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China, Qingdao, China, 3National Deep Sea Center, Qingdao, China, 4Qingdao Geo-Engineering
Surveying Institute, (Qingdao Geological Exploration Development Bureau), Qingdao, China
Wave cyclic loading in submarine sediments can lead to pore pressure

accumulation, causing geohazards and compromising seabed stability.

Accurate prediction of long-term wave-induced pore pressure is essential for

disaster prevention. Although numerical simulations have contributed to

understanding wave-induced pore pressure response, traditional methods lack

the ability to simulate long-term and real oceanic conditions. This study

proposes the use of recurrent neural network (RNN) models to predict wave-

induced pore pressure based on in-situ monitoring data. Three RNN models

(RNN, LSTM, and GRU) are compared, considering different seabed depths, and

input parameters. The results demonstrate that all three RNN models can

accurately predict wave-induced pore pressure data, with the GRU model

exhibiting the highest accuracy (absolute error less than 2 kPa). Pore pressure

at the previous time step and water depth are highly correlated with prediction,

while wave height, wind speed, and wind direction show a secondary correlation.

This study contributes to the development of wave-induced liquefaction early

warning systems and offers insights for utilizing RNNs in geological time

series analysis.

KEYWORDS

wave-induced pore water pressure, artificial intelligence, recurrent neural network,
GRU, marine disaster, marine geology
1 Introduction

The phenomenon of wave cyclic loading in submarine sediments can result in pore

pressure accumulation, leading to various geohazards such as seabed liquefaction (Wang

and Liu, 2016), submarine landslides (Wang et al., 2020), sediment failure (Zhang et al.,

2023), sediment rapid erosion (Jia et al., 2014), and instability of structures such like

submarine pipelines (Ye and He, 2021) and marine platforms. Accurate prediction of long-
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term wave-induced pore pressure is crucial for assessing

the mechanical state of submarine sediments and ensuring

seabed stability, thereby aiding in marine disaster prevention

and mitigation.

In recent decades, researchers have made efforts to understand

the realistic response of the seafloor through in situmonitoring (Du

et al., 2021; Hu et al., 2023), providing valuable data for subsequent

physical simulation tests and numerical modeling. Flume tests have

also been employed to study the wave-induced pore pressure

response and liquefaction, enabling the investigation of

liquefaction processes and influencing factors, as well as the

sediment resuspension phenomena and redeposition after

liquefaction (Jia et al., 2014; Xu et al., 2016). Additionally, finite

element numerical simulations have been used to explore the pore

pressure response under wave action, aligning well with results from

water flume tests and analytical solutions (Ye et al., 2015). In recent

years, there has been significant research focus on the following

directions in numerical simulation: multi-layer seabed liquefaction

calculations (Liu et al., 2023), slope stability under wave actions

(Wang et al., 2020), and the stability of marine facilities, such as

caisson (Duan et al., 2023), foundation (He and Ye, 2023a; He and

Ye, 2023b), and wind turbines (Chang and Jeng, 2014).

However, previous numerical simulation studies relied on

statistical and simplified ocean wave conditions (Jia et al., 2014;

Ye et al., 2015; Ye et al., 2017; Wang et al., 2020), limiting their

ability to simulate wave-induced pore pressure response under

specific scenarios and hindering the prediction of pore pressure

based on actual ocean wave data. Traditional numerical simulation

methods are inadequate for capturing the long-term wave-induced

pore pressure response in the ocean and fail to represent real

oceanic conditions. Developing a method capable of predicting

long-term pore pressure based on real wave data would enhance our

understanding of oceanic pore pressure variations and contribute to

the effective prevention of marine geohazards.

In recent years, artificial intelligence (AI) technology has been

increasingly applied to various geological problems due to its ability

to effectively tackle nonlinear problems, such as earthquake

prediction (Laurenti et al., 2022), landslide hazard assessment

(Collico et al., 2020; Ji et al., 2020; Jones et al., 2021; Du et al.,

2022), meteorological and climate forecasting (Balogun et al., 2021;

Zennaro et al., 2021), and geophysical data interpretation (Lawson

et al., 2017; Maxwell et al., 2019; Politikos et al., 2021; Du et al.,

2023). Scholars have made progress in the field of geological time

series prediction using AI techniques, for example, wave height

prediction (Gao et al., 2021), pore pressure prediction in landslides

(Orland et al., 2020; Wei et al., 2021), and prediction of landslide

displacement (Yang et al., 2019). The successful application of AI in

these research areas demonstrates its potential to address time series

prediction problems in the field of geology. However, there is still a

lack of research on modeling and prediction using real-time wave-

induced pore pressure data obtained from in-situ monitoring in

marine environments.

Therefore, the objective of this study is to investigate the

feasibility of using three different recurrent neural network
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(RNN) models to predict the response of wave-induced pore

pressure in marine environments, utilizing long-term time series

data obtained from in-situ monitoring. The study aims to compare

the performance of different RNN models, at different seabed

depths, as well as the impact of model parameters and input

parameters on prediction accuracy. The findings of this research

can provide guidance and recommendations for the development of

wave-induced liquefaction early warning systems. Furthermore, this

work can serve as a valuable reference for the application of RNNs

in other time series problems within the field of geology.
2 Data and method

2.1 Data description

We utilized a supervised deep-learning model to establish the

relationship between input parameters and output results. The input

parameters considered in this study include water depth (D), effective

wave height (H1/3), effective wave height period (T1/3), maximum wave

height (Hmax), maximumwave height period (Tmax), wind speed (WS),

and wind direction (WD), while the output result is the wave-induced

pore water pressure. All the data were obtained from in-situ

observations conducted by the First Institute of Oceanography, MNR

between February 18, 2015, and April 21, 2015 in the Yellow River

Estuary, China (Du et al., 2021; Song et al., 2022).

The in-situ pore water pressure (PWP) data was obtained using

a self-developed pore pressure monitoring equipment during the

period of maximum wind and wave activity of the year. This dataset

includes PWP data measured at depths of 0.5m, 1.5m, 2.5m, and

3.5m below the seabed surface. PWP was measured at a frequency

of 0.5 Hz for a duration of 3 minutes every half-hour. We processed

the data using interpolation and averaging methods, resulting in

continuous pore pressure data with an acquisition frequency of one-

half hour, covering a period of over 1500 hours.

During the observation period when the PWP data was collected,

we simultaneously gathered data on water depth using a turbidimeter

(OBS-3A), wave dynamics using wave-tide instruments (RBR solo D

Wave, TGR-2050), and wind conditions with an anemometer (Du

et al., 2021). The coordinates for the pore pressure, water depth, and

wave data collection site are 118.86°E, 38.20N. Wind speed and wind

direction data were sourced using a R.MYOUNG 05106 marine type

wind anemometer from an offshore drilling rig situated

approximately 300 m northwest of the pore pressure monitoring

location. The dataset of these geological parameters covers the entire

period of pore pressure monitoring, with a data collection frequency

of one record every half hour.

The dataset used for calculations is a two-dimensional array

consisting of 3025 rows and 11 columns. The first seven columns

represent the calculated parameters, which include water depth,

effective wave height, effective wave height period, maximum wave

height, maximum wave height period, wind speed, and wind

direction. The last four columns represent the pore pressure

sensor values at four different depths.
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2.2 Correlation analysis of input
parameters and pore pressure

We generated a heatmap through correlation analysis using

3000 data sets of the nine parameters mentioned above, as depicted

in Figure 1. The heatmap allowed us to explore the correlation

between eight input parameters: pore pressure at time t-1 (Pt-1),

water depth (D), effective wave height (H1/3), effective wave period

(T1/3), maximum wave height (Hmax), maximum wave period

(Tmax), wind direction (WD), wind speed (WS), and the output

parameter, pore pressure at time t (Pt). When considering the

significant influencing factors of pore pressure, it is essential to

consider both statistically significant factors and geologically

meaningful factors comprehensively.

Our analysis revealed a strong positive correlation between the

input parameters Pt-1 and D with Pt, indicating their significant

influence on pore pressure prediction. Thus, Pt-1 and D are

considered the most important parameters in determining Pt.

In contrast, the parameters H1/3, Hmax, WD, and WS

demonstrated relatively weaker correlations with Pt. While wave

height, wind speed, and wind direction are important factors

influencing pore pressure variation in submarine sediments, the

wave period has minimal impact due to its limited variability and

periodicity. Therefore, it can be disregarded. Although wave height,

wind speed, and wind direction are slightly less influential compared

to pore pressure and water depth at t-1, including them provides

additional geological environmental factors that enrich the geological

information for pore pressure prediction, bringing the analysis closer

to natural environmental influences.
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However, the parameters T1/3 and Tmax exhibited the weakest

correlations with Pt, with correlation coefficients one to two orders of

magnitude smaller than the other parameters. Consequently, it may

be reasonable to exclude T1/3 and Tmax from practical calculations or

analyses. Based on these results, we recommend prioritizing the

inclusion of Pt-1 and D in further analysis or modelling efforts due

to their strong positive correlation with Pt. The inclusion or exclusion

of H1/3, Hmax, WD, and WS should be carefully considered based on

specific analysis goals and requirements.

When selecting input parameters for modelling, it is imperative

to consider three crucial aspects: mathematical or statistical

relevance, geological significance, and the feasibility of

data acquisition.

Firstly, from a mathematical standpoint, pore pressure at the

previous time step (Pt-1) and water depth (D) exhibited significant

positive correlation with the target variable, pore pressure at the

current time step (Pt). Therefore, they are naturally the first choices

as input variables. However, relying solely on these two parameters

could overlook the influence of wave action, which is a significant

contributor to seabed pore pressure variations.

Secondly, the geological significance mandates the inclusion of

wave-related parameters. Wave action is a critical factor in seabed

pore pressure fluctuations and cannot be disregarded. Therefore,

wave-related parameters like effective wave height (H1/3) and

maximum wave height (Hmax) are also considered as inputs to

bring the model closer to realistic conditions.

Additionally, wind speed (WS) is relatively easily obtainable

variables. As evident from Figure 1, wind speed shows a robust

correlation with wave action. This raises an interesting question
frontiersin.org
FIGURE 1

Correlation analysis on pore pressure and geological environment factors. Where the map contains pore pressure at time t-1 (Pt-1), water depth (D),
effective wave height (H1/3), effective wave period (T1/3), maximum wave height (Hmax), maximum wave period (Tmax), wind direction (WD), wind
speed (WS), and pore pressure at time t (Pt).
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about the feasibility of using wind speed as a proxy for wave

parameters, which is a subject worth exploring in our study.
2.3 Applied RNN models

In this study, we employ three types of Recurrent Neural

Networks (RNN) (Rumelhart et al., 1986) to model and predict

wave-induced pore pressure: the standard RNN, Long Short-Term
Frontiers in Marine Science 04
Memory (LSTM) (Hochreiter and Schmidhuber, 1997), and Gated

Recurrent Unit (GRU) (Cho et al., 2014). Here, we provide a brief

introduction to the basic forms of RNN and GRU, along with their

respective formulas.

2.3.1 Standard RNN model
RNN is a class of artificial neural network designed for

processing sequential data (Figure 2A). RNN has demonstrated

its effectiveness in various tasks, such as time series prediction,
B

C

A

FIGURE 2

Structure of Standard RNN (A), LSTM (B) and GRU (C) cells.
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natural language processing, and speech recognition. In RNN, the

hidden layers possess a looping mechanism that allows the network

to maintain information from previous time steps, enabling it to

capture temporal dependencies in the input data. This feature

makes RNN suitable for analysing time-dependent phenomena in

marine geology, such as predicting sediment transport patterns and

wave-induced pore water pressure variation. However, it is

noteworthy that the standard RNN model has some limitations,

notably the vanishing gradient problem, which can make it

challenging for the network to learn long-term dependencies in

the data. That is, when performing pore pressure prediction for long

time series, the conventional RNN will be less accurate.

The standard RNN is composed of an input layer, a hidden

layer with a recurrent loop, and an output layer. The key feature of

RNN is the ability to retain information from previous time steps in

the hidden layer, which enables the model to capture temporal

dependencies in the input data. The updated equations for a

standard RNN are as follows:

ht = tanh (Wxh · xt +Whh · ht−1 + bh) (1)

yt = softmax(Why · ht + by) (2)

where   ht   is the hidden state at time step t; xt is the input at time

step t; yt is the output at time step t; Wxh ,  Whh, and Why are the

weight matrices; bh and by are the bias terms; tanh is the hyperbolic

tangent activation function.

2.3.2 LSTM model
LSTM is a type of Recurrent Neural Network that has been

widely used for sequence modeling problems (Figure 2B). Unlike

traditional RNN, LSTM is designed to mitigate the vanishing

gradients problem and to preserve information across long

sequences, by introducing an additional memory cell that can

store information for an extended period of time (Gers et al.,

2000). LSTM is particularly useful for processing sequences of

data with dependencies between time steps, such as time series,

speech recognition, and natural language processing tasks.

An LSTM unit is comprised of three gates, which control the

flow of information into and out of the memory cell. These gates are

the input gate, the forget gate, and the output gate, and each is

controlled by a sigmoid function and a tanh function. The sigmoid

function outputs a value between 0 and 1, which determines the

extent to which each gate is opened or closed (Gers et al., 2000). The

tanh function outputs a value between -1 and 1, which helps to

preserve information in the memory cell. The equations for the

LSTM cell are as follows:

Input Gate:

it =  s (Wi · ½ht−1,  xt � + bi) (3)

Forget Gate:

ft =  s (Wf · ½ht−1,  xt � + bf ) (4)

Output Gate:

ot =  s (Wo · ½ht−1,  xt � + bo) (5)
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New Memory Cell:

ct =  ft · ct−1 + it · tanh(Wc  · ½ht−1,  xt � + bc) (6)

Hidden State:

ht =  ot ·  tanh(ct) (7)

where it , ft , and ot are the input, forget, and output gate activations,

respectively, at time step t. ct and ct−1 are the memory cell states at

time step t and t-1, respectively. ht and ht−1 are the hidden states at

time step t and t-1, respectively. xt is the input at time step t, andWi,

Wf , Wo, and Wc are weight matrices for the input, forget, output,

and cell gates, respectively. bi, bf , bo, and bc are biases for the input,

forget, output, and cell gates, respectively. The sigmoid function s is

applied element-wise, and the tanh function is also applied

element-wise.

2.3.3 GRU model
Gated Recurrent Units (GRUs) are a variant of RNNs,

specifically designed to address the vanishing gradient problem,

which is a common challenge encountered in training traditional

RNNs. The vanishing gradient issue arises when gradients become

too small to update the weights effectively, leading to difficulties in

capturing long-range dependencies in the data. GRUs introduce

gating mechanisms, namely the update and reset gates, which allow

the network to control the flow of information and selectively retain

or discard information from previous time steps. This design results

in a more efficient and stable learning process, making GRUs an

attractive choice for modeling complex temporal patterns in marine

geology applications.

The Gated Recurrent Unit (GRU) is a variant of RNN that

addresses the vanishing gradient problem encountered in training

traditional RNNs. It achieves this by introducing gating

mechanisms, namely the update (zt) and reset (rt) gates. These

gates allow the network to control the flow of information and

selectively retain or discard information from previous time steps.

The update equations for a GRU are as follows:

zt = s(Wxz · xt +Whz · ht−1) (8)

rt = s (Wxr · xt +Whr · ht−1) (9)

h 0
t = tanh(Wxz · xt +Whh · (rt ⊙ ht−1)) (10)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h 0
t (11)

where zt and rt are the update and reset gates, respectively; ht is the

hidden state at time step t; h’t is the candidate hidden state at time

step t; xt is the input at time step t; Wxz, Whz, Wxr, Whr, Wxh, and

Whh are the weight matrices; s is the sigmoid activation function; ȯ

represents element-wise multiplication.
2.4 Utilization of established RNN models

We will establish models based on three RNN architectures,

investigate the accuracy of the three RNN models in predicting
frontiersin.org
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wave-induced pore pressure field monitoring data, and compare the

accuracy of different pore pressure depths. The entire modeling and

prediction process includes data normalization, dataset splitting,

model architecture establishment, model training, model

prediction, and accuracy assessment.

The overall modeling process is shown in Figure 3. The original

dataset contains 1500 h of pore pressure, water depth, wave, and

wind speed data, which we divided into a 1000h training set and a

500h test set according to a 2:1 ratio. For the model building part,

the standard RNN, LSTM, and GRU models are used to train the

same data, respectively. While modeling, parameter tuning is

needed to select the model parameters with the best prediction

within a reasonable range. Finally, the model prediction accuracy is

tested by MSE, MAE, RMSE and R2.
2.4.1 Data normalization and dataset splitting
Data normalization plays a crucial role in machine learning.

Diverse input data often possesses distinct dimensions and units,

necessitating normalization to expedite model convergence and

reduce errors during training. In this research, we employed the

Min-Max normalization technique, ensuring all data is normalized

within a range of zero to one.

xnorm =
x − xmin

xmax − x
(12)

where, x represents the original data, while xnorm denotes the

normalized data. xmin and xmax correspond to the minimum and

maximum values within the entire dataset, encompassing both
Frontiers in Marine Science 06
training and testing data. The Min-Max normalization technique

is prevalent and effective in numerous studies. The wave-induced

pore pressure dataset was split to 1000 h for training and 500 h

for testing.

2.4.2 Proposed architecture
The novel architecture consists of an input layer, multiple

hidden layers, and an output layer. The input layer has eight

neurons corresponding to the eight calculated parameters: water

depth, effective wave height, effective wave height period, maximum

wave height, maximum wave height period, wind speed, wind

direction, and pore pressure at time t-1. The hidden layers

incorporate the beneficial features of standard RNN, LSTM and

GRU models, including gating mechanisms to address the

vanishing gradient problem. The output layer has four neurons

corresponding to the pore pressure sensor values at four

different locations.

To improve training efficiency and prevent overfitting,

techniques such as dropout, and batch normalization has also

been employed. Dropout can be applied to the hidden layers to

introduce regularization. Batch normalization can be used to

stabilize the training process by normalizing layer inputs.

2.4.3 Training and optimization
The model is trained using the Mean Squared Error (MSE) loss

as the criterion, which is appropriate for regression tasks. The

optimizer chosen for training is the Adam optimizer, which has

been shown to work well in deep learning applications.
FIGURE 3

Flowchart of RNN model establishment.
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Model hyperparameters play a crucial role in AI modeling, and

it is important to build models with different hyperparameters

within a reasonable range to statistically obtain the best

hyperparameters. Selecting hyperparameters that meet the

accuracy requirements of the research problem is essential, as

there is no universally optimal set of hyperparameters. In this

study, we aimed to investigate the impact of hyperparameters on

wave-induced pore pressure prediction by constructing multiple

models with different parameter combinations using the standard

RNN, LSTM, and GRU model (Table 1).

The learning rate (LR) determines the step size during

optimization, with our range [0.001, 0.1] ensuring a balance

between fast convergence and model stability. Epochs,

representing the number of complete passes through the dataset,

range from 10 to 300, providing a comprehensive understanding of

training duration versus performance trade-offs. Lastly, the batch

size, varying from 8 to 128, governs the amount of data processed at

once, affecting both the model’s generalization and training speed.

Our chosen ranges for these hyperparameters are deliberate,

striving for a broad yet meaningful exploration to pinpoint the

best settings for our specific application.

2.4.4 Evaluation methods
To evaluate the accuracy of the RNN model’s predictions, we

employed four evaluation metrics: Mean Squared Error (MSE),

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),

and R-squared (R2). These metrics provide a comprehensive

understanding of the model’s performance in terms of prediction

accuracy and error magnitude. The following is a description of

each evaluation metric along with their respective formulas:

Mean Squared Error (MSE): MSE measures the average squared

difference between the predicted and true values. It is widely used in

regression tasks to quantify the prediction error. A lower MSE value

indicates a better model performance. The formula for MSE is as

follows:

MSE =
1
no(ypred − ytrue)

2 (13)

where ypred is the predicted value, ytrue is the true value, and n is the

total number of data points.

Mean Absolute Error (MAE): MAE calculates the average

absolute difference between the predicted and true values. It

provides an easily interpretable measure of the prediction error

magnitude. A lower MAE value signifies a better model

performance. The formula for MAE is:

MAE =
1
no ypred − ytrue

�
�

�
� (14)
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where ypred is the predicted value, ytrue is the true value, and n is the

total number of data points.

Root Mean Squared Error (RMSE): RMSE is the square root of

the Mean Squared Error, which provides an estimate of the

prediction error in the same unit as the true values. A lower

RMSE value indicates better model performance. The formula for

RMSE is:

RMSE =
ffiffiffiffiffiffiffiffiffiffi

MSE
p

(15)

R-squared (R2): R2, also known as the coefficient of

determination, measures the proportion of the variance in the

true values that can be explained by the model’s predictions. It is

a useful metric for evaluating the model’s goodness-of-fit. An R2

value closer to 1 indicates a better model performance. The formula

for R2 is:

R2 = 1 − o
(ypred − ytrue)

2

o(ymean − ytrue)
2

where ypred is the predicted value, ytrue is the true value, ymean is the

mean of the true values, and the summations are over all

data points.

By evaluating the RNN model using these four metrics, we can

gain a comprehensive understanding of the model’s prediction

accuracy and error magnitude, which is essential for assessing the

suitability of the model for predicting pore water pressure response

within seafloor sediments under wave action.

2.4.5 Experimental settings
In this study, our methodology is structured around a multi-

experiment experimental design aimed at understanding and

predicting alterations in pore water pressure at varying seabed

depths. The selection of input parameters should not be solely

based on mathematical or statistical relevance; it must also take into

account geological significance and the practicality of data

acquisition. This multi-faceted approach aids in constructing a

pore pressure prediction model that is both accurate and

applicable. Specific experimental settings can be seen in Table 2.

We outline the details of our experiment below:
TABLE 1 Experimental settings of model hyperparameters.

Hyperparameter Range

LR [0.001,0.005, 0.01, 0.05, 0.1]

Epoch [10, 30, 50, 100, 150, 200, 250, 300]

Batch_size [8, 16, 32, 64, 128]
TABLE 2 Experimental design overview.

NO. Inputs Models Outputs1

1 Pt-1, D, H1/3, T1/3, Hmax, Tmax,
WD, WS

RNN, LSTM,
GRU

P0.5, P1.5, P2.5,
P3.5

2 Pt-1, D, H1/3, T1/3, Hmax, Tmax,
WD, WS

Best model P0.5, P1.5, P2.5,
P3.5

3 Pt-1, D, H1/3 Best model P0.5, P1.5, P2.5,
P3.5

4 Pt-1, D, Hmax Best model P0.5, P1.5, P2.5,
P3.5

5 Pt-1, D, WS Best model P0.5, P1.5, P2.5,
P3.5
1P0.5, P1.5, P2.5, P3.5 represent pore pressure at 0.5 m, 1.5 m, 2.5 m, 3.5 m below seabed,
respectively.
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Experiment 1: Comparative analysis of RNN models

We utilize three types of RNN architectures standard RNN, LSTM,

and GRU. The models are trained using a comprehensive set of eight

input parameters: pore pressure at time t-1 (Pt-1, i.e., the pore pressure

values of four different burial depth locations at the moment t-1), water

depth (D), effective wave height (H1/3), effective wave period (T1/3),

maximum wave height (Hmax), maximum wave period (Tmax), wind

direction (WD), wind speed (WS). Since the goal of the first step was to

compare the accuracy of different RNN networks, the full input

parameters were used for the study to ensure that the information

was maximized and complete. For this experiment, the models predict

pore pressure at four different seabed depths: 0.5m, 1.5m, 2.5m, and

3.5m (P0.5, P1.5, P2.5, P3.5). Although the model generates pore pressure

predictions at four distinct depths, the initial step emphasizes comparing

model accuracies using data from a singular depth, specifically opting

for the 1.5m burial depth for this comparative analysis. The model

demonstrating the highest prediction accuracy for pore water pressure

at this depth is designated as the ‘Best Model’.

Experiment 2: Depth-wise analysis using the best model

Upon identifying the ‘Best Model’, we extend our investigation to

assess its predictive capabilities at multiple seabed depths. The model

would be trained and evaluated using the same set of eight input

parameters as in experiment 1. The analysis focuses on prediction

accuracy at four different seabed depths, aiming to evaluate the

model’s generalizability across different geotechnical conditions.

Experiments 3-5: Reduced input analysis

Considering the importance of feature relevance and the complexities of

parameter acquisition, experiments 3, 4, and 5 are designed to assess the

prediction accuracy when using fewer input parameters. In these

experiments, we fix the first two parameters as pore pressure at time t-1

(Pt-1), water depth (D) and vary the third parameter. Specifically, experiment

3 uses effective wave height (H1/3), experiment 4 uses,maximumwave height

(Hmax), and experiment 5 employs WS (wind speed) as the third input

variable. H1/3 andHmax represent two statistical cases of waves, and the use of

WS instead of wave height is to be explored to see if the use of wind speeds,

which are taught to be easily accessible, can be used as a substitute for wave

parameters. These experiments utilize the ‘Best Model’ identified in

experiment 1 for predictions.
2.4.6 Implementation
The novel architectures were implemented using PyTorch, a popular

deep learning framework, which offer extensive libraries and tools for

neural network development. The calculating device is a workstation

named MacBook Pro 16 with CPU of M1 Pro, 16G of RAM.
3 Results and discussions

3.1 Accuracy comparison of standard RNN,
LSTM and GRU

To compare the prediction accuracy of the standard RNN, LSTM

andGRUmodels on the wave-induced pore pressure response problem,
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the same train and test datasets were used for all the three models.

Figure 4 shows the real pore pressure variation values compared with

the predicted values and the absolute error statistics among the three

different RNN models using box chart and CDF (Cumulative

Distribution Function), respectively. As observed in Figure 4A, the

pore pressure prediction results using the three RNN models show

results and trends similar to the actual pore pressure values. Since the

results predicted by the three RNNmodels were relatively close, we used

mathematical statistical analysis for further comparison. Figure 4B

shows the box plots of the absolute errors of the prediction results for

the three RNNmodels of all the 1000 test data (two data per hour), with

the box statistics ranging from 5% to 95% of the absolute errors. As can

be observed from Figure 4, both the maximum error value, 95% error

value, median, andmean, the absolute error of GRU is smaller than that

of LSTM is smaller than that of standard RNN. Figure 4C uses the CDF

to evaluate the statistics of the error values predicted by different models,

and the models with a larger proportion of smaller absolute error values

perform better. It is clear from the Figure 4C that the overall GRU curve

lies above the LSTM and standard RNN. Combining the two statistical

results, the model accuracy in the problem of predicting the pore

pressure response of the pozzolanic sediment is shown as GRU>LSTM>

standard RNN.

Table 3 presents the performance of different RNN models in

terms of prediction accuracy. The metrics evaluated in this study

include Mean Squared Error (MSE), Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and R-squared (R2) coefficient.

The standard RNN model achieved an MSE of 3.33, an MAE of

1.45, an RMSE of 1.83, and an R2 value of 0.80. The LSTM model

performed slightly better with an MSE of 3.13, an MAE of 1.41, an

RMSE of 1.77, and an R2 value of 0.81. The GRU model showed the

best performance among the three models, with an MSE of 2.92, an

MAE of 1.36, an RMSE of 1.71, and an R2 value of 0.83. Based on

these results, it can be concluded that the GRUmodel outperformed

the RNN and LSTM models in terms of prediction accuracy. The

GRU model achieved lower error values (MSE, MAE, and RMSE)

and a higher R2 value, indicating a better fit to the data and

improved ability to explain the variance in the predictions.

The GRU’s superior performance can be attributed to its

architectural simplicity, as it strikes a balance between RNNs and

LSTMs by capturing long-term dependencies with fewer gates. This

results in faster training and fewer parameters. Additionally, GRUs

effectively address the vanishing gradient problem and their gating

mechanism can be more adaptive for specific problems like the wave-

induced pore pressure response. In situations where only recent past

events are crucial, the GRU’s design becomes advantageous.

Compared to LSTMs, GRUs can be more efficient for datasets that

aren’t extensive or when long-term dependencies are straightforward.

The GRU’s simpler design may also reduce overfitting risks. In

essence, the GRU’s design and efficiency combined with the unique

dynamics of our dataset led to its optimal performance.
3.2 Prediction accuracies in different depth

In order to investigate the prediction of pore pressure values at

different depths of seabed burial, we have used the model
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established by GRU to predict the pore pressure at 0.5, 1.5, 2.5, and

3.5m locations. Figure 5 shows the comparison between the

predicted and true values of pore pressure at different seabed

depths of burial. As can be observed from the Figure 5, the

predicted results of the GRU model are closer to the actual pore

pressure values, which can simulate and predict the pore pressure at

different burial depth locations accurately.

Figure 6 demonstrates the absolute error statistics using box

statistics and CDF charts for 30 replicate tests at different depth

locations. From Figure 6A, it can be observed that the overall absolute

error is less than 4 kPa at all depth locations, and the median absolute

error is less than 1 kPa. The absolute error value increases gradually

from 0.5 m to 2.5 m, but is minimal at 3.5 m. Figure 6B shows more

clearly the comparison of the absolute error between different depths,

with the highest CDF curve at the 3.5m depth position, followed by

the crossover at the 0.5m and 1.5m positions, and the lowest curve at

the 2.5m position. Meanwhile, the CDF curves at all depth positions

exceeded 80% at an absolute error of 2 kPa. It shows that the model

can accurately predict the pore pressure variation at different depths.
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The analysis of the two subplots in Figure 6 shows that the GRU-

based model can accurately predict the pore pressure variation at

different depths (the median of repeated tests is less than 1 kPa), and

there is no necessary connection between the depth and the accuracy.

Table 4 presents the performance metrics of different depth

configurations using the GRU model on the test dataset. It can be

observed that increasing the depth of the GRU model from 0.5 to

1.5 led to a slight improvement in performance, but the

performance decreased when the depth was further increased to

2.5. Depth 3.5 demonstrates the best performance, with MSE 1.58,

MAE 1.13, RMSE 0.85, and R2 0.92. These results indicate that

increas ing the depth can have mixed effects on the

model’s accuracy.

In Section 3.2, we noted subtle variances in the Mean Absolute

Errors (MAEs) across different seabed depths. It’s essential to

underscore that these variations, although discernible in our

graphical representations, translate to only minor discrepancies in

absolute terms. A change of a few tenths of a kPa in pore pressure is

not typically impactful in practical geotechnical applications. These

slight disparities in MAEs might be due to inherent natural

variations or potential inconsistencies during data acquisition

rather than reflecting any significant geological distinctions. The

consistent performance of the GRUmodel across these depths, even

with these minor fluctuations, underscores its resilience and

versatility in handling different geological scenarios. Overall, it is

shown that the accuracy of the GRU model prediction results is

independent of the sediment burial location and that the model can

accurately predict pore pressure at all burial locations.
TABLE 3 Performance of prediction accuracy using different RNN
models.

Model/Metric MSE MAE RMSE R2

RNN 3.33 1.45 1.83 0.80

LSTM 3.13 1.41 1.77 0.81

GRU 2.92 1.36 1.71 0.83
B C

A

FIGURE 4

Comparison of prediction accuracies of standard RNN, LSTM and GRU. (A) is the comparison among real PWP and predict PWP; (B) is the prediction
absolute error of the three RNN models; (C) is the CDF of the prediction errors of the three RNN models.
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3.3 Comparison of GRU models with
different input parameters

In this study, four different Gated Recurrent Unit (GRU)

models were trained using various combinations of input

parameters to predict pore pressure at varying seabed burial

depths. The input parameter settings can be seen from Table 2

(2) ~ (5), which contain control group [Table 2 (2)], significant

wave height group [Table 2 (3)], maximum wave height [Table 2

(4)], and wind speed group [Table 2 (5)].

As seen in Figure 7A, the model that used significant wave height

(H1/3) as the wave parameter exhibited the lowest average MAE value

at 1.016, followed by wind speed (1.035) and maximum wave height

(1.038). Interestingly, the control group model that employed all

parameters showed a slightly worse performance, with an average

MAE of 1.063. From Figure 7B we can see that, A similar trend was

observed for MSE values. The model trained using significant wave

height (H1/3) demonstrated the lowest MSE of 1.894, followed by the

control group, maximum wave height, and wind speed, which had

values of 2.012, 1.999, and 1.947 respectively.

It can be seen from Figure 7C that, the model with significant

wave height (H1/3) also outperformed in terms of RMSE, with an

average value of 1.367, better than the control group (1.409),

maximum wave height (1.405), and wind speed (1.386). As for

the R2 values (Figure 7D) indicate that the prediction accuracy of all

models was relatively high, ranging from 0.878 to 0.885. The model

using significant wave height (H1/3) as an input parameter showed

the highest R2 value of 0.885.
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Overall, the models that used different input parameters

demonstrated respectable accuracy with MAE errors all below 1.1

kPa. Among the different input parameters, significant wave height

performed the best, followed by wind speed, maximum wave height,

and the control group with all parameters. Upon analyzing the

underlying reasons, it becomes evident that the significant wave

height (H1/3) offers a more holistic representation of wave

conditions. This parameter accounts for both the average and

more extreme wave heights, thereby providing a balanced input

for the model. On the other hand, maximum wave height (Hmax)

represents more extreme cases, and hence is not a good proxy for

the overall wave conditions, leading to slightly greater

computational errors. The use of wind speed (WS) as an

alternative parameter is also noteworthy. While not as effective as

wave height in representing wave conditions, it provides a

reasonable approximation when wave data are not readily available.

Therefore, it can be concluded that for best results, significant

wave height (H1/3) should be used for calculations when conditions

allow. When wave parameters are hard to acquire, using wind speed

to represent wave magnitude is also acceptable.
4 Future work

We employed three RNN models to effectively model long time

series pore pressure data obtained from marine field monitoring,

enabling accurate predictions up to a duration of 500 hours. This

demonstrates the valuable utility of deep learning methods for
B

C

D

A

FIGURE 5

GRU-based pore pressure prediction results at different depths. (A–D) are the comparison between the observed and real values of pore pressure at
0.5m, 1.5m, 2.5m, and 3.5m burial depths, respectively. .
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addressing the wave-induced pore pressure problem and offers

insights for tackling time series prediction challenges in the field

of marine geology.

However, the accuracy of the model is notably influenced by the

training data, which is inherent to the working principle of deep

learning models. Achieving an accurate model relies on having

complete and realistic input data encompassing various influential

factors. Incomplete or inaccurate input data will inevitably lead to

inaccuracies in the resulting model. Therefore, the acquisition and

organization of data become crucial focal points in deep learning-

based modeling. Furthermore, the deep learning model developed in

this study is tailored specifically to the powdered soil seabed

conditions in the Yellow River estuary and may not be suitable for

all study areas. This is a characteristic of deep learning models—they

excel at nonlinear modeling within a given data range but lack

generalization beyond that range. When modeling pore pressure

prediction in other areas, it remains necessary to gather a substantial

amount of data and information on geological parameters.

When establishing a deep learning geological model, it is

important to consider not only the mathematical significance of

optimal prediction accuracy but also the richness and completeness

of the model parameters in a geological sense. For instance, in this

study, when discussing the influencing factors of wave-induced pore

pressure prediction, although the correlation coefficients of

parameters such as wave height and wind speed with the pore

pressure at time t-1 are only one-fourth of that with water depth,
Frontiers in Marine Science 11
they still need to be considered during modeling. Only wave periods

with very low correlation can be discarded. This is because deep

learning models are prone to overfitting when trained excessively.

Even though the two strongly correlated parameters in this problem

can accurately predict pore pressure, it does not imply that only

these two parameters can be used for accurate predictions in other

regions. Geologically significant parameters, such as wave

characteristics and wind speed, need to be included in the

model’s input parameters.

In future research, we will leverage the findings of this study to

further explore novel techniques and methods for predicting wavelike

pore pressure. While this study utilized field monitoring data as input

parameters, it is important to address the high data acquisition cost.

Investigating whether the relationship of wave-induced pore pressure

can be established directly using easily accessible parameters such as

water depth, sediment characteristics, wave properties, current

conditions, and sea wind patterns will be a key focus of our future

work. Additionally, while the current study emphasizes long-term

pore pressure prediction in half-hour intervals, we acknowledge the

importance of understanding and predicting rapid changes that occur

in much shorter timescales. As soil liquefaction in response to strong

and continuous wave action can transpire within minutes or even

seconds, future endeavors will prioritize finer temporal resolutions.

This will allow us to capture and predict imminent sediment

behaviors, offering a more holistic and practical insight into seabed

dynamics under varying wave conditions. By merging the findings

from both long-term and short-term predictions, we aim to offer a

comprehensive tool for marine geologists and engineers in their

efforts to anticipate and mitigate liquefaction risks.
5 Conclusions

In this study, we employed three deep learning models, namely,

the standard RNN, LSTM, and GRU, to model and predict the

variation of pore pressure under long time series of wave actions
BA

FIGURE 6

Statistical results of pore pressure prediction for different seabed burial depth locations. (A) is the prediction absolute error of pore pressure at four
different seabed burial depth locations; (B) is the CDF of the prediction errors of pore pressure at four different seabed burial depth locations.
TABLE 4 Performance of prediction accuracy at different depth using
GRU model.

Depth(m) MSE MAE RMSE R2

0.5 2.05 1.04 1.43 0.87

1.5 2.01 1.08 1.42 0.88

2.5
3.5

2.49
1.27

1.13
0.86

1.58
1.13

0.85
0.92
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obtained from in-situ marine monitoring. We compared the

accuracy of these three models and ultimately identified the most

suitable model for wave-induced pore pressure prediction. We

conducted predictions with different depths, discussed the effects

of model hyperparameters, input parameters on model prediction

accuracy. The main conclusions are as follows:
Fron
(1) Deep learning models can accurately predict the response

of pore pressure to ocean waves. All three models achieved

a prediction horizon of 500 hours and kept the absolute

error within 2 kPa. Among them, the GRU model exhibited

the highest accuracy.

(2) When predicting wave-induced pore pressure at different

seabed depths, the GRU model achieved a relatively high

accuracy (MAE around 1 kPa). There was no significant

correlation between prediction accuracy and depth.

(3) The model built using the pore pressure at the previous

moment, water depth, and effective wave height as input

parameters predicted the most accurate values. When

aiming for easily obtainable input parameters, wind speed

can be effectively used in place of the effective wave height,

without compromising prediction accuracy significantly.

(4) The ability to predict pore pressure under long time series

of wave actions is crucial, especially considering the

continual and varying influence of waves over extended

periods. Such long-duration predictions provide a more

realistic representation of seafloor pore pressure and
tiers in Marine Science 12
liquefaction response under persistent wave action. This

research underscores the significance of long time series

predictions in understanding the potential risks associated

with seafloor sediment stability in marine environments.
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