 2019). The two inter-annual variability

metrics, the proportion of survey years with bowhead whales

present (pbowhead) and the standard deviation of the random effect

of year on whale density (si,y), did not show consistent relationships

to each other for the two BIA types. The September feeding and

milling BIAs showed an inverse relationship between pbowhead and

si,y. For example, the krill trap area exhibited the highest pbowhead,

but it also had the lowest si,y. In contrast, there was not a simple

relationship between pbowhead and si,y for the September calf BIAs.

Parameter pbowhead required minimal data to compute and,

therefore, might be the best metric in data-limited cases.

Relatively more data was required to derive an estimate of si,y in
the GLMM; hence, it will not be possible to compute this metric for

all cases and other types of information would be needed to

characterize the associated inter-annual variability.

There is no consensus on the consideration or treatment of

inter-annual variability in place-based approaches to marine

conservation and management. For example, IMMAs explicitly

require delineation of areas that are spatially and temporally fixed

(IUCNMarine Mammal Protected Areas Task Force, 2018) and the

Global Standard for the identification of KBAs (IUCN, 2016) does

not address the issue of temporal variability. In contrast, Australian

BIAs (Commonwealth of Australia, 2014) and UN EBSAs2 allow

seasonal variation in BIAs. Furthermore, UN EBSAs can be

classified into four types, three of which incorporate temporal
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characteristics (static, ephemeral, and dynamic) (Johnson et al.,

2018). If temporal dynamics were explicitly incorporated in place-

based delineation criteria, an optimization model that includes

constraints on both temporal and spatial parameters (such as

Könnyű et al., 2014) could be used to evaluate alternative designs.

NOAA’s BIA II process is nearing completion (Clarke et al.,

2023; Harrison et al. 2023). Although the basic BIA delineation

protocols remain unchanged in BIA II compared to BIA I, NOAA

developed methods for BIA II to rank BIA intensity, evaluate the

strength of supporting information (raw data, analytical methods,

and derived parameters), characterize uncertainty, and classify BIAs

as ephemeral, dynamic, or static. The analytical tools described here

address each of these concerns using objective, reproducible

quantitative metrics and may be useful in delineating BIAs for

cases in which the appropriate data are available.
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