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SSANet: normal-mode
interference spectrum extraction
via SSA algorithm-unrolled
neural network
Shuping Zhu, Wei Gao* and Xiaolei Li

College of Marine Technology, Ocean University of China, Qingdao, China
In ocean acoustic fields, extracting the normal-mode interference spectrum

(NMIS) from the received sound intensity spectrum (SIS) plays an important role

in waveguide-invariant estimation and underwater source ranging. However, the

received SIS often has a low signal-to-noise ratio (SNR) owing to ocean ambient

noise and the limitations of the received equipment. This can lead to significant

performance degradation for the traditional methods of extracting NMIS at low

SNR conditions. To address this issue, a new deep neural network model called

SSANet is proposed to obtain NMIS based on unrolling the traditional singular

spectrum analysis (SSA) algorithm. First, the steps of embedding and singular value

decomposition (SVD) in SSA is achieved by the convolutional network. Second, the

grouping step of the SSA is simulated using the matrix multiply weight layer, ReLU

layer, point multiply weight layer and matrix multiply weight layer. Third, the

diagonal averaging step was implemented using a fully connected network.

Simulation results in canonical ocean waveguide environments demonstrate that

SSANet outperforms other traditional methods such as Fourier transform (FT),

multiple signal classification (MUSIC), and SSA in terms of root mean square error,

mean absolute error, and extraction performance.
KEYWORDS

normal-mode interference spectrum, singular spectrum analysis, deep unrolled neural
network, low signal-to-noise ratio, ocean acoustic waveguide
1 Introduction

According to the theory of normal modes (Jensen et al., 2011) in shallow-water acoustic

waveguides, the frequency-domain interference spectrum formed by each pair of normal

modes often exhibits different quasi-periodic fluctuation structures, which contain a lot of

information related to the waveguide invariant and the source–receiver distance. Some

authors have pointed out that if the normal-mode interference spectrum (NMIS) can be

extracted from the received sound intensity spectrum (SIS), not only can the distance

between the source and the receiver be estimated based on the periodicity of its fluctuations
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(Zhao, 2010), but also the value of the waveguide invariant can be

obtained in terms of the data-matrix sparsity of the NMIS. The

main advantage of these methods based on extracting NMIS is that

it is feasible to estimate the waveguide invariant and the receiver-

source range without any environmental models or data. However,

it is unfortunate that NMIS is often difficult to observe in many

practical applications owing to the ocean ambient noise and the

limitations of the received equipment. Therefore, in recent years,

the problem of extracting an NMIS with a low signal-to-noise ratio

(SNR) has received considerable attention in the field of underwater

acoustic engineering.

The Fourier transform (FT) is considered to be the earliest

NMIS estimator, but the frequency resolution of the FT is limited by

the Nyquist sampling theorem. In 2010, Zhao et al. (2010) adopted

the multiple signal classification (MUSIC) algorithm to estimate the

quasi-period of NMIS and performed a higher resolution spectral

analysis of NMIS than FT. Based on the principles of the singular

spectrum analysis (SSA) algorithm, Gao (2016) directly extracted

the approximate curves of NMIS in the frequency domain in 2016,

and a multi-resolution estimation method of NMIS was proposed

and compared with previous methods such as MUSIC and FT (Gao

et al., 2020) in 2020. These studies show that SSA has potential for

exploration and development. However, it should be noted that

these methods always require a higher SNR (more than 20 dB in the

previous literature) and have a poor anti-noise ability.

With the development of artificial intelligence technology and

deep learning, it is possible to extract NMIS using deep neural

network methods in more complex noisy environments. In

particular, a type of algorithm-unrolling neural network (Monga

et al., 2021) that maps various iterative algorithms into learnable

neural network layers has been applied in various fields and has

shown superior performance compared to traditional algorithms

(Gregor and LeCun, 2010; Hershey et al., 2014). Inspired by the

research above, this study introduces a new method for extracting

NMIS from the received SIS called the SSA algorithm-unrolled neural

network (SSANet). It is well known that, if the signal subspace has

finite dimensions and is orthogonal to the noise subspace, SSA is a

powerful tool for separating the signal subspace from the noise

subspace through grouping (Vautard et al., 1992; Li et al., 2019).

Generally, SSA consists of four steps: embedding, singular value

decomposition (SVD), grouping, and diagonal averaging (Hassani,

2007; Kalantari et al., 2020; Lin and Wu, 2022). The received SIS

consists of a finite number of dominant NMIS that satisfy the above

SSA assumption. The SSANet model unrolls the steps of the SSA and

designs it as a six-layer neural-network structure. It utilizes a

convolutional network (LeCun et al., 1995; Mallat, 2016) to achieve

the embedding step and SVD in SSA. The grouping process of SSA

was simulated using the matrix multiply weight layer, ReLU layer,

point multiply weight layer, and matrix multiply weight layer. Finally,

the diagonal averaging step was implemented using a fully connected

network. This study conducted simulations in two canonical ocean

waveguide environments, comparing the extraction performance of

SSANet with traditional methods such as the FT, MUSIC, and SSA

methods under different SNR. The numerical results demonstrate

that SSANet achieves superior performance over the other methods

under lower SNR conditions.
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The main contributions of this study are summarized as follows:
(1) A novel network model called SSANet for extracting NMIS

is proposed. SSANet can learn complex nonlinear

mappings and exhibits strong noise robustness.

Compared to traditional extraction methods, it can

reduce information loss during the extraction of NMIS

under low-SNR conditions. The numerical results

confirmed the effectiveness of the SSANet.

(2) This study describes the correspondence between SSANet

and the unrolled SSA. The trained SSANet can be naturally

interpreted as a parameter-optimized algorithm that

effectively overcomes the lack of interpretability in most

conventional neural networks.

(3) Extracting NMIS belongs to the signal decomposition/

extraction problem; therefore, the SSANet model can also

be applied to studying other signal analysis problems,

which provides more possibilities for research in this field.
The remainder of this study is organized as follows. The

preliminary concepts required for understanding further are

introduced in Section 2. For instance, the concept of the NMIS

and SSA process. Section 3 describes the structure of SSANet.

Section 4 presents the results and corresponding discussion to

demonstrate the effectiveness of the proposed method. Finally, the

conclusions are presented in Section 5.
2 Preliminaries

In this section, the fundamental concepts of SIS and NMIS are

introduced in detail. A comprehensive exposition is provided for

the basic processing of SSA.
2.1 Sound Intensity spectrum

According to the theory of normal-mode, for a point source

excitation with circular frequency w and depth zs in shallow water,

the received SIS IT at a depth of zr after propagation over a long

distance d can be expressed approximately as in Equation 1

(Grachev, 1993; Gao et al., 2021):

IT (w , zr , zs, d) = P(w) o
M

n=1
Bn(w , zr , zs)j j2+o

n≠m
Bn(w , zr , zs)B

∗
m(w , zr , zs) exp  (iDknm(w)d)

� �

+Ns(w)

(1)

where Bn is shown in Equation 2

Bn(w , zr , zs) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

kn(w)d

r
yn(zr)yn(zs) (2)

P(w) is the power spectral density of the source, and Bn(w, zr, zs) and
Bm(w, zr, zs) represent the amplitudes of the nth andmth normal-modes,

respectively. M is the number of the propagating normal-modes. Dknm
(w) is the horizontal wavenumber difference between the nth and mth

normal-modes, and Dknm(w) = kn(w) − km(w).yn(zr) andyn(zs) are the

mode depth functions for the nth normal-mode receiver and source,
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respectively. ‘∗’ represents conjugation. Ns(w) is the additive noise.

o
M

n=1
Bn(w ,   zr ,   zs)j j2 represents the non-interference components of SIS, which

vary slowly with the frequency. Inm(d,  zr ,  zs,  w)  = Bn(w ,  zr ,  zs)B∗
m(

w ,  zr ,  zs) exp  (iDknm (w) d)  is called the NMIS for the n–m pair of

normal modes, which oscillates with frequency. I(d,  zr ,  zs,  w)  =
 o
n≠m

Bn(w ,  zr ,  zs)B
∗
m(w ,  zr ,  zs) exp  (iDknm (w) d) corresponds to the

sum of the different NMIS and represents the interference components

of the SIS. When multiple propagation modes exist in the ocean

waveguide, the SIS received by a single hydrophone is typically a

superposition of the NMIS, non-interference components, and

environmental noise. In general, it is difficult to observe accurate

fluctuation periods of the NMIS directly owing to the ocean ambient

noise and the limitations of the received equipment. It should be noted

that we are mainly concerned with NMIS, and the non-interference

components can be considered as approximately constant and removed

to obtain Ic according to the Equation 3:

Ic(w , zr , zs, d) = IT (w , zr , zs, d) − P(w)o
∞

m=1
Bn(w , zr , zs)j j2 

≈ IT (w , zr , zs, d) − 〈 IT (w , zr , zs, d) 〉

  ≈ I(w , zr , zs, d) + N 0
s(w)

(3)

where 〈 f (x) 〉 =o
Z

i=0
eix

i(Z = 2) represents the polynomial fit term

obtained using the least-squares method (Björck, 1990), where e

is the fitting coefficient. N′
s(w) represents the noise after the removal

of non-interference components. In subsequent work, our goal is to

extract different NMIS from Ic.
2.2 SSA algorithm

The SSA is a classical signal decomposition/extraction method.

Assuming that the input sequence is y = [y1,y2,.,yN], the steps of the

SSA algorithm are as follows:

1. The first step is embedding. Embedding creates a Hankel

trajectory matrix. It can be regarded as a mapping that transfers a

one-dimensional vector y to Hankel matrix H, the H is shown in

Equation 4:

H =

y1 y2 y3 ⋯ yK

y2 y3 y4 ⋯ yK+1

y3 y4 y5 ⋯ yK+2

⋮ ⋮ ⋮ ⋯ ⋮

yL yL+1 yL+2 ⋯ yN

2
666666664

3
777777775

(4)

where the numbers of the row and column vectors are L and K,

respectively. L + K = N + 1.

2. The second step is to decompose the matrix H using SVD.

That is, matrix H is decomposed into the Equation 5:

H = USV† (5)

where U ∈ RL�R, its column vectors are orthogonal and

normalized. V† ∈ RR�K , its row vectors are orthogonal and

normalized. S ∈ RR�R is a singular value matrix consisting of

zero off-diagonal entries and obvious non-zero singular values on

the main diagonal entries (Lin and Wu, 2022). The symbol ‘†’
Frontiers in Marine Science 03
represents the conjugate transpose. Assuming the rank of a matrix

H is R, then S = diag(s1,s2,…,sR) (s1 > s2 >… > sR), the matrix H

can also be expressed as the Equation 6:

H = H1 +H2 +… +HR

= s1U1V
†
1 + s2U2V

†
2 +… + sRURV

†
R

=o
R

i=1
siUiV

†
i

(6)

3. The third step is grouping. The grouping step splits the

Hankel matrix H into several groups and sums up the matrices

within each group. For Ic, if there are r NMIS, matrix H can be

divided into two group, as shown in Equation 7:

H = A + B =o
r

i=1
siUiV

†
i + o

R

i=r+1
siUiV

†
i (7)

where A = H1 +H2 +… +Hr denotes the interference

components of SIS (I) (It is also possible to obtain Sr = diag(s1,

s2,…,sr , 0,…, 0) by setting all the elements in S except the first r

singular values to 0, and then A = USrV
†,A ∈ RL�K ), B = Hr+1 +

Hr+2 … +HR denotes the noisy spectrum (N
0
s(w)).

4. The fourth step was diagonal averaging. Taking A as an

example, the mapped vector ŷ is obtained using the following steps,

as shown in Equation 8:

ŷ j =

1
j o

j

a=1
Aa,j−a+1         1 ≤ j < (L* = min   L,Kf g)

1
L* o

L*

a=1
Aa,j−a+1         L* ≤ j < (K* = max   L,Kf g)

1
N−j+1 o

N−K*+1

a=j−K*+1
       Aa,j−a+1        K* ≤ j < N

8>>>>>>>>>>><
>>>>>>>>>>>:

(8)

The SSA has various grouping methods (Unnikrishnan and

Jothiprakash, 2022). The grouping process above divides the

matrix into signal and noise subspaces, which completes the

denoising operation of Ic. The SSA (Gao, 2016) method divides

the matrix H into r + 1 groups (i.e., H1, H2, H3 to Hr, and B)

according to the singular value, and then uses diagonal averaging

to obtain the corresponding NMIS. This study adopts the first

grouping method, and the SSA is unrolled and designed as a

neural network model called SSANet. The specific design ideas

and basic structure of SSANet are descr ibed in the

following sections.

It should be noted that the selection of the effective rank r in the

above process is crucial. In this study, r was determined based on

the discontinuity of singular values. When white noise is present,

the distribution of singular values (si) is characterized by sudden

changes. That is, the singular values corresponding to the

interference components of SIS(I) are relatively large, whereas

those corresponding to the noisy spectrum (N
0
s(w))are much

smaller. Therefore, the sequence of relative differences between

adjacent singular values is denoted as shown in Equation 9:

gi =
si − si+1

si
, i = 1, 2,…,R (9)
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is referred to as the difference spectrum of the singular value (Wax

and Kailath, 1985; Fishler et al., 2002). The effective rank r is then

determined using the peak of the difference spectrum, which is the

estimated value of the number of NMIS.
3 The SSANet

In this section, the specific process of SSA unrolling and the

corresponding design ideas, network structure, and parameters of

SSANet are illustrated in detail.
3.1 The design idea of SSANet

Based on the steps of SSA algorithm, we unroll it and design it

as SSANet for the extraction of NMIS. The unrolling process of the

SSA algorithm and the corresponding relationship with the SSANet

are illustrated in Figure 1. Specifically:
Frontiers in Marine Science 04
1. The SSA algorithm transforms the Ic into the Hankel matrix

H and then through SVD to obtain matrix USV†. Next, the

matrix USV† left-multiplies the conjugate transpose matrix

U† to obtain the matrix SV†. For SSANet, this process was

implemented using a one-dimensional convolutional

neural network. As is well known, the output of a one-

dimensional convolutional operation with a single channel

and one-step is denoted as shown in Equation 10:

y00(1,e) = o
V

v=1
(y0(1,e+v−1) · Ker(1,v)) + b1 (10)

where y′ and y′′ represent the input and output, respectively,

of the convolutional neural layer. Ker is the convolution

kernel, (1,v) is the coordinate of Ker, (1,e) is the coordinate

of the output vector, and b1 is the bias. Therefore, b1 can be

initialized to 0, and the above process uses a convolution

network implementation. The weight parameter W1 of the

convolutional network corresponds to U†. The channel

number of the convolutional network is equal to the
FIGURE 1

The process of SSA algorithm-unrolled and the corresponding with SSANet, where the input Ic is the received sound interference spectrum, and the

output Inm is the NMIS. W1, W2, W †1, W †2 are the network parameters of SSANet, U, U†, V, V†, S, and Sr are the matrices of the SSA algorithm unrolled.
The symbol ‘@’ represents the matrix multiplication.
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Fron
number of rows (R) in matrix U†, and the size of the Ker is

equal to the number of columns (L) in U†. The output of

this convolution operation is equal to matrix SV†. This

layer is called the convolutional layer (Conv Layer);

2. In the SSA algorithm, the matrix SV† right-multiplies the

matrix V to obtain the singular value matrix S. For SSANet,
a learnable weight W2 is used instead of V, and the

dimensions of W2 correspond to the dimensions of V. In

this case, each row of the output from the Conv layer

matrix-multiplies each column ofW2 to simulate obtaining

the singular values in the singular value matrix S. This layer
is called the matrix multiply weight layer.

3. The SSA algorithm obtains Sr by setting the singular values
in S, except for the first r value of 0. The activation function

ReLU (Agarap, 2018) of the neural network satisfies

ReLU(x)  =
x ,  x  ≥  0

0 ,  x  <  0

8<
: . For SSANet, the ReLU activation function

can be used to simulate the above process, and this layer is

called the ReLU Layer. It should be noted that before using

ReLU activation, the singular values are added to a set of

learnable bias parameters. Even if the singular values (e.g.,

the last several values) are larger than zero, they can be

filtered out by combining suitable biases through the

ReLU layer.

4. In the SSA algorithm, matrix Sr left-multiplies the matrix U

to obtain USr. For SSANet, the conjugate transpose of the
weight parameter W1, denoted as W†

1, was used instead of

U. The dimensions of W†
1 correspond to the dimensions of

U. The output of the ReLU layer was expanded in

dimension by copying. Point multiplication is then

performed with the weight W†
1 to simulate the process of

obtaining USr. This layer is called the point multiply

weight layer.

5. In the SSA algorithm, the matrix USr right-multiplies the

matrix V† to obtain A  =  USrV
†. For SSANet, the network

parameters of this layer are replaced by the conjugate

transpose of weight parameter W2 from the second layer,

denoted as W†
2. The dimensions of W†

2 correspond to the

dimensions ofV†. The output of the previous layer is matrix

multiplied by the weight W†
2 simulating obtaining A  =  U

SrV
†. This layer is referred to as the matrix multiply weight

layer. In other words, the process of constructing the

Hankel matrix, SVD, and grouping to obtain the I in

the SSA algorithm is unrolled into the above five

steps, corresponding to the five layers in the SSANet

neural network.

6. The fourth step in SSA algorithm is diagonal averaging. The

process of a fully connected layer in a neural network is

represented as F 0 = FW + b2 (where F and F
0 represent the

input and output of the fully connected layer, respectively.

W and b2 are the weight and bias parameters of the fully

connected layer, respectively). W and b2 can achieve data

dimensionality reduction and learn complex mapping
tiers in Marine Science 05
relations in data through training. Therefore, SSANet

implements diagonal averaging with a fully connected

network and extracts NMIS by setting the number of

output neurons. This layer is referred to as the FC layer.
3.2 The structure of SSANet

Based on the unrolling of the SSA algorithm mentioned above, we

designed a six-layer network structure called SSANet. Assuming the

input is the received and normalized Ic ∈ R1�N , which undergoes

SVD in the SSA algorithm to obtain the unitary matrices U ∈ RL�R

and V† ∈ RR�K , and the singular value matrix S ∈ RR�R. The

structure of SSANet is illustrated in Figure 2 (the parameters of the

SSA algorithm are shown in Figure 2). The dimensions of the network

input, weight, and output parameters for each layer are presented in

Table 1. The specific steps are as follows:
1. Conv Layer: The number of channels is R , the

convolutional kernel size is L, and the step is 1. The

output dimension obtained after the convolution

operation was R × (N + 1 − L) = R × K (the weight

parameter of the Conv layer was W1 ∈ RR�L).

2. Matrix multiply weight layer (1): Each row of the output R

× K of the Conv layer matrix multiplies each column of the

weight matrix W2 ∈ RK�R, and the output dimension is 1

× R.

3. ReLU Layer: Add the previous layer’s output to the bias and

use the ReLU function to activate; the output dimension is

1 × R.

4. Point multiply weight layer: Expand the output dimension

1 × R of the ReLU layer to L × R by copying. Then, each

column of L × R point multiplies each column of weight

W†
1 ∈ RL�R, and the output dimension size is L × R.

5. Matrix multiply weight layer (2): The output L × R of the

previous layer right-multiplies the weightW†
2 ∈ RR�K , and

the output dimension is L × K.

6. Fc Layer: The output L × K from the previous layer is

flattened to 1 × (L × K). The Fc layer results in an output

dimension of 1 × (N × num) (where num represents the

number of NMIS), thus obtaining the predicted output Î nm
∈ R1�(N�num) of the network.
The implementation of SSANet was carried out using Pytorch

1.6.0, with an NVIDIA Quadro GV100 GPU. The weight

parameters W1 and W2 were initialized with Kaming initialization

(He et al., 2015). The mean absolute error was selected as the loss

function and optimized using the Adam optimizer (Kingma and Ba,

2014), with the learning rate (Smith, 2017) set to 1e−4. The batch

size was set as 128. To prevent network overfitting, an early stop

strategy was adopted in training; the network training was stopped

when the loss on the validation set did not drop within 10 epochs

(Liang et al., 2019).
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4 Simulation and results

In this study, we simulated two canonical ocean waveguides and

evaluated the extraction results of each method. In this section, the

first part presents the datasets. The second part describes the

evaluation criteria for comparing SSANet with other methods,

such as FT, MUSIC, and SSA. Finally, an analysis of the results

obtained using each method is presented.
4.1 Datasets

This study utilizes the typical sound field simulation software

Kraken (Porter, 1992), which is used to simulate typical winter

(isovelocity) and summer (thermocline) waveguide sound speed
Frontiers in Marine Science 06
profiles. The sound speed and medium parameters are shown in

Figures 3A, B. In these two waveguide environments, the emission

frequencies of the sound source were f ∈ [300,360] Hz and f ∈
[180,220] Hz, respectively. The frequency resolution are 0.3 Hz and

0.2 Hz, respectively. It is assumed that the depths of the known

hydrophones are 15 m and 30 m, respectively, whereas the depths

and distances of the sound sources are unknown.

For the training samples in the isovelocity waveguide, the depth

of the sound source was set as zs = {1,2,…,30} m. At each source

depth, 500 data points were randomly generated within the distance

r∈ [10,15] km. A total of 15,000 samples are generated. Similarly, in

the thermocline waveguide, the depth of the sound source was set as

zs = {1,2,…,50} m. At each source depth, 500 data points were

randomly generated within r ∈ [20,25] km. In total, 25,000 samples

were collected. The two training samples are randomly added with
FIGURE 2

The structure of SSANet.
TABLE 1 The parameters of SSANet.

Layer Number Layer Name Input Size Weight Size Output Size

1 Conv Layer 1 × N R × L R × K

2
Matrix Multiplication

Weight Layer(1)
R × K K × R 1 × R

3
ReLU
Layer

1 × R 1 × R

4 Point multiplication weight Layer 1 × R L × R L × R

5
Matrix Multiplication

Weight Layer(2)
L × R R × K L × K

6 FC Layer L × K (L × K) × (N × num) 1 × (N × num)
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noise at SNR = [−10,10] dB and are divided into training and

validation sets in an 8:2 ratio for network training. It should be

noted that the SSANet model in this study can extract multiple pairs

of NMIS by setting the value of num. In this study, we use the

extraction of two pairs of NMIS as an example to introduce the

SSANet method. Therefore, for the training set, the true labels are

the first two pairs of NMIS with larger interference amplitudes, i.e.,

num = 2 in the SSANet.

According to the method based on Gao et al. (2021), in an

isovelocity environment, when zr= 17 m, zs= 7 m, and r = 13 km, the

singular value distribution of I is shown in Figure 4A. In a

thermocline environment, when zr= 30 m, zs= 29 m, and r = 23

km, the singular value distribution of I is shown in Figure 4B. As can

be seen in Figure 4, there are two large singular values, corresponding

to the 1st–3rd NMIS(I13) and the 1st–2nd NMIS (I12). Based on the

method for determining the effective rank r in this study, it is known

that only two sets of NMIS dominate in the above environment.

Therefore, a test set was generated at the aforementioned sound

source depth. The isovelocity waveguide set zr= 17m, zs= 7m, and r =

{10,10.025,10.5,…,15} km, and the thermocline waveguide set zr= 30
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m, zs= 29 m, and r = {20,20.025,20.5,…,25} km. Each of them

generates 201 data, which are added to the noise of SNR =

[−10,10] dB with an interval of 2 dB, serving as the test set. The

datasets used are presented in Table 2. In the data preprocessing

stage, all the above data samples were normalized using maximum

value normalization.
4.2 Evaluation criteria

The root-mean-square error (RMSE) and Mean Absolute Error

(MAE) were used to evaluate the performance of the methods. A

smaller value for both metrics indicates a minor error between the

true and predicted values, indicating better extraction of the NMIS.

RMSE and MAE are defined in Equation 11 and Equation 12, as

follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
f o

f

i=1
Î nm(wi) − Inm(wi)
� �2s

(11)
A B

FIGURE 4

The distribution of singular value. (A) Is the distribution of singular value in the isovelocity waveguide. (B) Is the distribution of singular value in the
thermocline waveguide.
A B

FIGURE 3

The sound speed and medium parameters. (A) Is the isovelocity waveguide sound speed profiles. (B) Is the thermocline waveguide sound
speed profiles.
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MAE =
1
f o

f

i=1
Î nm(wi) − Inm(wi)
�� �� (12)

where Î nm and Inm represent the predicted and true

NMIS, respectively.
4.3 Simulation results

This study compares the SSANet method with the traditional

methods: FT, MUSIC, and SSA methods (Gao, 2016). For the

SSANet method, we assumed the construction of a Hankel matrix

as a square matrix; thus, the network parameters are denoted as

L=K=R=N+1
2 =101. The MAE and RMSE obtained by applying the

four mentioned methods for extracting I13 and I12 in the isovelocity

waveguide under varying SNR are shown in Figures 5A–D.
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Similarly, the MAE and RMSE obtained by applying the four

methods for extracting I13 and I12 in a thermocline waveguide

under varying SNR are shown in Figures 6A–D. In addition, a

random sample was selected from the test dataset in both

environments. Figure 7 shows the input Ic for the isovelocity and

thermocline waveguides. Figures 8A–F, respectively, represent the

results of extracting I13 and I12 in the isovelocity waveguide using

SSANet compared to other methods. Figures 9A–F, respectively,

represent the results of extracting I13 and I12 in the thermocline

waveguide using SSANet compared to other methods.

From Figures 5, 6, 8, 9, it can be observed that SSANet provides

the overall best extraction results for the phase, amplitude, and

oscillation period of the NMIS. However, the FT, MUSIC, and SSA

methods exhibit a significant decrease in performance when the

amplitude and phase of the NMIS exhibit nonlinear variations with

frequency under low SNR conditions. This is because the traditional
A B

DC

FIGURE 5

The results of MAE and RMSE in the isovelocity waveguide. (A–D) Represent the MAE and RMSE results of extracting I13 and I12 in the isovelocity
waveguide, respectively.
TABLE 2 The datasets.

Waveguide f (Hz) zr (m) zs (m) r (km) Data Num Data Name

isovelocity [300,360] 17
[1,2,…,30] [10,15]

12,000
3,000

Training sets
Validation sets

7 {10,10,025,10.5,…,15} 201 Test sets

thermocline [180,220] 30
[1,2,…,50] [20,25]

20,000
5,000

Training sets
Validation sets

29 {20,20,025,20.5,…,25} 201 Test sets
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extraction algorithms are designed by analyzing the physical

processes and through handcrafting, while SSANet attempts to

automatically discover model information and incorporate NMIS

information by optimizing network parameters that are obtained

from the training samples (Monga et al., 2021). On the one hand,

when there is noise, traditional extraction algorithms do not consider

the prior information of the noise, whereas SSANet learns the prior

information of the noise during network training, and thus SSANet

has stronger noise robustness. On the other hand, when the

amplitude and phase of the NMIS exhibit nonlinear changes, the

prior assumption of traditional extraction algorithms makes it

difficult to extract nonlinear information. The SSANet can learn

nonlinear information through training. Overall, it can be said that
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the trained SSANet is a parameter-optimized version of the SSA

algorithm and therefore outperforms traditional extraction

algorithms. These results confirm the effectiveness of the SSANet

proposed in this study.
5 Conclusion

In this study, a novel algorithm-unrolled neural network model

called SSANet was constructed for the extraction of NMIS in lower

SNR conditions. The core of the SSANet model is to unroll the SSA

algorithm and utilize the powerful data-learning ability of deep

learning. The efficiency of the SSANet was validated in different
A B

DC

FIGURE 6

The results of MAE and RMSE in the thermocline waveguide. (A–D) Represent the MAE and RMSE results of extracting I13 and I12 in the thermocline
waveguide, respectively.
A B

FIGURE 7

One of the inputs, Ic, of different methods. (A) Represents the input Ic in the isovelocity waveguide. (B) Represents the input Ic in the
thermocline waveguide.
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A B

D

E F

C

FIGURE 9

The SSANet extracts I13 result comparing with (A) SSA, (C) FT, and (E) MUSIC from Figure 7B. The SSANet extracts I12 result comparing with (B) SSA,
(D) FT, and (F) MUSIC from Figure 7B.
A B

D

E F

C

FIGURE 8

The SSANet extracts I13 result comparing with (A) SSA, (C) FT, and (E) MUSIC from Figure 7A. The SSANet extracts I12 result comparing with (B) SSA,
(D) FT, and (F) MUSIC from Figure 7A.
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typical ocean waveguides with different SNR. It is found that the

SSANet outperformed the traditional FT, MUSIC, and SSA

methods at a low SNR. The structure of SSANet is based on the

SSA algorithm, and the trained SSANet can be naturally interpreted

as a parameter-optimized algorithm, effectively addressing the lack

of interpretability in most conventional neural networks. In the

future, we will extend the ideas of SSANet to other signal

decomposition/extraction problems, which will provide more

possibilities for research in this field. Furthermore, the extraction

results of NMIS in the ocean waveguide can be applied to sound

source localization, waveguide variance estimation, etc.
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