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and Seung-Buhm Woo3

1Typhoon Research Center, Jeju National University, Jeju, Republic of Korea, 2Artificial Intelligence
Convergence Research Center, Inha University, Incheon, Republic of Korea, 3Department of Ocean
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The El Niño–Southern Oscillation (ENSO) causes a wide array of abnormal

climates and extreme events, including severe droughts and floods, which

have a major impact on humanity. With the development of artificial neural

network techniques, various attempts are being made to predict ENSO more

accurately. However, there are still limitations in accurately predicting ENSO

beyond 6 months, especially for abnormal years with less frequent but greater

impact, such as strong El Niño or La Niña, mainly due to insufficient and

imbalanced training data. Here, we propose a new weighted loss function to

improve ENSO prediction for abnormal years, in which the original (vanilla) loss

function is multiplied by the weight function that relatively reduces the weight of

high-frequency normal events. The new method applied to recurrent neural

networks shows significant improvement in ENSO predictions for all lead times

from 1 month to 12 months compared to using the vanilla loss function; in

particular, the longer the prediction lead time, the greater the prediction

improvement. This method can be applied to a variety of other extreme

weather and climate events of low frequency but high impact.
KEYWORDS
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1 Introduction

ENSO refers to the irregular periodic air–sea interaction in the tropical eastern Pacific

Ocean, which is manifested in the El Niño–La Niña transition in the ocean and the

Southern Oscillation in the atmosphere (Kug et al., 2009; Yeh et al., 2009; Timmermann

et al., 2018; Wang, 2018). ENSO is one of the most important climatic phenomena on Earth

(Wang, 1995; An and Jin, 2004; Cal et al., 2019), often causing global temperature and

precipitation extremes, affecting Earth’s ecosystems and human societies. Skillful ENSO

prediction offers decision makers an opportunity to take into account the anticipated
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climate anomalies, potentially reducing the societal and economic

impacts by this natural phenomenon and assisting in the

management of natural resources and the environment (Han and

Kug, 2012; Tang et al., 2018).

Over the past decades, the research about ENSO prediction has

attracted broad attention and has resulted in significant

improvements (Barnston et al., 2012; Han and Kug, 2012). In

particularly, various attempts have been made to improve ENSO

predictions using artificial neural network techniques (Dijkstra

et al., 2019), such as convolutional neural networks (CNNs)

(Ham et al., 2019), temporal convolutional networks (TCNs)

(Yan et al., 2020), graph neural networks (GNNs) (Cachay et al.,

2021), recurrent neural networks (RNNs) (Hassanibesheli et al.,

2022), long short-term memory (LSTM) (Xiaoqun et al., 2020), and

convolutional long short-term memory (ConvLSTM) (Gupta et al.,

2019). General artificial neural network models use large volumes of

input and output data to find nonlinear relationships that minimize

errors in which there is no distinction between normal and

abnormal events (Elman, 1990; Gers et al., 2000; Graves, 2012;
Frontiers in Marine Science 02
Cho et al., 2014; Zhang et al., 2019; Yang et al., 2018; He et al., 2019).

Thus, these models tend to be optimized for data pertaining to high-

occurrence normal events and do not sufficiently consider

infrequent abnormal events ultimately reducing the prediction

accuracy for abnormal years. Figure 1 shows an example of the

difference in ENSO prediction performance depending on where

the focus is placed.

From a disaster prevention perspective, it is more important to

better predict extreme ENSO years (i.e., El Niño and La Niña) than

normal years (|Niño3.4|< 0.5°C). However, few studies have

investigated models’ predictive performance focusing on

abnormal ENSO years (|Niño3.4| > 0.5°C). Here, we propose a

novel weighted loss function to improve prediction accuracy for

abnormal years, which are much less frequent than normal years,

but more important from the perspective of disasters. The method

was applied to the LSTM neural network to predict Niño3.4.

Predictive performance was evaluated for forecast lead times

ranging from 1 to 12 months and compared with the results

obtained using vanilla loss functions.
B

A

FIGURE 1

Two examples of the difference in the 6-month lead prediction performance of Niño3.4 (A) The case of high overall average predictive performance
but relatively low prediction of abnormal years (y >0.5). (B) Low overall average predictive performance but relatively high prediction of abnormal
years. Individual RMSEs and correlation skills (r), including the results for abnormal years only (y > 0.5, in parentheses), are shown at the top.
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2 Methods

2.1 Neural network model

This study used the LSTM neural network, which has the

advantage of long-term memory. LSTMs are specifically designed

to address the challenge of long-term dependencies in time series

data. They are capable of remembering information over extended

periods, which is crucial for capturing patterns over extended time

frames (Goodfellow et al., 2016). Traditional Recurrent Neural

Networks (RNNs) often face the vanishing gradient problem,

where gradients become too small for effective learning in deep

networks. LSTMs mitigate this problem through their gating

mechanisms. LSTMs are also highly flexible and can model the

complexities of various time series data (Goodfellow et al., 2016),

making them suitable for the diverse and dynamic nature of

climate data.

For model training, time series of nine indices (Table 1) were

used, in which the input data are monthly mean values for the 12

months prior to the base time, while the output data are the Niño3.4

index for 1–12 months after the base time. The model

hyperparameters are shown in Table 2. In this study, Adam’s

method (Kingma and Ba, 2014) was used as an optimizer, but L1

regularization, known as Lasso (Tibshirani, 1996), and L2

regularization, known as ridge regression (Hoerl and Kennard,

1970), which can prevent overfitting, were not used. This is

because the use of L1 and L2 regularization can complicate the

evaluation of the contribution of the loss function when

interpreting the results, as the regularization effects can be mixed
Frontiers in Marine Science 03
in (Hastie et al., 2004; Bishop, 2006). Instead of using regularization,

we designed the neural network structure as simple as possible (i.e.,

the hidden size was set to 12) to prevent overfitting because the

more complex the network configuration, the more it depends on

the training data.

To improve prediction performance for abnormal ENSO years

and ensure reliability, the optimized neural network model itself

should first be constructed. Since the performance of artificial

neural networks greatly depends on the quality and quantity of

training data, the greatest possible volume of high-quality data was

obtained, although it is more difficult to obtain sufficient data for

training compared to other fields. If a model is designed as a

complex network and has numerous parameters in the absence of

sufficient data, performance improvement is limited due to

overfitting. In general, when overfitting occurs, performance tends

to be good during training but decreases significantly during testing.

In this study, a neural network model optimized for small volumes

of learning data was designed to prevent overfitting. RMSE and

Pearson’s r were used to evaluate and compare the results of normal

and abnormal years.

For the period January 1900–July 2021, for which nine input

variables overlapped, the training period spanned 105 years, from

January 1900 to December 2004, and the validation period covered

about 18 years, from January 2005 to July 2022 (Figure 2). The last

12 years of data were reserved for the verification of the 12-month

lead time prediction. Artificial intelligence models are generally

developed by dividing the data into training, validation, and testing

periods to increase the reliability of the results. However, the lack of

long-term data for ENSO predictions makes it difficult to obtain

data for testing. Moreover, since the main purpose of this study was

to examine whether the prediction of abnormal ENSO years could

be improved using a weighted loss function, we focused only

examining the effect of the weighted loss function on training and

validation. The validation period was set to about 18 years after

2005 to ensure that more than two strong El Niño and La Niña

events were included. All input and output data were normalized

using maximum and minimum normalization (MinMaxScaler) to

make the dimension and size equal. Specifically, to reflect the

characteristics of Niño3.4, the input data were normalized

between 0 and 1, and the output was normalized between −1 and 1.

Overfitting is a fundamental problem of machine learning that

interferes with predictability. In general, overfitting occurs due to

the presence of noise, the complexity of the neural network, and

especially the limited size of training data. Ying (2019) suggested

various methods, such as early stopping, network reduction, data

expansion (data augmentation), and regularization, to prevent

overfitting. Other methods have also been proposed, including

dropout and regularization, small batches for training, low

learning rates, simpler models (smaller capacity), and transfer

learning (Koidan, 2019). This study used dropout, small batches,

low learning rates, simpler models, and early stopping to prevent

overfitting. The early stopping point was chosen to be when the

validation loss was at its lowest value after the training loss had

dropped sufficiently. Figure 3 is an example of training loss and

validation loss plotted together. The relatively large total number of

epochs was chosen so that many experiments would have enough
TABLE 1 Indices used as input/output data for ENSO predictions.

Index Description and
related references

Available
data
period

In/
Out

Niño3.4 Niño 3.4 Index (5°N-5°S,170°W-
120°W)

1870.01
~ 2022.07

O

Niño3 Niño 3 Index (5°-5°S,150°W-90°W)
(Barnston et al., 1997)

1870.01
~ 2022.07

I

Niño4 Niño 4 Index (5°N-5°S,160°E-
150°W)

1870.01
~ 2022.07

I

Niño1 + 2 Niño 1 & 2 Index (0°N-10°S,90°
W-80vW)

1870.01
~ 2022.07

I

SOI Southern Oscillation Index (Shi and
Su, 2020)

1866.01
~ 2022.04

I

NAO North Atlantic Oscillation (Zhang
et al., 2019)

1821.07
~ 2021.07

I

DMI Dipole Mode Index (HadlSST1.1
version) (Ashok et al., 2003)

1870.01
~ 2022.01

I

PDO Pacific Decadal Oscillation (Newman
et al., 2016)

1900.01
~ 2022.07

I

NP North Pacific Index (Soulard
et al., 2019)

1899.01
~ 2022.02

I

Sunspot Monthly sunspot counts (Zhai
et al., 2017)

1749.01
~ 2022.02

I
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time to learn about finding the best epoch for each experiment. For

this experiment, we compared the prediction results at about 1100

epochs, the best value of validation.
2.2 Data

Monthly climate indices were downloaded from the official

National Oceanic and Atmospheric Administration website

(https://psl.noaa.gov/gcos_wgsp/Timeseries/; accessed Oct. 2022).

Niño3.4 is the anomaly obtained by subtracting the climatological

mean of the period 1981–2010 from the regional SST mean of 5°N–

5°S and 170°W–120°W (Figure 4). Niño3.4 was used as a

predictand, whereas the other indices (Table 1) were used as

predictors. To find potential predictors, various climate indices

that are related to ENSO, were selected based on literature research
Frontiers in Marine Science 04
and during model training, the correlations between Niño3.4 and all

potential ENSO-related indices were investigated. Finally, nine

optimized predictors were then selected as input variables.

Table 1 provides references explaining the relevance of each index

to ENSO. Since the collected data pertained to different periods,

only data for the period in which all variables overlapped were used.
2.3 Experimental methods and evaluation

Time series forecasting can be divided into univariate and

multivariate forecasting, as well as one-step and multistep

forecasting. Univariate forecasting uses one variable X for

predictand Y, whereas multivariate forecasting uses multiple

variables (Xs). One-step (many-to-one) forecasting predicts a

simple future point (Yt+n), while multistep (many-to-many)
TABLE 2 Hyperparameters of the neural network model used in this study.

Neural
Network

Optimizer
Hidden
size

Number
of layers

Learning
rate

Number
of epochs

Minibatch
size

Dropout

LSTM Adam 12 2 1e-3 4000 12 10%
fr
FIGURE 3

The loss curves of training and validation for the weighted L1 experiment (blue: training, red: validation). We analyzed the results at around 1100
epochs, which is the best value for validation after the training loss had dropped sufficiently.
FIGURE 2

Niño3.4 time series used for training and validation. The extra data were used for the verification of the 12-month prediction.
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forecasting predicts multiple points (Yt+1, Yt+2,…, Yt+n)

simultaneously. This study used multivariate forecasting with

nine input variables, allowing the use of as many observations

and variables as possible. Multistep forecasting makes it possible to

simultaneously make predictions for 1 to 12 months and maintain

consistency between the prediction results for each lead time. One-

step forecasting, which independently predicts each month, may

perform well for specific individual forecasts but may not perform

consistently across the entire lead times (Makridakis et al., 1998;

Armstrong, 2001; Box et al., 2015). Figure 5 shows the schematic

diagram illustrating input/output data and period for training

and validation.

To consistently compare the experimental results, a random

seed value in the neural network was fixed and tested (Madhyastha

and Jain, 2019). We also did not use ensemble method because it

combines multiple models to improve prediction performance,
Frontiers in Marine Science 05
making interpretation more difficult compared to a single model

(Hastie et al., 2004). This was a necessary step in the twin

experiments conducted to investigate the performance of the loss

functions. Table 2 shows the experimental configuration for the

investigation of the Niño3.4 predictive performance using various

weighted loss functions. A total of 4,000 epochs were trained for

each experiment, and periodic verification was performed to select

the best predictive performance. The procedure was similar to an

early stopping method.

To evaluate the model’s accuracy and error simultaneously, the

RMSE and Pearson’s r were compared between the predicted values

and the Niño3.4 index. Both the RMSE and Pearson’s r had values

between 0 and 1. The closer Pearson’s r is to 1, the higher the

accuracy, and the closer the RMSE is to 0, the smaller the error. To

investigate the performance of only abnormal years, the result of |

Niño3.4| > 0.5°C was additionally presented.
FIGURE 4

Definitions of various Niño indices.
FIGURE 5

Schematic diagram illustrating input/output data and period for training and validation.
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3 Results

3.1 Design of weighted loss functions

In genal, three loss functions are used to calculate the loss of

neural network models: L1 (mean absolute error; L(y,   f (x)) =

(y − f (x))j j), L2 (mean squared error; L(y,   f (x)) = (y − f (x))2),

and Huber (1964) (Ld (y,   f (x)) = 0:5(y − f (x))2 for   y − f (x)j j ≤ d
and d ( y − f (x)j j − 0:5d ,  otherwise) where L is the loss function, y is

the predictand, f (x) is the predicted value, and d is the boundary

value separating quadratic and linear. L1 is less affected by outliers

than the other two functions, and L2 is favorable for finding optimal

values. Huber was developed to take advantage of L1 and L2 and

compensate for their shortcomings based on the d value and shows

satisfactory learning ability in most neural networks because of its

simplicity and good performance. In this study, these vanilla loss

functions are multiplied by two (linear and quadratic) weight

functions to weight loss value according to the level of the

predictand. The right side of Figure 6 shows the two types of

weight functions as an example—linear function (y) and quadratic

function (y2), in which slopes of the functions are defined as 1, 5,

and 10. This indicates that the weight increases linearly (or as a

quadratic function) up to ±1.0, ± 0.2, and ±0.1, respectively. After

that, the weight is fixed to 1 to be equal to the vanilla loss function.

In this way, each loss value can be weighted according to the level of

the predictand. This method can be expressed as follows:

Lw(y,   f(x)) = L(y,   f(x))�W(y)

where W(y) are the weight functions and are expressed

as follows:
Frontiers in Marine Science 06
Linear (W1):

W(y) =  
slope� y           for   y ≤   1

slope  ,

    1  ,                           otherwise :      

(

Quadratic (W2):

W(y) =  
  (slope� y)2           for   y ≤   1

slope  ,

1  ,                           otherwise :      

(

Since the loss value is combined for all years and the model is

trained to minimize this loss, reducing the weight of normal years

using these equations allows for a greater focus on abnormal or

extreme ENSO events. The adjusted weighting system ensures that

the model does not underestimate significant abnormal events,

improving prediction accuracy especially for extreme events. The

optimal slope of the weighted functions was determined according

to the distribution of the predictand (Niño3.4). In this study, six

weighted functions, linear (W1) and quadratic (W2) functions with

slopes of 1, 5, and 10, were tested based on the data distribution of

Niño3.4 (Figure 7). For the period January 1900–July 2021, the

training period spanned 105 years, from January 1900 to December

2004, and the validation period covered about 18 years, from

January 2005 to July 2022.
3.2 ENSO prediction results

A total of 18 experiments (Table 3) were performed by

combining the six weight functions and the three vanilla loss

functions (L1, L2, and Huber). Predictive performance was

evaluated for lead times ranging from 1 to 12 months. In each
FIGURE 6

Schematic diagram explaining how to apply a weight function to a vanilla loss function. Here, linear (W1) and quadratic (W2) weight functions with
slopes of 1, 5, and 10 are applied to the vanilla L1, L2, and Huber loss functions. The source code of the weighted loss function is provided in the
Supplementary Information.
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case, the results obtained using the vanilla L1, L2, and Huber loss

functions were compared to those obtained using the weight

functions. The weight functions that performed best for the three

loss functions are shown in Table 4.

Figure 8 shows a comparison of the Niño3.4 predictions for

abnormal years (y>0.5°C) over lead times ranging from 1 to 12

months using the vanilla loss function and the six weighted loss

functions. For L1, most of weighted functions outperformed vanilla
Frontiers in Marine Science 07
function on average in abnormal years (Figures 8A, B; Table 4). In

particular, the performance improvement was greater for longer

lead predictions. For the L1 loss function, a quadratic weight

function with a slope of 10 (10W2; purple line) performed best,

followed by 5W2 (Table 4). For the L2 loss functions, all weight

functions had lower errors and higher correlations than vanilla L2

(Figures 8C, D; Table 4). For L2, a quadratic weight function with a

slope of 1 (1W2; dark yellow line) showed the best performance
TABLE 3 Experimental configuration of the weighted loss functions to investigate Niño3.4 prediction performance.

Weight
Loss

Linear (W1) Quadratic (W2)

1y 5y 10y (1y)2 (5y)2 (10y)2

L1 (MAE) 1W1L1 5W1L1 10W1L1 1W2L1 5W2L1 10W2L1

L2 (MSE) 1W1L2 5W1L2 10W1L2 1W2L2 5W2L2 10W2L2

Huber 1W1Hb 5W1Hb 10W1Hb 1W2Hb 5W2Hb 10W2Hb
fron
The first number of the code represents the slope). (Here, y is Niño3.4 (predictand), W1 & W2 are the type of weight function, and L1, L2, & Hb are the type of loss function.
FIGURE 7

Histogram showing the distribution of Niño3.4 along with linear (W1) and quadratic (W2) weight functions with slopes of 1, 5, and 10. The bulk (81%)
of the data were in the range of -1 to 1.
TABLE 4 Averaged all-season RMSE and correlation skills of Niño3.4 for all-lead forecast times for the validation period (2005–2022).

Type of weight function
RMSE r

L1 (y>0.5) L2 (y>0.5) Huber (y>0.5) L1 (y>0.5) L2 (y>0.5) Huber (y>0.5)

Vanilla 0.645 (0.758) 0.677 (0.756) 0.703 (0.765) 0.607 (0.703) 0.618 (0.719) 0.609 (0.719)

1W1 0.673 (0.729) 0.620 (0.682) 0.617 (0.668) 0.649 (0.746) 0.686 (0.791) 0.682 (0.793)

1W2 0.741 (0.787) 0.649 (0.671) 0.660 (0.709) 0.575 (0.694) 0.697 (0.799) 0.668 (0.763)

5W1 0.649 (0.720) 0.667 (0.750) 0.676 (0.735) 0.654 (0.747) 0.627 (0.724) 0.625 (0.727)

5W2 0.625 (0.672) 0.653 (0.726) 0.637 (0.704) 0.675 (0.796) 0.640 (0.750) 0.664 (0.777)

10W1 0.652 (0.737) 0.653 (0.756) 0.669 (0.746) 0.637 (0.740) 0.643 (0.721) 0.627 (0.715)

10W2 0.582 (0.666) 0.660 (0.728) 0.690 (0.752) 0.721 (0.805) 0.644 (0.746) 0.633 (0.725)
Here, the results of vanilla L1, L2, and Huber loss functions are compared with those of using six weight functions consisting of linear (W1) and quadradic (W2) functions with three slopes (1, 5,
and 10). The values in parentheses are results for abnormal years only (y > 0.5). Bold values represent the best results for the three loss functions for normal and abnormal years, respectively.
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with a 10-20% improvement over vanilla L2 in the 6–12-month

predictions of abnormal years. However, the performance

improvement of the best (optimal) weighted loss function (i.e.,

1W2) was smaller than that of L1. This is because vanilla L2 is

known to have significantly better performance compared to L1

(also shown in our results; compare the black lines in Figures 8A–

D), making further improvement by the weighted loss function

difficult. For the Huber loss functions, the results were overall

similar to L2, except that the best performing model was a linear

weighted function with a slope of 1 (1W1, green line Figures 8E, F;

Table 4). In particular, 1W1 showed the largest improvement over

vanilla Huber functions in the 6–9-month lead predictions

(Figures 8E, F). Analysis of extremely abnormal years with the

Niño3.4 index anomalies above 1.0 °C (y>1.0) was also consistent
Frontiers in Marine Science 08
with results from abnormal years with a threshold of 0.5°C

(Figure 9). That is, the weighted loss function performs better

than the vanilla loss function, and the best weighted loss

functions for L1 and L2 were 10W2 and 1W2, respectively.

ENSO predictive performance over six-month lead times is a

widely used metric when evaluating models. Previous models have

shown remarkable performance for up to 6-month lead times (e.g.,

Ham et al., 2019; Yan et al., 2020). In this study, the best model

(10W2L1) for 6-month lead predictions had an RMSE of 0.61 and a

correlation skill of 0.71 for all years, which is comparable to the

performance of previous state-of-the-art studies (Figure 10). The

high performance is mainly the result of a significant improvement

(i.e., from 0.8 to 0.70 for RMSE and 0.71 to 0.79 for correlation skill)

over the vanilla loss function in abnormal years. In particular, the
B

C D

E F

A

FIGURE 8

Comparisons of the all-season RMSEs and correlation skills of Niño3.4 for abnormal years (y>0.5°C) as functions of forecast lead times. For L1 (A, B),
L2 (C, D), and Huber (E, F), comparisons were made using vanilla and six weighted loss functions over the validation period (2005–2022) and the
best results for each were shown as bold colored lines.
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use of the weighted loss function significantly improved the

performance of strong El Niño in 2015–2016 and strong La Niña

in 2007–2008 and 2010–2011. For the latest period, however, the

performance was relatively poor (Figure 10). This could be due to

changes in climate behavior or the evolution of factors influencing

ENSO in recent years (Cai et al., 2023), and possibly because the

model did not take these into account.
4 Discussion

The optimal slope of the weight functions was determined

depending on the combination of the distribution of the y data
Frontiers in Marine Science 09
and the function used. Therefore, the selection of the slope also

requires an optimization process similar to the tuning of

hyperparameters. In this study, we conducted more experiments

than those presented here, but only the results of three discrete

slopes (1, 5, 10) are shown here. This is because we believe that the

impact of using a weighted loss function in this study can be

sufficiently explained through the three samples. The experimental

results show that the smaller the slope, the smaller the error in most

cases of abnormal years (Figure 11). This may be because the

frequency of the y data generally decreases almost linearly or

quadratic with y (Figure 7). A closer look reveals that slope 1

generally shows the best performance except quadratic-L1

(Figure 11). When the slope was further reduced to 0.5, the
B

C D

E F

A

FIGURE 9

Same as Figure 8 but for extremely abnormal years (y>1.0°C) for L1 (A, B), L2 (C, D), and Huber (E, F).
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performance was similar to that of slope 1 (not shown). In the case

of quadratic-L1, slope 5 or 10 showed the best performance. The

distribution of the y data shows that the bulk (81%) of the data were

in the range of −1 to 1 and the ranges of slopes 5 and 10 correspond

to where the data is concentrated (Figure 7). In some cases,

therefore, the greatest benefit can be achieved by reducing the

weights only in this high frequency range. These results emphasize

again that the optimal type of weight function and slope should be

determined according to the data distribution.

In this study, only simple linear and quadratic functions were

tested for sensitivity, but it is possible to develop and use various

weighting functions (including known probability distribution

functions) that better express the distribution of data. The current

method is similar to data augmentation and batch sampling in that

it solves the data imbalance problem, but it has the advantage of

using all the data without artificially reducing or increasing the

sample and using various weighting functions to focus on and

optimize the desired target.

Observational data necessary for the development of ENSO

prediction models using artificial neural networks are insufficient.

To solve this problem, Ham et al. (2019) devised a transfer learning

method using the results of a three-dimensional global circulation

model. Initially, we also constructed an LSTM model using

additional long-term climate model data, and tested their

performance. However, the uses of these data did not significantly

improve the model’s predictive accuracy. This may be because the

numerical model itself has limitations in realistically simulating

ENSO and this can negatively affect learning ability in current

LSTM experiments. Subsurface ocean information, known as an

early origin of ENSO variations, was also not used as a potential

predictor in this study, as there is no long-term subsurface data with

high accuracy, and the LSTM’s test results did not show a significant

improvement in performance. In fact, we have tested subsurface
Frontiers in Marine Science 10
variables extracted from the three-dimensional ocean data of Simple

Ocean Data Assimilation (SODA), such as mixed layer depth and

thermocline slope, as potential predictors, but did not achieve any

significant performance improvement. This may be because that

subsurface ocean data has lower accuracy and shorter duration

compared to SST data, due to the difficulty in obtaining

observational data, which may have contributed to the lack of

performance improvement.

While many recent studies have focused on improving ENSO

forecasting at long lead times (>1.5 years 18 months) (Luo et al.,

2008; Doi et al., 2016; Ham et al., 2019; Patil et al., 2023), this study

aims to improve accuracy and reliability for extreme or abnormal

ENSO events using a new weighted loss function. We believe that

the analysis results presented here, based on a lead time of up to one

year, can support the claims and conclusions of this study.

However, it is meaningful to investigate whether the current

method accurately predicts extreme/abnormal ENSO events even

with such long lead times. This remains a task for future research.

State-of-the-art ENSO prediction models can be developed using

better methods and data, but it is important that this study can

contribute to further improving the performance of these artificial

intelligence models. In particular, the method based on the weighted

loss functions presented herein can be effectively used when the

observational data for training are insufficient and when the number

of extreme events is small. Given that most extreme events are

infrequent, the proposed method can be used to predict not only

extreme ENSO but also various other extreme weather and climate

events such as tropical cyclone, floods, drought, and heat waves.

This study does not explain which predictors contribute the

most to the improvement in accuracy for the abnormal years since

AI models are composed of non-linear relationships between

predictors, which makes them difficult to interpret. In the case of

CNN, heatmaps are often used as a basis for judging the results, but
FIGURE 10

6-month lead predictions for Niño3.4 using the vanilla L1 loss function (blue line) and an optimal weighted loss function (10W2L1, red line). The
observed Niño3.4 is also shown (black line). Individual RMSEs and correlation skills for the validation period (2005–2022), including the results for
abnormal years only (y > 0.5, in parentheses), are shown at the top. An additional time series from 2000 to 2004, the last part of the training period,
is shown here to ensure that there is no overfitting.
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even this does not explain the contribution of the predictors. The

field of Explainable AI (XAI) and Causal Inference is developing to

study which factors a model has chosen as important and this is an

area we are interested in exploring in future research.
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FIGURE 11

RMSEs and correlation skills of linear (A–D) and quadratic (E–H) weight function according to the slope. The performance of the weight function
generally improves as the slope decreases, but the quadratic function for L1 performs best at slopes of 5 and 10. The results for abnormal years only
(y > 0.5) are shown in (B, D, F, H).
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