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A simplified decision feedback
Chebyshev function link neural
network with intelligent
initialization for underwater
acoustic channel equalization
Manli Zhou1†, Hao Zhang1,2†, Tingting Lv1*, Wei Huang1,
Yingying Duan1 and Yong Gao1

1Department of Electronic Engineering, Ocean University of China, Qingdao, China, 2Department of
Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
Introduction: In shallow-water environments, the reliability of underwater

communication links is often compromised by significant multipath effects. Some

equalization techniques such as decision feedback equalizer, and deep neural

network equalizer suffer from slow convergence and high computational complexity.

Methods: To address this challenge, this paper proposes a simplified decision

feedback Chebyshev function link neural network equalizer (SDF-CFLNNE). The

structure of the SDF-CFLNNE employs Chebyshev polynomial function

expansion modules to directly and non-linearly transform the input signals into

the output layer, without the inclusion of hidden layers. Additionally, it feeds the

decision signal back to the input layer rather than the function expansion

module, which significantly reduces computational complexity. Considering

that, in the training phase of neural networks, the random initialization of

weights and biases can substantially impact the training process and the

ultimate performance of the network, this paper proposes a chaotic sparrow

search algorithm combining the osprey optimization algorithm and Cauchy

mutation (OCCSSA) to optimize the initial weights and thresholds of the

proposed equalizer. The OCCSSA utilizes the Piecewise chaotic population

initialization and combines the exploration strategy of the ospreywith the

Cauchy mutation strategy to enhance both global and local search capabilities.

Rseults: Simulations were conducted using underwater multipath signals

generated by the Bellhop Acoustic Toolbox. The results demonstrate that the

performance of the SDFCFLNNE initialized by OCCSSA surpasses that of CFLNN-

based and traditional nonlinear equalizers, with a notable improvement of 2-6 dB

in terms of signal-to-noise ratio at a bit error rate (BER) of 10−4 and a reduced

mean square error (MSE). Furthermore, the effectiveness of the proposed

equalizer was validated using the lake experimental data, demonstrating lower

BER and MSE with improved stability.
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Discussion: This underscores thepromise of employing the SDFCFLNNE

initialized by OCCSSA as a promising solution to enhance the robustness of

underwater communication in challenging environments.
KEYWORDS

decision feedback equalizer, Chebyshev function link artificial neural network, sparrow
search algorithm, osprey optimization algorithm, chaotic mapping, Cauchy mutation
1 Introduction
The shallow water acoustic environment is complex and

changeable, which often exhibits intricate signal multipath effects

and Doppler frequency shifts (Stojanovic and Preisig, 2009; Huang

et al., 2018). The multipath propagation of underwater acoustic

(UWA) signals originates from the effects of acoustic boundaries

(such as reflection from the water surface and seabed), refraction

caused by the non-uniformly distributed dissound speed in the

water, as well as scattering from particles. The complex multipath

results in significant signal time spreading, thereby causing severe

intersymbol interference. In typical shallow water acoustic

communications, intersymbol interference may span over

hundreds of symbols. Consequently, at the receiver end, it is

essential for the channel equalization to possess strong adaptive

channel tracking capabilities (Song et al., 2006; Wang et al., 2021).

This poses a significant challenge for reliable and efficient UWA

communication (Zhang et al., 2018).

To combat intersymbol interference caused by time-varying

multipath propagation, extensive research has been conducted on

various channel equalization techniques. Single-carrier schemes

and time-domain equalization techniques offer high spectral

efficiency and robustness, albeit at the cost of high receiver

complexity (Stojanovic and Preisig, 2009; Zhang et al., 2018). The

proposed adaptive step-size least mean square performs well for

many channel types, but for certain complex non-stationary UWA

channels, the rapid tracking capability of recursive least square is

essential (Freitag et al., 1997). To achieve reliable coherent

communication over UWA channels, a receiver was designed

which combines the recursive least square algorithm with a

second-order digital phase-locked loop for carrier synchronization

and performs fractionally spaced decision feedback equalization of

the received signals. The parameters of this receiver are adaptively

adjusted (Stojanovic et al., 1994). An adaptive nonlinearity

(piecewise linear) was introduced into the channel equalization

algorithm and its effectiveness was demonstrated through highly

realistic experiments conducted on real-field data as well as accurate

simulations of UWA channels (Kari et al., 2017). In recent years, in

order to alleviate propagation errors, expedite convergence speed,

and further enhance receiver performance, there has been growing

research on adaptive turbo equalization (He et al., 2019; Xi et al.,
02
2019; Qin et al., 2020). Considering the sparsity inherent in UWA

channels, sparse matrices have been utilized to construct sparse

equalizers, aiming to achieve faster convergence and lower error

rates (Xi et al., 2020; Wang et al., 2021; Wang et al., 2021).

Additionally, the equalization challenges in an impulsive

interference single-carrier modulation system based on a

parameterized model are addressed, and a two-step equalization

algorithm is proposed (Ge et al., 2022). The robust equalization for

single-carrier underwater acoustic communication in sparse

impulsive interference environment was proposed (Wei et al.,

2023). This algorithm is based on the framework of variational

Bayesian inference and possesses the unique capability of

simultaneously accounting for the sparsity inherent in the

channel and impulse interference. At the same time, several

waveform design (Zhu et al., 2023) and enhanced receiver

schemes (Zhang et al., 2021; Liu et al., 2023) were proposed to

further address inter-symbol interference and multipath

propagation issues. However, the complex multipath effect of the

UWA channels contributes to the slow convergence rate and

extensive computational requirements of traditional equalization

algorithms. As a result, there is substantial room for improvement

in UWA communication systems.

In recent years, machine learning techniques have garnered

attention across various fields. Particularly, deep learning (DL)

technology holds tremendous potential for addressing non-

parametric problems such as object detection and recognition

(Tsai et al., 2013), speech recognition (Zhang and Wang, 2016),

target tracking (Milan et al., 2017), wireless communication (Wang

et al., 2017; Ma et al., 2018; van Heteren, 2022; Mishra et al., 2023).

In order to reduce the computational costs of traditional equalizers,

machine learning-based equalizers have been introduced to mitigate

intersymbol interference. Channel equalization can be viewed as a

classification problem, where the equalizer is designed as a decision

device with the motivation to classify the transmitted signals as

accurately as possible (Zhang and Yang, 2020). Gibson et al.

introduced an adaptive equalizer employing a neural network

architecture based on multilayer perceptrons (MLP) to counter

intersymbol interference on linear channels with Gaussian white

noise (Gibson et al., 1989). Chang et al. proposed a neural network-

based decision feedback equalizer (DFE) that obviates the need for

time-consuming complex-valued backpropagation training

algorithms (Chang and Wang, 1995). Gao et al. demonstrated
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that in underwater digital communication scenarios, their proposed

blind equalizer achieves faster convergence speed and smaller mean

square error (MSE) compared to original MLP-based equalizers

that require training data (Gao et al., 2009). Zhang et al. proposed

a DL-based time-varying UWA channel single-carrier

communication receiver to adapt to the dynamic characteristics

of UWA channels. The receiver operates in an alternating mode

between online training and testing (Zhang et al., 2019b). Zhang

et al. introduced a DL-based UWA communication orthogonal

frequency-division multiplexing receiver. A stack of convolutional

layers with skip connections effectively extracts meaningful features

from the received signal and reconstructs the original transmitted

symbols (Zhang et al., 2022). Radial basis function (RBF) neural

networks have garnered the attention of many researchers due to

their simple structure and high learning efficiency, and have been

utilized for addressing channel equalization issues (Lee and Sankar,

2007; Guha and Patra, 2009; Ning et al., 2009).

However, with a higher channel order, a greater number of RBF

centers are required, ultimately resulting in an excessive

computational burden. To overcome these drawbacks of MLP

and RBF, another novel single-layer neural network, known as

the Functional Link Neural Network (FLNN), was proposed by

Paul. Due to the non-linear processing of signals in the FLNN, it can

generate arbitrarily complex decision regions (Patra et al., 1999).

This network features a simple structure with only input and output

layers, and the hidden layer is entirely replaced by non-linear

mappings. These mappings are introduced through the expansion

of input patterns using trigonometric polynomials and other basis

functions like Gaussian polynomials, orthogonal polynomials,

Legendre polynomials, and Chebyshev polynomials (Burse et al.,

2010). The FLNN increases the dimensionality of the input signal

space by a set of linearly independent non-linear functions, thus

reducing computational load and allowing for straightforward

hardware implementation (Patra et al., 2008; Zhang and Yang,

2020). Moreover, research indicates that non-linear equalizers

based on FLNN outperform MLP, RBF, and PPN equalizers in

terms of MSE, convergence rate, bit error rate (BER), and

computational complexity (Patra et al., 1999). Lee et al.

introduced a Chebyshev Neural Network for static function

approximation, which is more computationally efficient than

trigonometric polynomials when expanding the input space for

extended static function approximation and non-linear dynamic

system identification (Lee and Jeng, 1998). Patra et al. have

employed Chebyshev Functional Link Neural Networks (CFLNN)

for channel equalization of four quadrature amplitude modulation

signals (Patra and Kot, 2002; Patra et al., 2005). Hussain combined

traditional DFE with FLNN, proposing a Decision Feedback

Functional Link Neural Network Equalizer (DFFLNN) (Hussain

et al., 1997). Building upon this, they introduced a Chebyshev

orthogonal polynomial cascaded FLNN for non-linear channel

equalization (Zhao and Zhang, 2008) and an adaptive DFE based

on the combination of the FIR and FLNN (Zhao et al., 2011).

Moreover, Convolutional Neural Network (He et al., 2023),

Recurrent Neural Networks (Kechriotis et al., 1994; Chagra et al.,
Frontiers in Marine Science 03
2005; Xiao et al., 2008; Zhao et al., 2010; Li et al., 2021; Qiao et al.,

2022), Fuzzy Neural Networks (Heng et al., 2006; Chang and Ho,

2009; Chang and Ho, 2011), Extreme Learning Machines (Yang

et al., 2018; Liu et al., 2019), Wavelet Neural Networks (Xiao and

Dong, 2015), Support Vector Machines (Zhang et al., 2019a), other

neural network models and Deep Reinforcement Learning (He and

Tao, 2023) have been employed for channel equalization.

Swarm intelligence optimization algorithms are a class of bio-

inspired algorithms inspired by the behavioral patterns of certain

social organisms in the natural world. The central idea is to conduct

both global and local searches within a solution space to find

optimal solutions. These algorithms provide a new approach to

solving complex problems without centralized control or a global

model. In recent years, new swarm intelligence optimization

algorithms have continuously emerged. Scholars have drawn

inspiration from the behavior of various animals such as ants,

wolves, birds, moths, whales, sparrows, and more to propose a series

of swarm intelligence optimization algorithms, including the

Particle Swarm Optimization (PSO) algorithm (Kennedy and

Eberhart, 1995), the Grey Wolf Optimization (GWO) algorithm

(Mirjalili et al., 2014), the Whale Optimization Algorithm (WOA)

(Mirjalili and Lewis, 2016), the Bald Eagle Search (BES) algorithm

(Alsattar et al., 2020), the Sparrow Search Algorithm (SSA)

(Xue and Shen, 2020), the Cooperation Search Algorithm (CSA)

(Feng et al., 2021), artificial gorilla troops optimizer(GTO)

(Abdollahzadeh et al., 2021), white shark optimizer(WSO)(Braik

et al., 2022), dung beetle optimizer(DBO)(Xue and Shen, 2023) and

Osprey Optimization Algorithm(OOA)(Dehghani and Trojovskỳ,

2023). The Sparrow Search Algorithm (SSA) was first introduced by

Xue et al. in 2020 (Xue and Shen, 2020). In comparison to other

algorithms, SSA offers several advantages, including fast

convergence, strong optimization capabilities, and a wider range

of application scenarios. As a result, SSA has garnered the attention

of researchers from various fields. However, SSA does have

limitations in terms of initial population quality, search

capabilities, and population diversity. To address these issues, the

Improved Sparrow Search Algorithm (ISSA) was proposed (Song

et al., 2020). ISSA introduces non-linear decay in the position

updates of producers, which facilitates the exploration and

utilization of the search space. ISSA incorporates a mutation

strategy to update the positions of scavengers with lower energy,

combining chaotic search with local development by higher-energy

scavengers. This enhances diversity and prevents falling into local

optima. At the same time, the Tent mapping is used to initialize the

population. Then, for the producers, an adaptive weight strategy is

combined with the Levy flight mechanism, making the fusion

search approach more comprehensive and flexible. Finally, in the

scavenger stage, a variable spiral search strategy is employed to

provide a more detailed search scope (Ouyang et al., 2021).

Traditional network equalizers suffer from problems such as

large steady-state errors, slow convergence, susceptibility to local

minima during the search process, and the curse of dimensionality.

Moreover, in the training phase of neural networks, the random

initialization of weights and biases can substantially impact the
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training process and the ultimate performance of the network. In

contrast, swarm intelligence optimization algorithms exhibit strong

convergence and high precision advantages in the optimization

process of practical problems. Therefore, they have become popular

research topics in the field of equalizer optimization methods. A

modified constant modulus algorithm digital channel equalizer

learning algorithm based on PSO is proposed by Sahu (Sahu and

Majumder, 2021). The particle swarm algorithm is employed as the

training algorithm, resulting in a shorter convergence time and

better performance compared to traditional LMS algorithms. This

equalizer avoids introducing any phase ambiguity and does not get

trapped in local optima. A novel training strategy using the Fuzzy

Firefly Algorithm is proposed for channel equalization (Mohapatra

et al., 2022). By employing an appropriate network topology and

parameters, the suggested training system exhibits enhanced

exploration and exploitation capabilities, as well as the ability to

address local minima issues. An enhanced Grasshopper

Optimization Algorithm (GOA) is proposed for nonlinear

wireless communication channel equalization (Ingle and Jatoth,

2023). By combining Levy flights and greedy selection operators

with the basic GOA, the diversity of the swarm is increased.

Simulation results on four nonlinear channels demonstrate the

exploration and exploitation capabilities of the improved

Grasshopper Optimization Algorithm in terms of MSE and BER

performance. An effective equalizer based on artificial neural

networks is proposed by Shwetha (Shwetha et al., 2023). The

Battle Royale Optimization method, as introduced, is utilized to

train the weights of the neural network. The effectiveness of this

approach is demonstrated through the evaluation of performance

metrics such as MSE, mean squared residual error, and BER.

In shallow water acoustic propagation, there often exists

severe multipath effects. Traditional equalization techniques

may require hundreds of taps, greatly increasing system

complexity. While the DFFLNNE (Hussain et al., 1997)

outperforms FLNNE and traditional DFE, but it increases the
Frontiers in Marine Science 04
dimensionality of the input layer, raising the complexity of the

network structure. Simultaneously, during the training phase of

the network, random initialization of weights and biases can affect

the neural network’s training process and final performance.

Improper initialization can lead to problems such as gradient

vanishing or exploding, causing training to be infeasible or overly

slow. To enhance communication reliability without increasing

system complexity, this paper proposes a simplified decision

feedback Chebyshev functional link neural network equalizer

(SDF-CFLNNE) initialized with swarm intelligence optimization

algorithms. The papers contributions can be summarized

as follows.
1. To address the issue of unreliability in underwater

communication links caused by significant strong

multipath effects in shallow-water environments, we

propose a simplified decision feedback Chebyshev

function link neural network equalizer.

2. To optimize the initial weights and thresholds of the

proposed equalizer, We propose a Chaotic Sparrow

Search Algorithm combining osprey optimization

algorithm and Cauchy mutation. This approach mitigates

the instability resulting from random weight initialization

in the network equalizer.
The rest of this paper is organized as follows. In Section 2, a

novel simplified decision feedback Chebyshev functional link neural

network equalizer is proposed to address the unreliability of

communication due to multipath effects. In Section 3, a chaotic

sparrow search algorithm combining osprey optimization

algorithm and Cauchy mutation is proposed for intelligent

optimization of network weight and bias initialization. We

validate the method through simulation and lake experimental

data processing in Section 4. Finally, conclusions are given in

Section 5.
FIGURE 1

The structural diagram of the CFLNNE.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1331635
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2023.1331635
2 A novel simplified decision feedback
Chebyshev functional link neural
network equalizer

2.1 Decision feedback Chebyshev
functional link neural network equalizer

To overcome intersymbol interference caused by multipath

effects, a channel equalizer is embedded in the receiver to restore

the transmitted signal. The FLNNE (Patra et al., 1999) has no

hidden layers and is composed solely of a function extension

module and a single-layer perceptron. This composition enables

the generation of complex decision regions through the creation of

nonlinear decision boundaries. In contrast to the linear weighting of

input patterns generated by linear connections in MLP, the function

expansion module enhances the dimensionality of input patterns by

applying a set of linearly independent functions to elements or the

entire pattern itself, thus enhancing its representation in high-

dimensional space. Moreover, due to its single-layer structure,

this FLNN structure exhibits lower computational complexity

and faster convergence speed compared to other traditional

neural networks. As widely recognized, utilizing the optimal

approximation theory, Chebyshev orthogonal polynomials possess

a robust capability for nonlinear approximation (Patra et al., 2005).

The function expansion module in this context is composed of

Chebyshev polynomials and their outer products, serving to

simulate nonlinear channels, to construct the Chebyshev

Functional Link Neural Network Equalizer (CFLNNE). The

Figure 1 illustrates the structure of the CFLNNE.

Chebyshev polynomials are a set of orthogonal polynomials

defined as solutions to the Chebyshev differential equation, denoted

as Tn(x). Chebyshev polynomials are computationally more

tractable compared to trigonometric polynomials. The first

several Chebyshev polynomials are given by T0(x) = 1, T1(x) = x,
Frontiers in Marine Science 05
and T2(x) = 2x2 − 1. When the input signal is Xk= [x1(k),x2(k),…,xM
(k)]T, the higher-order Chebyshev polynomials for −1< x< 1 can be

generated using the following recursion formula Equation 1:

c1(Xk)  = T0(Xk)  =  1,

c2(Xk)  = T1(Xk)  = Xk,

⋮

cn+2(Xk)  = Tn+1(Xk)  =  2XkTn(Xk)  − Tn−1(Xk)

(1)

In CFLNNE, the input signal denoted as Xk, is expanded into N

linearly independent functions using Chebyshev polynomials, and

can be represented as Ck= [c1(Xk)c2(Xk)…cN(Xk)]
T.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 2 and 3:

uj(k) =o
N

i=1
wji(k)ci(Xk) + bj(k) i = 1, 2,…,N ; j = 1, 2,…M : (2)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)ci(Xk) + bj(k)) i = 1, 2,…,N ; j

= 1, 2,…M : (3)

where w represents the weight coefficients from the input layer

to the output layer, and b represents the bias of the output layer. The

nonlinear activation function here is f(·) = tanh(·), and its derivative

is denoted as f′(·).
The output signal after decision device can be represented as

Equation 4:

s(k) = sign(ŷ (k)) =
−1  if ŷ (k) < 0

1  if ŷ (k) ≥ 0

(
(4)

Taking advantage of the traditional decision feedback equalizer’s

ability to mitigate inter-symbol interference introduced by the preceding

information symbol, Hussain et al. integrated the DFE with a FLNN,
FIGURE 2

The structural diagram of the DF-CFLNNE.
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creating the decision feedback functional link neural network (Hussain

et al., 1997). To further enhance the nonlinear approximation

capabilities of the function link module, the DFE is combined with

CFLNNE to form a decision feedback Chebyshev functional link neural

network (DF-CFLNNE), as illustrated in Figure 2.

The input signal Xk= [x1(k),x2(k),…,xM(k)]
T and feedback

signal Sk =  ½s1(k),…, sN2
(k)�T from the decision device are jointly

used as the input signal Zk= [Xk, Sk] for the DF-CFLNNE, where N2

represents the order of the feedback delay path. The key distinction

from CFLNNE is that CFLNNE takes only Xk as its input signal,

without the feedback signals from the decision device.

Subsequently, the input signal Zk of DF-CFLNNE is expanded

into N linearly independent functions using Chebyshev

polynomials, denoted as Ck= [c1(Zk),c2(Zk),…,cN(Zk)]
T, where Ck

serves as the input to the network’s input layer.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 5 and 6:

uj(k) =o
N

i=1
wji(k)ci(Zk) + bj(k) i = 1, 2,…,N ; j = 1, 2,…M : (5)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)ci(Zk) + bj(k)) i = 1, 2,…,N ; j

= 1, 2,…M : (6)

For convenience, these values of functions can be represented in

matrix form as Equation 7:

Ŷ k = f (WkCk + Bk) (7)

whereWk is anM ×N dimensional matrix, i.e.,Wk= [wj1,wj2,…,

wjN]. Bk is an M ×1 dimensional matrix, i.e., Bk= [b1,b2,…,bM]. The
Frontiers in Marine Science 06
output of the entire network can be represented in matrix form as

Ŷ k = ½ŷ 1, ŷ 2,…ŷ M �T .
We use the MSE as the loss function, which can be represented

as Equation 8:

Jk =o(Dk − bY k)
2 (8)

where Dk represents the desired output sequence at time

instant k.

The backpropagation algorithm is employed here to train the

DF-CFLNN. The training process is expressed as follows Equations

9 and 10:

dJk
dWk

= ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Wk

= 2(Dk − Ŷ k) · f
0(Uk) · Ck

= 2(Dk − Ŷ k) · (1 − Ŷ
2
k) · Ck

(9)

dJk
dBk

= ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Bk

= 2(Dk − Ŷ k) · f
0(Uk)

= 2(Dk − Ŷ k) · (1 − Ŷ
2
k)

(10)

According to the gradient descent algorithm, there will be

Equations 11 and 12:

Wk = Wk − m
dJk
dWk

(11)

Bk = Bk − m
dJk
dBk

(12)

where the parameter µ denotes the learning factor.
FIGURE 3

The structural diagram of the SDF-CFLNNE.
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2.2 Simplified decision feedback
Chebyshev functional link neural
network equalizer

DF-CFLNNE increases the system’s performance at the cost of

increased complexity. In order to reduce hardware costs without

compromising system performance, a simplified DF-CFLNNE

(SDF-CFLNNE) structure is proposed as illustrated in Figure 3.

In the SDF-CFLNNE structure, the post-decision output signal

is directly fed back to the input layer of the neural network, rather

than being used as an input signal to the network, and it no longer

goes through the function expansion module. Namely, the input

layer signal is composed of the Chebyshev polynomial function

expansion of the received signal, denoted as Ck= [c1(Xk),c2(Xk),…,

cN(Xk)]
T, and the feedback signal fafter decision, denoted as Sk =

 ½s1(k),…, sN2
(k)�T , which can be represented as Gk =  ½c1(Xk), c2(Xk

),…, cN (Xk), s1(k),…, sN2
(k)�T = ½g1(k),…, gP(k)�T , P = N + N2. I t

can be observed from Figures 2, 3 that the number of input

signals in SDF-CFLNNE is fewer compared to DF-CFLNNE.

Consequently, the number of signals after the function expansion

module for SDF-CFLNNE is significantly reduced compared to

DF-CFLNNE. This streamlined system structure enhances

computational efficiency.

Through forward propagation, the j-th neuron of the output

layer can be represented as Equations 13 and 14:

uj(k) =o
N

i=1
wji(k)gi(k) + bj(k) i = 1, 2,…, P; j = 1, 2,…M : (13)

ŷ j(k) = f (uj(k)) = f (o
N

i=1
wji(k)gi(k) + bj(k)) i = 1, 2,…, P; j

= 1, 2,…M : (14)

where w represents the weight coefficients from the input layer

to the output layer, and b represents the bias of the output layer. The

nonlinear activation function here is f(·) = tanh(·).

For convenience, these values of functions can be represented in

matrix form as Equation 15:

bY k = f (WkGk + Bk) (15)

where Wk is an M ×P dimensional matrix, i.e., Wk= [wj1,wj2,…,

wjP]. Bk is an M ×1 dimensional matrix, i.e., Bk= [b1,b2,…,bM]. The

output of the entire network can be represented in matrix form as

Ŷ k = ½ŷ 1, ŷ 2, ŷ M �T . We still adopt the MSE, as given in Equation 8,

as the loss function.

The BP algorithm is employed here to train the SDF-CFLNN.

According to Equations 9 and 10, the training process is expressed

as follows Equations 16 and 17:

Wk+1 = Wk − m dJk
dWk

= Wk − m ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Wk

= Wk − 2m(Dk − Ŷ k) · f
0(Uk) · Gk

= Wk − 2m(Dk − Ŷ k) · (1 − Ŷ
2
k) · Gk

(16)
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Bk+1 = Bk − m dJk
dBk

= Bk − m ∂ Jk
∂ Ŷ k

· ∂ Ŷ k
∂Uk

· ∂Uk
∂Bk

= Bk − 2m(Dk − Ŷ k) · f
0(Uk)

= Bk − 2m(Dk − Ŷ k) · (1 − Ŷ
2
k)

(17)

where the parameter µ denotes the learning factor.

SDF-CFLNNE directly inputs the decision feedback signal into

the network’s input layer instead of the function expansion module,

reducing the number of neurons in the input layer. In this way, we

can obtain the improvement of system performance from the

feedback signal without increasing the number of neurons in the

input layer of the network. It reduces system complexity, enhances

computational efficiency, and accelerates convergence speed.
3 A novel chaotic sparrow search
algorithm combining osprey
optimization algorithm and
Cauchy mutation

In this section, a OCCSSA is proposed to solve the impact of the

random initialization of network weights on the convergence of the

training process and network performance. This algorithm utilizes

chaotic mapping for random population initialization and

combines the osprey optimization algorithm with the Cauchy

mutation criterion to update the positions in the SSA. The use of

the osprey optimization algorithm.

(OOA) in the initial phase provides a global exploration

strategy, where a random attack on one of the food sources helps

mitigate the SSA’s over-reliance on the previous generation’s

sparrow positions for updates. In the second phase, Cauchy

mutation is applied to perturb individuals in the sparrow

positions, thereby expanding the search scope of the SSA and

enhancing its ability to escape local optima.
3.1 Preliminaries

We briefly introduce the basic framework of SSA, chaotic

mapping, OOA, Cauchy mutation, and some basic concepts.

3.1.1 Sparrow search algorithm
Sparrows are typically gregarious birds. Captive house sparrows

come in two different types, referred to as “producers” and

“scroungers” (Barnard and Sibly, 1981). The producers actively

search for sources of food, while the scroungers obtain food through

the producers. Additionally, these birds are typically capable of

flexibly employing behavioral strategies and switching between

producing and scrounging (Liker and Barta, 2002). It can be said

that, in order to find food, the sparrows often utilize both producer

and scrounger strategies simultaneously (Barnard and Sibly, 1981;

Xue and Shen, 2020).
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Assuming there are N sparrows in a d-dimensional search

space, the position of each sparrow can be represented by the

following matrix Equation 18:

X =

x1,1 x1,2 … … x1,d

x2,1 x2,2 … … x2,d

⋮ ⋮ ⋮ ⋮ ⋮

xN ,1 xN ,2 … … xN ,d

2666664

3777775 (18)

The positions of sparrows in the search space are randomly

initialized using Equation 19.

xi,j = lbj + ri,j · (ubj − lbj) (19)

where xi,j represents the position of the i-th sparrow in the j-th

dimension. ri,j is a random number in the interval [0,1]. lbj and ubj
are the lower and upper bounds of the j-th dimension of the

problem variables, respectively.

The fitness values of all sparrows can be represented by the

following vector Equation 20:

FX =

f (½x1,1 x1,2 … … x1,d�)
f (½x2,1 x2,2 … … x2,d�)
⋮ ⋮ ⋮ ⋮ ⋮

f (½xN ,1 xN ,2 … … xN ,d�)

2666664

3777775 (20)

The first stage is the exploration phase. The producers with

better fitness values are given preference when it comes to acquiring

food during the search process. Additionally, because producers

take on the responsibility of food searching and guiding the entire

population’s movement, they have a wider search area compared to

the scroungers. Moreover, when a sparrow detects a predator, it

initiates an alarm by chirping. If the alarm value surpasses a

predefined safety threshold, producers must lead all the

scroungers to a safe zone. Throughout each iteration, the

positions of producers are updated as follows Equation 21:

Xt+1
i,j =

Xt
i,j · exp  (

−i
a · iter max 

)  if R2 < ST

Xt
i,j + Q · L  if R2 ≥ ST

(
(21)

where t represents the current iteration number, j = 1, 2,…, d :

Xt+1
i,j represents the value of the j-th dimension for the i-th sparrow

at the t-th iteration. itermax signifies the maximum number of

iterations. a ∈ (0,1] is a random number. Q is a random number

following a normal distribution. L is a matrix of size 1 × d in which

every element is equal to 1. R2 (where R2 ∈ [0,1]) represents the

alarm value. ST (where ST ∈ [0.5,1]) stands for the safety threshold.

If R2< ST, it signifies an absence of predators in the vicinity,

prompting the producers to transition into an expansive search

mode. However, when R2 ≥ ST, it signifies that certain sparrows

have detected predators, necessitating a swift relocation of all

sparrows to alternative safe areas.

The second phase is the development phase. Scroungers follow

the producers who can offer the best food to search for

nourishment. Meanwhile, some scroungers may continuously

monitor the producers, and if they notice a producer has found
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good food, they immediately leave their current location to compete

for the food. If they succeed, they can acquire the producer’s food

immediately. The position update formula for the scroungers is as

follows Equation 22:

Xt+1
i,j =

Q · exp  
Xt
worst −X

t
i,j

i2

� �
 if i > N=2

Xt+1
P + Xt

i,j − Xt+1
P

��� ��� · A+ · L  otherwise 

8><>: (22)

where XP represents the optimal position occupied by the

producer. Xworst represents the current global worst location. A is

a 1×dmatrix where each element is randomly set as 1 or −1, and A+

= AT(AAT)−1. If i > N/2, it indicates that the i-th scrounger, with the

worst fitness value, is highly likely to be in a starved state.

When they sense danger, sparrows located at the edge of the

flock quickly move towards a safe area, while those in the middle of

the flock move randomly to get closer to others. We assume that the

sparrows aware of the danger constitute between 10% and 20% of

the total population. The initial positions of these sparrows are

randomly generated within the entire population and can be

expressed using the following formula Equation 23:

Xt+1
i,j =

Xt
best  + b · Xt

i,j − Xt
best 

��� ���  if fi > fg

Xt
i,j + K · (

Xt
i,j−X

t
worst j j

(fi−fw)+ϵ
)  if fi = fg

8><>: (23)

where Xbest is the current global optimal location. b, as a step

size control parameter, is a random number following a normal

distribution with a mean of 0 and a variance of 1. K ∈ [−1,1] is a

random number and denotes the direction in which the sparrow

moves and is also the step size control coefficient. ϵ is a small

constant to avoid division by zero errors. Here, fi represents the

fitness value of the current sparrow, and fg and fw are the current

global best and worst fitness values, respectively.

If fi > fg, this signifies that the sparrow is positioned at the

group’s periphery. Xbest denotes the location of the population

center and is considered safe. If fi= fg, it implies that sparrows in

the middle of the group have sensed danger and must approach

the others.

3.1.2 Chaotic mapping
A chaotic matrix is a typical source of “ordered chaos,”

exhibiting unique characteristics of randomness and state

transitivity. Under certain “rules,” chaotic sequences traverse all

different states within a defined range. Chaotic sequences generally

possess several key features, including nonlinearity, sensitivity to

initial conditions, transitivity, randomness, strange attractors

(chaotic attractors), global stability and local instability, and long-

term unpredictability.

In the context of intelligent optimization algorithms, random

initialization of the population is often achieved using a uniform

distribution. Compared to standard random search based on

conventional probability distributions, the use of chaotic

mappings in intelligent optimization algorithms can help

popula t ions escape loca l minima and enable fas ter

iterative searches.
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3.1.3 Osprey optimization algorithm
The OOA was proposed by Mohammad Dehghani and Pavel

Trojovský in 2023(Dehghani and Trojovskỳ, 2023), simulating the

hunting behavior of ospreys.

The first phase is the exploration phase, involving the locating

and capturing of fish. Ospreys, with their powerful vision, are

formidable predators capable of spotting fish beneath the water’s

surface. Once they’ve pinpointed a fish’s location, they dive

underwater to attack and capture it. The initial stage of

population update in OOA draws inspiration from this natural

osprey behavior. Modeling how ospreys hunt fish results in

substantial alterations to the ospreys’ positions within the search

space. This, in turn, enhances OOA’s ability to explore and locate

optimal regions while avoiding local optima.

Let’s assume there are N ospreys in a d-dimensional search

space. For each osprey, the positions of other ospreys in the search

space that have a better objective function value are considered

underwater fish. The set of fish for each osprey is specified using

Equation 24.

FPi = Xk j k ∈ 1, 2,…,Nf g∧ Fk < Fif g∪ Xbest f g (24)

where FPi is the set of fish positions for the i-th osprey and Xbest

is the best candidate solution.

The osprey employs a random process to detect the location of

one of these fishes, and it initiates an attack. Through modeling the

osprey’s movement as it approaches the fish, a new position is

computed for the osprey by Equation 25 and Equation 26.

xP1i,j = xi,j + ri,j · (SFi,j − Ii,j · xi,j) (25)

xP1i,j =

xP1i,j , lbj ≤ xP1i,j ≤ ubj

lbj, x
P1
i,j < lbj

ubj, x
P1
i,j > ubj

8>>><>>>: (26)

This new position, if it results in a better objective function

value, replaces the osprey’s previous position by Equation 27.

Xi =
XP1
i , FP1

i < Fi

Xi,  else 

(
(27)

where xP1i,j is the new position of the i-th osprey in the j-th

dimension in the first phase, FP1
i is its fitness value, and SFi,j is the

fish chosen by the i-th osprey in the j-th dimension. ri,j is a random

number within the range [1,2], and Ii,j is a random number chosen

from the set {1,2}.

The second phase is known as the development stage. After

successfully capturing a fish, the osprey relocates it to a secure and

suitable spot for consumption. This modeling, involving the

relocation of the fish, introduces minor adjustments to the

osprey’s positions within the search space. Consequently, it

enhances OOA’s capability for exploiting the local search and

converging towards improved solutions around the identified ones.

In the OOA design, the emulation of osprey behavior involves

initially determining a new random position for each individual in

the population, akin to a “fish-eating spot.” This calculation is based
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on Equation 28. Subsequently, if this new position results in an

improved objective function value, it is employed to replace the

previous position of the respective osprey according to Equation 29.

xP2i,j = xi,j +
lbj + r · (ubj − lbj)

t
(28)

xP2i,j =

xP2i,j , lbj ≤ xP2i,j ≤ ubj

lbj, x
P1
i,j < lbj

ubj, x
P1
i,j > ubj

8>>><>>>: (29)

This new position, if it results in a better objective function

value, replaces the osprey’s previous position by Equation 30.

Xi =
XP2
i , FP2

i < Fi

Xi,  else 

(
(30)

where xP2i,j is the new position of the i-th osprey in the j-th

dimension in the second phase, FP2
i is its fitness value, and SFi,j is the

fish chosen by the i-th osprey in the j-th dimension. r is a random

number within the range of [1,2], t represents the current iteration

count, and T is the maximum number of iterations.
3.1.4 Cauchy mutation
The Cauchy mutation is derived from the Cauchy distribution.

The probability density function of the one-dimensional Cauchy

distribution is given by Equation 31:

f (x) =
1
p
·

a
a + x2

(31)

here, when a = 1, it is the standard Cauchy distribution.

The Cauchy distribution is similar to the standard normal

distribution. It is a continuous probability distribution that has

smaller values near the origin, is more elongated towards the ends,

and approaches zero at a slower rate. Therefore, compared to

the normal distribution, it can introduce larger disturbances. By

utilizing Cauchy mutation for perturbing individuals in the sparrow

position updates, the SSA’s search scope is expanded, leading to an

improved ability to escape local optima.
3.2 Chaotic sparrow search algorithm
combining osprey optimization algorithm
and Cauchy mutation

Traditional SSA employs a random initialization method for the

population, which can lead to premature convergence and slower

convergence speed. To address this, this paper adopts a chaotic

population initialization approach. This ensures randomness in

the population while enhancing the algorithm’s convergence

performance and diversifying the population. This helps prevent

algorithm stagnation caused by a homogenous population.

The positions of sparrows in the search space are initialized

using Piecewise chaotic mapping, as shown in Equation 32.
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xi,j = lbj + chaosi,j˙(ubj − lbj) (32)

Where chaosi,j represents the chaotic mapping.

The first phase is the exploration phase. For producers, the

Equation 25 of OOA’s global exploration strategy in the first phase

replaces the original producer position update Equation 21 of the

SSA. OOA aims to address the SSA’s overreliance on the update

method based on the positions of the previous generation

of sparrows.

The update method for the positions of producers in the

sparrow algorithm is determined based on the simulation of the

osprey’s movement toward fish. For each sparrow, the locations of

other sparrows in the search space with superior fitness values are

considered as food. Equation 33 is utilized to determine the set of

superior food chosen by each sparrow.

FPi =   Xk j k ∈   1, 2,…,Nf g ∧ Fk <  Fif g  ∪   Xbestf g (33)

where FPi represents the food collection for the i-th sparrow,

and Xbest is the position of the best sparrow.

The sparrows randomly detect the position of one of the foods

and go hunting. During each iteration, the positions of the

producers are updated according to Equation 34. If the updated

position is better, the sparrow’s previous position is replaced.

Xt+1
i,j =

Xt
i,j + ri,j · (SFi,j − Ii,j · X

t
i,j)  if R2 < ST

Xt
i,j + Q · L  if R2 ≥ ST

(
(34)

where SFi,j represents the food chosen by the i-th sparrow in the

j-th dimension.

The second phase is the development stage. Scroungers often

focus their search around the best discoverers. Food competition

can also occur during this period, where a scrounger tries to become

the producer. To prevent the algorithm from getting trapped in
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local optima, a Cauchy mutation strategy is introduced into the

equation for updating the scroungers. The updated scrounger

position equation, replacing the original SSA’s scrounger position

update equation, is as follows:

Xt+1
i,j = Xbest(t) + cauchy(0, 1)⊕ Xbest(t) (35)

where Xbest represents the current global best position. cauchy

(0,1) is the standard Cauchy distribution function, and ⊕
denotes multiplication.

The sparrows that sense danger still undergo updates according

to Equation 23.

The pseudocode for OCCSSA, which we have proposed, is

presented in Algorithm 1.
4 Simulation and lake
experiments results

4.1 Simulation validation and comparison

4.1.1 Comparison of the neural
network equalizers

We used Bellhop Acoustic Toolbox to generate a time-varying

UWA channel model to evaluate equalizers (Zhou et al., 2022). The

parameters for the time-varying Bellhop channel simulator are

listed in Table 1. We conducted simulations in three different

underwater acoustic channel environments, with the different

transmitter depth and seabed medium. The sound speed profile

of 200 m is shown in Figure 4. The acoustic transmission loss

obtained using the acoustic toolbox is shown in the Figures 5A, C, E.

The maximum transmission loss is approximately 70 dB. The

channel impulse response plot from the sound source to the

receiving point is shown in the Figures 5B, D, F.
Input: Max_iter: maximum iteration; PD: the number of

producers; SD: the number of sparrows who perceive the

danger; R2: the alarm value; n: the population size.

Output: Xbest: the current global best position.

1: Initialize: Using Equation 32 to initialize the

population

2: while iter< Max_iter do

3: Sort the fitness values to find the current best and

worst individuals.

4: R2 = rand(1)

5: for i =1: PD do

6: Find a better food location using Equation 33.

7: Producers randomly select a food and update their

positions using Equation 34.

8: end for

9: Find the optimal population and record as Xbest.

10: for i = (PD + 1): n do

11: Scroungers use the Cauchy mutation strategy to

update their positions using Equation 35.
TABLE 1 Bellhop simulation parameters setup.

Parameter CH1 CH2 CH3

Modulation type QPSK QPSK QPSK

Sound source frequency 10 kHz 10 kHz 10 kHz

Sound pressure level 195 dB 195 dB 195 dB

Angle of sound wave emitted
by transmitter point

−20° ∼
+ 20°

−20° ∼
+ 20°

−20° ∼
+ 20°

Sea water depth 200 m 200 m 200 m

Transmitter depth 80 m 80 m 150 m

Receiver depth 40 m 40 m 40 m

Distance from receiving point
to transmitter point

3 km 3 km 3 km

P-wave speed of sound
in bottom

1511.96 m/s 1511.96 m/s 1511.96 m/s

Density at the cutoff depth of
the seabed medium

1.421 g/cm3 2.034 g/cm3 1.421 g/cm3

Attenuation coefficient of the
seabed medium

0.078
dB/

wavelength

0.479
dB/

wavelength

0.078
dB/

wavelength
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Fron
12: end for

13: for i = 1: SD do

14: Sparrows partially aware of danger update their

positions using Equation 23.

15: end for

16: Obtain the global best value Xbest.

17: iter = iter + 1

18: end while

19: return Xbest
Algorithm 1. The pseudocode of OCCSSA.

We will compare equalizers based on MLP (Gibson et al., 1989),

CFLNN (Patra et al., 2005), DFCFLNN (Zhao and Zhang, 2008)and

traditional DFE with phase-locked loop (PLL) (Stojanovic

et al., 1994).

CFLNN has 10 feedforward taps, and its input signal is

represented as Xk= [rk,i,rk,q,rk+1,i,rk+1,q,…, rk+9,i,rk+9,q]
T. Here, rk,

irepresents the I-path of the k-th signal, and rk,q represents the

Qpath of the k-th signal. The input signal is transformed into 121

dimensions through a six-order Chebyshev transformation.

Therefore, the input layer has 121 nodes, and the output layer has

2 nodes. In DF-CFLNN, the tap coefficient of feedback is 2, and the

input signal consists of Xk= [rk,i,rk,q,rk+1,i,rk+1,q,…,rk+9,i,rk+9,q]
T and

the feedback signal Sk= [sk,i,sk,q,sk−1,i,sk−1,q] from the decision device.

The input signal is transformed into 97 dimensions through a four

order Chebyshev transformation. Therefore, the input layer has 97

nodes, and the output layer has 2 nodes. In SDF-CFLNN, the tap

coefficient of feedback is 2, and the input signal Xk=[rk,i,rk,q,rk+1,i,rk

+1,q,…,rk+9,i,rk+9,q]
T is transformed into 41 dimensions through a

two-order Chebyshev transformation. The input layer has 45 nodes,

including 41 nodes for input signals and 4 nodes for feedback

signals. The parameters for each equalizer are as shown in Table 2.

To enhance the reliability, we conducted 30 independent trials

on each equalizer. In our setup, we use 10,000 QPSK signals as input

data, with 80% serving as training data and 20% as testing data. In
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each trial, the maximum iteration count was set to 1000. Since

this paper focuses on the learning and equalization capabilities of

neural networks, in our simulations, we assumed perfect time

sequence recovery.

The simulated BER graph is shown in the Figures 6A, C, E. It

can be observed that our proposed SDFCFLNNE exhibits the best

BER performance in two different underwater acoustic

environments, followed by DF-CFLNNE, traditional DFE-PLL,

and CFLNNE in descending order. In complex underwater

environments, the MLP equalizer performs poorly and is the least

effective. The MSE iteration curve at SNR=10 dB is shown in the

Figures 6B, D, F. SDF-CFLNNE converges the fastest, with minimal

initial oscillations, and exhibits smooth and stable convergence. It

also has the smallest MSE value when reaching a steady state. In

CH1, SDF-CFLNNE reaches convergence in about 20 iterations,

while DFCFLNNE and CFLNNE reach convergence around 300

iterations with minor oscillations. MLP achieves basic convergence

in approximately 70 iterations but experiences significant

oscillations. In CH2, SDFCFLNNE reaches convergence in about

40 iterations, while DF-CFLNNE, CFLNNE, and MLP all converge

around 300 iterations with minor oscillations.
4.1.2 Comparison of the swarm intelligence
optimization algorithms
4.1.2.1 Benchmark test functions

Benchmark test functions are typically utilized to evaluate the

performance of optimization algorithms. We utilized the CEC2005

benchmark test functions as provided in Table 3 (Suganthan et al.,

2005) to assess the applicability and effectiveness of the proposed

OCSSA algorithm.
4.1.2.2 Comparison of chaotic mapping methods

In order to select the more effective chaotic mapping, we

initialized the population of OCCSSA using ten different chaotic
FIGURE 4

The sound speed profile of 200 m.
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mappings, namely Tent, Logistic, Cubic, Chebyshev, Piecewise,

Sinusoidal, Sine, ICMIC, Circle, and Bernoulli.

The experimental test environment is as follows: 12th Gen Intel

(R) Core(TM) i7-12700H CPU with a base frequency of 2.70 GHz

and 16.0 GB of RAM. The operating system used is Windows 11,
Frontiers in Marine Science 12
and the integrated development environment (IDE) is

Matlab 2021a.

To increase the credibility of the algorithm, we conducted 30

independent trials on each test function. The maximum iteration

count was set to 500, and the population size was 50. The
TABLE 2 Network parameter configuration.

Parameter DFE-PLL MLP CFLNN DF-CFLNN SDF-CFLNN

Tap coefficient of feedforward 100 10 10 10 10

Tap coefficient of feedback 50 – 2 2 2

Order of Chebyshev polynomials – – 6 4 2

Number of nodes in the input layer – 20 121 97 45

Number of nodes in the hidden layer – 41 – – –

Number of nodes in the output layer – 4 4 4 4

Step size – 0.005 0.025 0.025 0.025
B

C D

E F

A

FIGURE 5

The channel information. (A) The transmission loss at CH1. (B) the impulse response at CH1. (C) The transmission loss at CH2. (D) the impulse
response at CH2. (E) The transmission loss at CH3. (F) the impulse response at CH3.
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TABLE 3 Details of the CEC2005 benchmark suite.

Classification Function Dim [Xmin,
Xmax]

Fmin

Unimodal benchmark functions F1(x) =o
  n

i=1

x2i
30 [100,100] 0

F2(x) =o
  n

i=1

j x2i j +
Y   n
i=1

j xi j
30 [100,100] 0

F3(x) =o
  n

i=1
o
  i

j−1

xj

 !2 30 [100,100] 0

F4(x) = maxi xij jf g, 1 ≤ i ≤ n 30 [100,100] 0

F5(x) = o
n−1

  i

100(xi+1 − x2i )
2 + (xi − 1)2

� � 30 [30,30] 0

F6(x) =o
  n

i=1

(½xi + 0:5�)2 30 [100,100] 0

F7(x) =o
  n

i=1

ix4i + random½0, 1) 30 [1.28,1.28] 0

Multimodal benchmark functions F8(x) =o
  n

i=1

− xi sin  (
ffiffiffiffiffiffiffi
xij j

p
) 30 [500,500] 418.9829

× dim

F9(x) =o
  n

i=1

½x2i − 10 cos  (2pxi) + 10� 30 [5.12,5.12] 0

F10(x) = −20 exp   −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

  n

i=1

x2i

s !
Þ − exp  

1
2o
  2

i=1

cos  (2pxi)

 !
+ 20 + e

30 [32,32] 0

F11(x) =
1

4000o
  n

i=1

x2i −
Yn
i=1

cos  
xiffiffi
i

p
� 	

+ 1
30 [600,600] 0

F12(x) =
p
n 10 sin  (py1) +o

  n

i=1

(yi − 1)2½1 + 10 sin2 (pyi)� + (yn − 1)2
( )

yi = 1 + xi+1
4 u(xi , a, k,m) =

k(xi − a)m , xi > a

0,−a < xi < a

k( − xi − a)m , xi < −a

8>>>><>>>>:

30 [50,50] 0

F13 = 0:1 sin2 (3px1) +o
  n

i=1

(xi − 1)2½1 + sin2 (3px1 + 1)� + (xn − 1)2½1 + sin2 (2pxn)�
( )

+o
  n

i=1

u(xi , 5, 100, 4)

30 [50,50] 0

Fixed-Dimension multimodal
benchmark functions

F14(x) =
1
500

+o
 25

j=1

1

j +o
2

i=1

(xi − aij)
6

0BBB@
1CCCA

−1 2 [65,65] 1

F15(x) =o
 11

i=1

ai −
x1(b

2
1 + b1x2)

b21 + b1x3 + x4


 �2 4 [5,5] 0.00030

F16(x) = 4x21 − 2:1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42

2 [5,5] 1.0316

F17(x) = x2 −
5:1
4p2 x

2
1 +

5
p
x1 − 6

� 	2

+10 1 −
1
8p

� 	
cos  x1 + 10

2 [5,5] 0.398

F18(x) = ½1 + (x1 + x2 + x3)
2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)�

�½30 + (2x1 − 3x2)
2 � (18 − 32x1 + 12x2 + 48x2 − 36x1x2 + 27x22)�

2 [−2,2] 3

F19(x) = −o
  4

i=1

ci exp   −o
  4

j=1

aij(xj − pij)
2

 !
3 [0,1] 3.86
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experimental results indicate that overall, the Piecewise chaotic

mapping exhibited superior convergence speed and accuracy. We

selected the results for F15 and F21, where the convergence effects

are more pronounced, for illustration, as shown in Figure 7.

Therefore, we chose the Piecewise mapping as the method for

random population initialization. The expression for the Piecewise

mapping is as shown in Equation 36.
Frontiers in Marine Science 14
x(t + 1) =

x(t)
p , 0 ≤ x(t) < p

x(t)−p
0:5−p , p ≤ x(t) < 0:5

1−p−x(t)
0:5−p , 0:5 ≤ x(t) < 1 − p

1−x(t)
p , 1 − p ≤ x(t) < 1

8>>>>>>><>>>>>>>:
(36)
TABLE 3 Continued

Classification Function Dim [Xmin,
Xmax]

Fmin

F20(x) = −o
  4

i=1

ci exp   −o
6

j=1

aij(xj − pij)
2

 !
6 [0,1] 3.32

F21(x) = −o
  5

i=1

½(X − ai)(X − ai)
T + ci�−1 4 [0,10] 10.1532
fr
B

C D

E F

A

FIGURE 6

The comparison of the four CFLNN-based and DFE-PLL-based equalizers for CH1, CH2 and CH3. (A) The BER performance for CH1. (B) The MSE
performance for CH1 at SNR=10 dB. (C) The BER performance for CH2. (D) The MSE performance for CH2 at SNR=10 dB. (E) The BER performance
for CH3. (F) The MSE performance for CH3 at SNR=10 dB.
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where p  =  0:4,  x(1)  =  rand.

4.1.2.3 Comparison with the improved SSA-type
optimization algorithms

Precision and convergence speed are important indicators for

measuring the quality of an algorithm. In order to better validate the

effectiveness of the proposed algorithm, this section assesses

performance metrics, including convergence precision, using

CEC2005 benchmark test functions. This section reproduces SSA

(Xue and Shen, 2020), ISSA (Song et al., 2020), and the Adaptive

Spiral Flying Sparrow Search Algorithm (ASFSSA) (Ouyang et al.,

2021) to compare their performance against the proposed

optimization algorithm.
Frontiers in Marine Science 15
To enhance the algorithm’s reliability, we conducted 30

independent trials on each test function. In each trial, the

maximum iteration count was set to 500, and the population size

was 50. The safety threshold was set to 0.8, and the number of

producers and sparrows sensing danger was both set to 20% of the

population size. Tables 4–6 provide the optimization indicators for

each algorithm during the optimization process, including the

average objective function value, standard deviation, median, best

value, average runtime, and algorithm ranking. Under the same

standard test functions, the average represents the convergence

accuracy of the algorithm, while the standard deviation reflects its

stability. The algorithm ranking in this paper is based on both the

average and standard deviation, where smaller values indicate better
TABLE 4 The comparative data for the improved SSA-type optimization algorithms on the CEC2005 multi-modal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F8

SSA -3952.9522 -2788.2072 -3355.182 300.0432 -3338.7384 0.28386 4

ASFSSA -4189.8289 -3081.3567 -3601.1772 276.0404 -3594.6031 0.65211 2

ISSA -4189.8289 -2641.0282 -3190.4933 322.1179 -3151.9709 0.56114 3

OCCSSA -4189.8289 -4189.8289 -4189.8289 1.8807e-12 -4189.8289 0.36753 1

F9

SSA 0 0 0 0 0 0.2154 4

ASFSSA 0 0 0 0 0 0.57664 1

ISSA 0 0 0 0 0 0.54976 3

OCCSSA 0 0 0 0 0 0.36489 2

F10

SSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.23346 4

ASFSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.61848 1

ISSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.54772 3

OCCSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.37073 2

F11

SSA 0 0 0 0 0 0.36387 4

ASFSSA 0 0 0 0 0 0.66729 1

ISSA 0 0 0 0 0 0.6481 3

OCCSSA 0 0 0 0 0 0.453 2

(Continued)
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FIGURE 7

The convergence curves of initializing the OCCSSA population with ten different chaotic mappings: (A) F15. (B) F21.
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TABLE 4 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F12

SSA 4.7116e-32 1.2762e-28 7.7739e-30 2.3715e-29 3.8534e-31 0.43226 2

ASFSSA 4.7864e-31 9.1663e-27 7.9713e-28 2.0578e-27 4.4766e-29 1.1384 4

ISSA 4.7116e-32 4.9052e-32 4.7649e-32 6.1095e-34 4.7237e-32 1.0566 1

OCCSSA 5.2199e-32 2.0845e-27 1.102e-28 3.8796e-28 3.7765e-30 0.76728 3

F13

SSA 1.473e-32 1.4984e-26 9.0349e-28 2.7677e-27 3.5795e-29 0.66066 3

ASFSSA 2.0893e-32 8.6921e-27 7.6682e-28 2.13e-27 2.6357e-29 1.1247 2

ISSA 1.3128e-30 0.010987 0.0018312 0.0041648 4.867e-28 1.0698 4

OCCSSA 1.3498e-32 9.19e-28 3.9444e-29 1.6717e-28 1.3786e-30 0.79072 1

F14

SSA 0.998 12.6705 5.868 5.5657 2.9821 1.8161 4

ASFSSA 0.998 10.7632 3.9379 3.9286 2.9821 2.4586 3

ISSA 0.998 12.6705 1.7179 2.1848 0.998 1.9249 2

OCCSSA 0.998 0.998 0.998 2.9156e-16 0.998 1.5888 1

F15

SSA 3.0749e-4 3.5402e-4 3.0904e-4 8.4967e-06 3.0749e-4 0.079858 2

ASFSSA 3.0749e-4 0.0012232 4.3684e-4 2.5835e-4 3.0749e-4 0.19687 3

ISSA 3.0749e-4 0.0015941 6.61e-4 4.7977e-4 3.764e-4 0.13209 4

OCCSSA 3.0749e-4 3.075e-4 3.0749e-4 3.599e-09 3.0749e-4 0.1641 1

F16

SSA -1.0316 -1.0316 -1.0316 6.3208e-16 -1.0316 0.083546 3

ASFSSA -1.0316 -1.0316 -1.0316 5.2964e-16 -1.0316 0.5866 2

ISSA -1.0316 -1.0316 -1.0316 6.5843e-16 -1.0316 0.31525 4

OCCSSA -1.0316 -1.0316 -1.0316 4.9651e-16 -1.0316 0.38597 1

F17

SSA 0.39789 0.39789 0.39789 0 0.39789 0.2027 2

ASFSSA 0.39789 0.39789 0.39789 0 0.39789 0.53944 3

ISSA 0.39789 0.39789 0.39789 0 0.39789 0.29137 1

OCCSSA 0.39789 0.39789 0.39789 0 0.39789 0.41833 4

F18

SSA 3 30 3.9 4.9295 3 0.22676 2

ASFSSA 3 3 3 1.2176e-15 3 0.61142 1

ISSA 3 30 3.9 4.9295 3 0.32566 3

OCCSSA 3 30 7.5 10.2343 3 0.41765 4

F19

SSA -3.8628 -3.8628 -3.8628 2.5391e-15 -3.8628 0.28393 3

ASFSSA -3.8628 -3.8628 -3.8628 2.3557e-15 -3.8628 0.70925 2

ISSA -3.8628 -3.8549 -3.8625 0.001439 -3.8628 0.45951 4

OCCSSA -3.8628 -3.8628 -3.8628 2.1787e-15 -3.8628 0.504 1

F20

SSA -3.322 -3.2031 -3.2507 0.059241 -3.2031 0.27128 3

ASFSSA -3.322 -3.2031 -3.2744 0.059241 -3.322 0.68092 2

ISSA -3.322 -3.2031 -3.2784 0.058273 -3.322 0.48302 4

OCCSSA -3.322 -3.2031 -3.3141 0.030164 -3.322 0.47212 1

F21

SSA -10.1532 -5.0552 -9.6434 1.5555 -10.1532 0.26862 2

ASFSSA -10.1532 -5.0552 -8.4682 2.3059 -10.0281 0.55033 4
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TABLE 4 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

ISSA -10.1532 -5.0552 -8.6174 2.372 -10.1511 0.33206 3

OCCSSA -10.1532 -10.1532 -10.1532 5.1842e-15 -10.1532 0.48869 1
F
rontiers in Marine S
cience
 17
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TABLE 5 The comparative data for the swarm intelligence optimization algorithms on the CEC2005 multimodal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

F8

PSO -8.7193e+3 -3.9441e+3 -6.6761e+3 1.0476e+3 -6.7351e+3 0.097544 8

GWO -7.9899e+3 -5.0501e+3 - -6.4564e+3 - 6.2055e+3 -6.5501e+3 0.21649 9

WOA -1.2568e+4 8.5968e+3 1.1133e+4 1.4966e+3 -1.1671e+4 0.085122 4

BES -9.8392e+3 -4.8897e+3 -6.8080e+3 1.5443e+3 -6.3557e+3 1.7086 7

CSA -1.2567e+4 -5.7760e+3 -8.0776e+3 2.6827e+3 -6.3615e+3 0.082586 6

GTO -1.2569e+4 -1.2569e+4 -1.2569e+4 6.8563e-07 -1.2569e+4 0.35746 1

WSO -4.4925e+3 -3.0767e+3 -3.6360e+3 3.6998e+3 -3.5819e+3 0.068351 10

DBO -1.2352 + 4 -6.8907e+3 -9.3852e+3 1.3641e+3 -9.3650e+3 0.076335 5

OOA -1.2569e+4 -9.0163e+3 -1.1266e+4 1.7415e+3 -1.2569e+4 0.17756 3

OCCSSA -1.2569e+4 -1.2451e+4 -1.2569e+4 21.6229 -1.2569e+4 0.49263 2

F9

PSO 101.3281 218.3835 152.4089 26.5922 151.7649 0.075587 9

GWO 0 8.9196 1.8651 2.6026 4.2633e-13 0.18007 6

WOA 0 0 0 0 0 0.051678 4

BES 0 0 0 0 0 1.3967 5

CSA 7.9697 47.8554 27.9259 11.4001 25.4951 0.054526 8

GTO 0 0 0 0 0 0.29075 3

WSO 15.7193 146.5208 39.0134 27.0612 29.6164 0.068292 10

DBO 0 25.8689 2.1348 5.4652 0 0.061137 7

OOA 0 0 0 0 0 0.093629 2

OCCSSA 0 0 0 0 0 0.41125 1

F10

PSO 1.318 3.306 2.3647 0.46286 2.3992 0.077702 9

GWO 3.9524e-14 6.4393e-14 4.4142e-14 5.8377e-15 4.3077e-14 0.17897 7

WOA 4.4409e-16 7.5495e-15 3.8784e-15 2.5523e-15 3.9968e-15 0.055302 6

BES 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 1.4385 1

CSA 19.9668 19.9668 19.9668 4.9591e-12 19.9668 0.057118 8

GTO 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.29324 4

WSO 2.9679 5.4777 4.0622 0.65712 4.0067 0.072419 10

OOA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.10506 3

DBO 4.4409e-16 3.9968e-15 5.6251e-16 6.4863e-16 4.4409e-16 0.06724 5

OCCSSA 4.4409e-16 4.4409e-16 4.4409e-16 0 4.4409e-16 0.42693 2

F11
PSO 0.033408 0.16374 0.093846 0.033652 0.091152 0.13796 8

GWO 0 0.027649 0.0036764 0.0076973 0 0.23287 6
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algorithm performance and higher rankings. In cases where the

average and standard deviation are the same, the comparison is

based on the convergence speed in the convergence curves. When

the convergence speeds are similar, the average runtime is

considered. The optimal values, algorithms with a ranking of 1,

and the shortest average running time among all compared

algorithms are highlighted in bold.

The data results for the CEC2005 tests are presented in Table 4.

Since the optimization of neural network weights involves multi-

modal functions, we utilized the second-class functions (F8-F13)

and third-class functions (F14-F21) from the CEC2005 benchmark

test functions. In the case of CEC2005 multi-modal functions,

despite these functions having multiple local optima, the

proposed algorithm was able to successfully solve the
Frontiers in Marine Science 18
optimization problems. OCCSSA demonstrated the overall best

performance, especially in F8, F13-F15, and F19-F21, where it

achieved the best values for each indicator, ranking first. For F9-

F11, ASFSSA performed the best, with OCCSSA ranking second.

The runtime falls within a moderate range. From the convergence

curve plots in Figure 8, it is evident that OCCSSA exhibited superior

convergence speed and accuracy in F8, F14-F17, and F19-F21

compared to other algorithms. However, in the case of F18,

OCCSSA performed poorly, with lower convergence accuracy

than other algorithms. Overall, OCCSSA demonstrated good

convergence speed and accuracy, as well as strong resistance to

local optima in multi-modal functions. The introduction of

multiple strategies significantly improved the algorithm’s stability

and search capabilities.
TABLE 5 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP
Median
Value

Average
Running Time

Rank

WOA 0 0.13137 0.0043788 0.023984 0 0.10538 7

BES 0 0 0 0 0 1.0244 4

CSA 1.0139 1.7255 1.1649 0.14593 1.1152 0.10955 9

GTO 0 0 0 0 0 0.3944 3

WSO 1.1382 2.3146 1.5244 0.25651 1.4776 0.12313 10

DBO 0 0 0 0 0 0.072711 5

OOA 0 0 0 0 0 0.19774 2

OCCSSA 0 0 0 0 0 0.51511 1

F12

PSO 0.0030888 0.12305 0.037425 0.030208 0.028614 0.4018 8

GWO 0.013497 0.048772 0.02788 0.0086555 0.02709 0.52616 7

WOA 0.0013778 0.11719 0.0092898 0.020855 0.0041805 0.40458 6

BES 1.5705e-32 3.0953e-32 1.669e-32 3.7477e-33 1.5705e-32 2.6525 1

CSA 1.8485 11.4071 3.9982 1.784 3.6541 0.39943 10

GTO 2.024e-13 7.5911e-09 7.1513e-10 1.5397e-09 1.1799e-10 0.98566 4

WSO 0.19453 2.8473 1.1124 0.63026 0.94623 0.40955 9

DBO 1.0548e-11 1.2499e-07 4.8707e-09 2.2709e-08 2.9129e-10 0.26447 5

OOA 1.5705e-32 1.0317e-11 4.11e-13 1.8928e-12 1.5705e-32 0.84577 3

OCCSSA 1.5705e-32 1.9101e-27 1.1224e-28 3.9124e-28 4.7087e-32 1.0582 2

F13

PSO 0.11726 0.69786 0.35562 0.17123 0.33052 0.41634 7

GWO 0.098496 0.73036 0.38326 0.17023 0.38972 0.5469 6

WOA 0.047162 0.69122 0.21665 0.17243 0.16514 0.40542 5

BES 0.097371 2.9661 2.6729 0.79559 2.9661 2.6043 8

CSA 2.3803 71.6642 33.0108 23.2431 37.6155 0.41566 10

GTO 1.1212e-12 0.010987 0.0011045 0.0033508 4.046e-09 0.99464 3

WSO 3.5379 35.3039 15.231 8.2623 15.3338 0.41094 9

DBO 1.7766e-09 0.29615 0.076464 0.078188 0.092316 0.26475 4

OOA 1.3498e-32 7.8895e-10 2.6368e-11 1.4403e-10 1.733e-29 0.79109 2

OCCSSA 1.3498e-32 1.6778e-26 1.047e-27 3.4861e-27 1.2296e-30 0.9622 1
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TABLE 6 The comparative data for the swarm intelligence optimization algorithms on the CEC2005 fixed dimension multi-modal functions.

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

F14

PSO 0.998 6.9033 1.8561 1.363 1.992 0.92824 7

GWO 0.998 12.6705 4.4237 4.2869 2.9821 1.0034 9

WOA 0.998 10.7632 2.2114 2.471 0.998 0.95681 8

BES 0.998 12.6705 3.208 4.3568 0.998 4.1981 10

CSA 0.998 1.992 1.0311 0.18148 0.998 0.96765 4

GTO 0.998 0.998 0.998 0 0.998 2.0796 2

WSO 0.998 0.998 0.998 2.4089e-13 0.998 0.91439 3

DBO 0.998 2.9821 1.0641 0.36225 0.998 0.39187 5

OOA 0.998 2.0263 1.1648 0.37943 0.998 1.982 6

OCCSSA 0.998 0.998 0.998 2.9733e-16 0.998 1.7201 1

F15

PSO 5.5339e-4 1.0887e-3 8.9695e-4 1.466e-4 8.9653e-4 1.2332e-2 4

GWO 3.075e-4 2.0363e-2 5.0635e-3 8.5883e-3 3.1016e-4 0.03277 10

WOA 3.0888e-4 1.5269e-3 6.5179e-4 3.8321e-4 5.3985e-4 0.01804 9

BES 3.0749e-4 1.2232e-3 3.3801e-4 1.671e-4 3.0749e-4 0.95058 5

CSA 3.0749e-4 1.2232e-3 5.1769 e-4 3.5264e-4 3.0749e-4 0.035304 7

GTO 3.0749e-4 1.2232e-3 3.6853e-4 2.3232e-4 3.0749e-4 0.2191 6

WSO 3.0749e-4 3.0749e-4 3.0749 e-4 2.4691e-8 3.0749 0.03571 2

DBO 3.0749e-4 1.4887e-3 7.3946e-4 3.5861e-4 7.8266e-4 0.060859 8

OOA 3.0987e-4 8.2964e-4 4.4708e-4 1.3792e-4 3.870e-4 0.1038 3

OCCSSA 3.0749e-4 3.0749e-4 3.0749e-4 2.8651e-08 3.0749e-4 0.38096 1

F16

PSO -1.0316 -1.0316 -1.0316 5.1334e-16 -1.0316 0.020588 2

GWO -1.0316 -1.0316 -1.0316 1.5011e-08 -1.0316 0.055229 8

WOA -1.0316 -1.0316 -1.0316 5.1596e-10 -1.0316 0.045389 7

BES -1.0316 -1.0316 -1.0316 4.1946e-11 -1.0316 1.3678 6

CSA -1.0316 -1.0316 -1.0316 6.5195e-16 -1.0316 0.038116 5

GTO -1.0316 -1.0316 -1.0316 6.4539e-16 -1.0316 0.21813 4

WSO -1.0316 -1.0316 -1.0316 1.4226e-06 -1.0316 0.036043 9

DBO -1.0316 -1.0316 -1.0316 6.3877e-16 -1.0316 0.056909 3

OOA -1.0316 -1.0312 -1.0316 8.2782e-05 -1.0316 0.10267 10

OCCSSA -1.0316 -1.0316 -1.0316 4.8787e-16 -1.0316 0.40119 1

F17

PSO 0.39789 0.39789 0.39789 0 0.39789 0.0087385 4

GWO 0.39789 0.3979 0.39789 1.8026e-06 0.39789 0.039837 6

WOA 0.39789 0.3979 0.39789 3.0404e-06 0.39789 0.034851 7

BES 0.39789 0.3979 0.39789 3.2532e-06 0.39789 1.3276 8

CSA 0.39789 0.39789 0.39789 0 0.39789 0.027288 5

GTO 0.39789 0.39789 0.39789 0 0.39789 0.20295 2

WSO 0.39789 0.39793 0.39789 7.3998e-06 0.39789 0.027323 9

DBO 0.39789 0.39789 0.39789 0 0.39789 0.049667 1
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TABLE 6 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

OOA 0.39789 0.40128 0.39801 6.1782e-04 0.39789 0.086509 10

OCCSSA 0.39789 0.39789 0.39789 0 0.39789 0.39572 3

F18

PSO 3 3 3 4.7063e-15 3 0.0080774 2

GWO 3 3.0001 3 1.6003e-05 3 0.038497 5

WOA 0.0013778 0.11719 0.0092898 0.020855 0.0041805 0.40458 10

BES 3 3 3 1.3143e-15 3 1.3119 6

CSA 3 3 3 1.2315e-15 3 0.027287 7

GTO 3 3 3 7.8233e-16 3 0.19681 1

WSO 3 3 3 1.7992e-15 3 0.024549 4

DBO 3 3 3 1.1186e-15 3 0.046369 8

OOA 3 3.0674 3.0023 0.012296 3 0.079621 9

OCCSSA 3 3 3 3.4586e-15 3 0.37656 3

F19

PSO -3.8628 -3.8628 -3.8628 2.3646e-15 -3.8628 0.024082 2

GWO -3.8628 -3.8552 -3.8618 0.0022799 -3.8627 0.060494 8

WOA -3.8628 -3.8504 -3.8609 0.0032281 -3.8622 0.052052 9

BES -3.8628 -3.8628 -3.8628 2.7101e-15 -3.8628 1.4188 6

CSA -3.8628 -3.8628 -3.8628 2.6543e-15 -3.8628 0.043274 4

GTO -3.8628 -3.8628 -3.8628 2.6823e-15 -3.8628 0.22995 5

WSO -3.8628 -3.8628 -3.8628 2.7101e-15 -3.8628 0.040928 7

DBO -3.8628 -3.8628 -3.8628 2.6543e-15 -3.8628 0.059415 3

OOA -3.8628 -3.679 -3.8038 0.046934 -3.8076 0.11594 10

OCCSSA -3.8628 -3.8628 -3.8628 2.2629e-15 -3.8628 0.42646 1

F20

PSO -3.322 -3.2031 -3.2705 0.059923 -3.322 - 0.030683 3

GWO -3.322 -3.1345 -3.2654 0.072981 3.322 0.073937 5

WOA -3.322 - -2.8401 -3.2149 0.10919 -3.1884 0.047003 9

BES 3.322 -3.2031 -3.2586 0.060328 -3.2031 1.443 6

CSA -3.322 -3.2014 -3.2585 0.060388 -3.2031 0.039499 7

GTO -3.322 -3.2031 -3.2705 0.059923 -3.322 0.24303 4

WSO -3.322 -3.2031 -3.318 0.021707 -3.322 0.044449 2

DBO -3.322 -3.0839 -3.2459 0.08448 -3.2625 0.061138 8

OOA -3.2121 -1.8054 -2.6624 0.29428 -2.6389 0.11226 10

OCCSSA -3.322 -3.322 -3.322 1.6739e-15 -3.322 0.4264 1

F21

PSO -10.1532 -2.6305 -7.6382 3.0198 -10.1532 0.031031 10

GWO -10.153 -5.0552 -9.3055 1.9253 -10.1518 0.077393 5

WOA -10.1531 -5.0551 -8.9603 2.1912 -10.147 0.061021 7

BES -10.1532 -5.0552 -7.6028 2.5911 -7.5825 1.4532 8

CSA -10.1532 -5.1008 -9.1427 2.0555 -10.1532 0.050115 6

GTO -10.1532 -10.1532 -10.1532 6.3278e-15 -10.1532 0.24091 3
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TABLE 6 Continued

Function
Name

Algorithm
Name

Best
Value

Worst
Value

Average
Value

StandDP Median
Value

Average
Running Time

Rank

WSO -10.1532 -10.1532 -10.1532 5.0459e-15 -10.1532 0.049681 1

DBO -10.1532 -2.6305 -6.7838 2.675 -5.1008 0.065969 9

OOA -10.1532 -10.1532 -10.1532 3.0155e-07 -10.1532 0.12924 4

OCCSSA -10.1532 -10.1532 -10.1532 5.3086e-15 -10.1532 0.41797 2
F
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FIGURE 8

The convergence curve comparison graph of the improved SSA-type optimization algorithms on CEC2005 Multi-Modal functions: (A) F8. (B) F9.
(C) F10. (D) F11. (E) F12. (F) F13. (G) F14. (H) F15. (I) F16. (J) F17. (K) F18. (L) F19. (M) F20. (N) F21.
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4.1.2.4 Comparison with other swarm intelligence
optimization algorithms

To further validate the effectiveness of the proposed algorithm,

we compared OCCSSA with other recent swarm intelligence

optimization algorithms. These include PSO (Kennedy and

Eberhart, 1995), GWO (Mirjalili et al., 2014), WOA (Mirjalili and

Lewis, 2016), BES (Alsattar et al., 2020), CSA (Feng et al., 2021),

GTO (Abdollahzadeh et al., 2021), DBO (Braik et al., 2022), WSO

(Xue and Shen, 2023), and OOA (Dehghani and Trojovskỳ, 2023).

To enhance the credibility of the algorithm, we conducted 30

independent trials on each test function. In each trial, the maximum

iteration count was set to 500, and the population size was 50.
Frontiers in Marine Science 22
The data results for CEC2005 tests are presented in Tables 5, 6.

In CEC2005 multi-modal functions, despite the presence of

multiple local optima, the proposed algorithm was able to

successfully solve the optimization problems. OCCSSA

demonstrated the best overall performance, especially in F8-F11,

F13-F16, and F20, where it achieved the best values for each

indicator, ranking first. For F12 and F21, OCCSSA ranked

second, just behind BES and WSO, respectively. In the case of

F17 and F18, OCCSSA ranked third. Due to its higher algorithm

complexity, the runtime was in the middle to lower range. From the

convergence curve plots in Figure 9, it is evident that OCCSSA

exhibited overall better convergence speed and accuracy compared
B C

D E F

G H I

J K L

M N

A

FIGURE 9

The convergence curve comparison graph of the swarm intelligence optimization algorithms on CEC2005 Multi-Modal functions: (A) F8. (B) F9. (C) F10.
(D) F11. (E) F12. (F) F13. (G) F14. (H) F15. (I) F16. (J) F17. (K) F18. (L) F19. (M) F20. (N) F21.
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to other algorithms. Overall, OCCSSA displayed strong resistance

to local optima in multi-modal functions, and the introduction of

multiple strategies significantly improved the algorithm’s stability

and search capabilities, with good convergence speed and accuracy.
4.1.3 Comparison of the random initialization and
OCCSSA initialization of SDF-CFLNNE

During the training phase of a neural network, random

initialization of weights and biases can significantly impact the

training process and the final performance of the network. To

address the issues related to improper initialization, such as

gradient vanishing or exploding, and infeasible or slow

convergence of the training process, the SDF-CFLNNE initialized

intelligently with OCCSSA is proposed. The flowchart is as shown

in the Figure 10.

First, determine the topology of SDF-CFLNN and encode its

weights and thresholds. Then, input the encoded population into

OCCSSA for initialization using the Piecewise chaotic map. Next,
Frontiers in Marine Science 23
calculate the fitness of the initial population and identify the best

and worst population members. OCCSSA updates the positions of

producers, scroungers, and scouts. The updated fitness is compared

to the original best value, and the global best position is updated.

When the maximum iteration is reached, obtain the best population

as the initial weights and thresholds for training and testing

the network.

We compared the SDFCFLNN equalizers with random

initialization (R-SDFCFLNNE) and OCCSSA initialization

(OCCSSA-SDFCFLNNE) in both CH1 and CH2 channel

environments. To enhance the reliability of the algorithm, we

conducted 10 independent experiments. In each experiment, the

maximum iteration limit was set to 200, and SDF-CFLNNE still

used the parameters from Table 2. For OCCSSA, we used a

population size of 50, a safety threshold of 0.8, and the number of

producers and the number of sparrows sensing danger were both set

to 20% of the population size.

The BER performance of the R-SDFCFLNNE and OCCSSA-

SDFCFLNNE are shown in Figures 11A, C, E. OCCSSA-
FIGURE 10

The flowchart of the OCCSSA-SDFCFLNNE.
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SDFCFLNNE exhibits a slightly lower BER compared to R-

SDFCFLNNE. Using CH1 as an example, as observed from

Figures 6A, 11A, it is evident that at a BER of 10−3, CFLNNE

requires the SNR exceeding 20 dB, DF-CFLNNE requires the SNR

of 16 dB, DFE requires the SNR of 13.8 dB, SDF-CFLNNE requires

the SNR of 12.8 dB, and OCCSSA-SDFCFLNNE requires the SNR

of 12.5 dB. OCCSSA-SDFCFLNNE demonstrates an improvement

SNR of 0.2-8 dB compared to CFLNN-based and traditional

equalizers. At a BER of 10−4, CFLNNE requires the SNR

exceeding 20 dB, DFE requires the SNR of 19.7 dB, DF-CFLNNE

requires the SNR of 18.8 dB, SDF-CFLNNE requires the SNR of

15.5 dB, and OCCSSA-SDFCFLNNE requires the SNR of 13.5 dB.

OCCSSA-SDFCFLNNE outperforms CFLNN-based and traditional

equalizers, demonstrating an improvement SNR of 2-6 dB.

The MSE performance of the R-SDFCFLNNE and OCCSSA-

SDFCFLNNE are shown in Figures 11B, D, F. Both of them

converge at almost the same rate. However, R-SDFCFLNNE
Frontiers in Marine Science 24
exhibits minor oscillations in the early iterations, and the curve

becomes smooth after convergence. In contrast, OCCSSA-

SDFCFLNNE has an extremely smooth convergence curve, which

is more stable. The MSE value of OCCSSA-SDFCFLNNE is smaller

when it reaches a steady state, indicating more accurate signal

recovery. When using OCCSSA initialization, it takes into account

the specific characteristics and constraints of the communication

channel to provide an optimal set of weight values for network

initialization. This can lead to better initial conditions for the

network, resulting in improved convergence and signal recovery.
4.2 Lake experiments and results

The analysis of lake experimental data has been presented in this

part. On the day of the experiment, there was a slight surface fluctuation

on the lake. Before conducting the lake experiments, the hydrophones
B

C D

E F

A

FIGURE 11

The comparison of the R-SDFCFLNNE and OCCSSA-SDFCFLNNE for CH1, CH2 and CH3. (A) The BER performance for CH1. (B) The MSE
performance for CH1 at SNR=10 dB. (C) The BER performance for CH2. (D) The MSE performance for CH2 at SNR=10 dB. (E) The BER performance
for CH3. (F) The MSE performance for CH3 at SNR=10 dB.
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FIGURE 12

The layout diagram of transmitter and receiver.
FIGURE 13

The frame format of the transmitting QPSK signal.
FIGURE 14

The signal processing flow.
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and other experimental equipment underwent meticulous calibration

performed. Additionally, we carried out tasks such as assessing electrical

connections and confirming the reliability of communication links

within a controlled water tank environment. The equipment

connection and layout for the transmitting ship and the receiving ship
Frontiers in Marine Science 26
areas shownin theFigure12.Thedistancebetween the transmitting ship

andthereceivingship is either939m.Both the transmittingandreceiving

transducers are positioned 10 meters underwater.

The system employs QPSK modulation to facilitate data

transmission. The signal frame format, as illustrated in Figure 13,

has been specifically tailored for complex underwater acoustic

conditions. Each data frame incorporates key elements such as

Doppler estimation, frame synchronization headers, training

sequences, data content, and frame intervals. This frame format is

engineered to offer robust anti-Doppler capabilities and effectively

mitigate cumulative timing errors. The signal undergoes

amplification by a power amplifier and is then transmitted via a

transducer. Simultaneously, multiple cycles of underwater acoustic

signals are collected by the receivers using a digital collector linked

to the transducer. The collected data are processed by DFE-PLL, R-

SDFCFLNNE and OCCSSA-SDFCFLNNE. The signal processing

flow at the receiving end is depicted in the Figure 14.
TABLE 7 The BER comparison of every frame.

Frame DFE-
PLL

R-
SDFCFLNNE

OCCSSA-
SDFCFLNNE

1 0.1641 0.1222 0.0941

2 0.0962 0.0587 0.0425

3 0.1377 0.0959 0.0877

4 0.0854 0.0311 0.0195

5 0.1176 0.0734 0.0567
B

C D

E F

A

FIGURE 15

The lake experimental results. (A) The MSE performance for DFE-PLL. (B) The Demodulation correct symbol (blue) and transmission error symbol
(red) for DFE-PLL. (C) The MSE performance for R-SDFCFLNNE. (D) The Demodulation correct symbol (blue) and transmission error symbol (red) for
R-SDFCFLNNE. (E) The MSE performance for OCCSSA-SDFCFLNNE. (F) The Demodulation correct symbol (blue) and transmission error symbol (red)
for OCCSSA-SDFCFLNNE.
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The experimental results are shown in Table 7. We can observe

that in the data processing of each frame, OCCSSA-SDFCFLNNE

exhibits the lowest BER, followed by R-SDFCFLNNE, and DFE-PLL

performing the least favorably. We’ve displayed the MSE

convergence curves and the correct and incorrect symbol plots for

the second frame of data. Figures 15A, C, E clearly demonstrate that

the MSE curve in OCCSSA-SDFCFLNNE converges smoothly and

reaches the lowest value, indicating a superior resistance to

interference. While R-SDFCFLNNE exhibits minor initial

fluctuations, DFE-PLL’s MSE values fluctuate significantly during

the initial phase. In Figures 15B, D, F, where blue represents

correctly demodulated symbols and red represents incorrectly

demodulated symbols, it’s evident that OCCSSA-SDFCFLNNE

has the fewest incorrect symbols and the best overall performance.
5 Conclusion

In the sha l l ow-wate r env i ronment s , underwa te r

communication links are susceptible to significant multipath

effects. To address issues such as slow convergence and high

system complexity in traditional channel equalizers, this paper

proposes a simplified decision feedback Chebyshev function link

neural network equalizer (SDF-CFLNNE). The SDF-CFLNNE

structure’s innovative approach employs Chebyshev polynomial

function expansion modules, eliminating the need for hidden

layers and enabling a direct, nonlinear transformation of input

signals into the output layer. Additionally, it incorporates the

feedback of decision signals into the input layer of the SDF-

CFLNN directly, instead of the function expansion module, which

significantly reduces computational complexity. However, the

effectiveness of neural networks crucially depends on the initial

weights and biases, and random initialization can profoundly

impact both the training process and the eventual performance of

the network. To address this challenge, a novel chaotic sparrow

search algorithm combining osprey optimization algorithm and

Cauchy mutation (OCCSSA) is proposed. OCCSSA leverages a

Piecewise chaotic population initialization strategy, combining the

osprey’s exploration tactics with the Cauchy mutation strategy to

bolster global and local search capabilities. Simulation experiments,

utilizing underwater multipath signals generated by the Bellhop

Acoustic Toolbox, unequivocally demonstrate that the

SDFCFLNNE initialized by OCCSSA outperforms both CFLNN-

based and traditional nonlinear equalizers. Notably, it achieves an

impressive 2-6 dB improvement in SNR at a BER of 10−4 and

exhibits a significantly reduced MSE. Furthermore, lake

experimental data was employed to validate the effectiveness of

the proposed equalizer. These results underscore the remarkable

potential of the SDFCFLNNE initialized by OCCSSA as a

compelling solution for significantly enhancing the reliability of

underwater communication, particularly in the face of the

challenges posed by complex underwater environments. This
Frontiers in Marine Science 27
research paves the way for more robust and efficient underwater

communication systems, promising increased performance and

greater accuracy in signal recovery.
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