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The recognition of underwater acoustic targets plays a crucial role in marine

vessel monitoring. However, traditional underwater target recognition models

suffer from limitations, including low recognition accuracy and slow prediction

speed. To address these challenges, this article introduces a novel approach

called the Multi-Gradient Flow Global Feature Enhancement Network

(MGFGNet) for automatic recognition of underwater acoustic targets. Firstly, a

new spectrogram feature fusion scheme is presented, effectively capturing both

the physical and brain-inspired features of the acoustic signal. This fusion

technique enhances the representation of underwater acoustic data, resulting

in more accurate recognition results. Moreover, MGFGNet utilizes the multi-

gradient flow network and incorporates a multi-dimensional feature

enhancement technique to achieve fast and precise end-to-end recognition.

Finally, a loss function is introduced to mitigate the influence of unbalanced data

sets on model recognition performance using Taylor series. This further

enhances model recognition performance. Experimental evaluations were

conducted on the DeepShip dataset to assess the performance of our

proposed method. The results demonstrate the superiority of MGFGNet,

achieving a recognition rate of 99.1%, which significantly surpasses

conventional methods. Furthermore, MGFGNet exhibits improved efficiency

compared to the widely used ResNet18 model, reducing the parameter count

by 51.28% and enhancing prediction speed by 33.9%. Additionally, we evaluated

the generalization capability of our model using the ShipsEar dataset, where

MGFGNet achieves a recognition rate of 99.5%, indicating its superior

performance when applied to unbalanced data. The promising results obtained

in this study highlight the potential of MGFGNet in practical applications.
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underwater acoustic target recognition, underwater acoustic signal processing, feature
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1 Introduction

With the development of artificial intelligence, there is an

increasing focus on utilizing AI-based methods to address

research challenges in aquaculture. Fisheries and aquaculture

constitute a global industry valued at $200 billion (Gladju et al.,

2022). As this industry continues to expand, traditional processes

involving essential technologies such as aquaculture environment

monitoring, feeding, and fish behavior surveillance (Wu et al., 2022)

incur significant costs. Hence, the urgent need arises to employ

artificial intelligence technologies to enhance the economic, social,

and environmental sustainability of the fish supply chain (Lim,

2022). AI-based aquaculture technologies primarily encompass

environmental monitoring, intelligent feeding, biological behavior

monitoring, and fishing vessel motion tracking (Setiyowati

et al., 2022).

Environmental monitoring relies on water quality management

systems to control the health of aquaculture water, preventing

widespread diseases or issues such as slow growth in fish fry due

to water quality problems (Hu et al., 2022). Koparan et al. (2018)

developed an intelligent unmanned aerial vehicle to continuously

monitor the water quality of a 1.1-hectare pond through intelligent

sampling and analysis. Given that feed costs constitute over 60% of

aquaculture expenses (Boyd et al., 2022), effective control of feed

distribution is crucial. Lim and Whye, (2023) proposed a system

that monitors fish behavior by detecting water wave vibrations

caused by competitive feeding, thereby assessing fish hunger levels

and significantly reducing feed consumption.

Biological behavior monitoring encompasses various aspects.

Ahmed et al. (2022) and Darapaneni et al. (2022) employed

computer vision and underwater optical imaging techniques,

respectively, to obtain underwater images of fish activities for

disease detection and prevention before widespread mortality.

Fishing activities require strict control over timing and quantity

globally. Bradley et al. (2019) and Kritzer, (2020) integrated

automatic identification with artificial intelligence technology,

utilizing underwater acoustic target recognition systems to track

fishing vessel movements in real-time and predict their fishing

activities, ensuring legitimacy.

In summary, due to the rapid development of computer vision

technology effectively addressing the first three issues in aquaculture,

our research focus shifts towards utilizing underwater acoustic target

recognition technology for vessel motion monitoring.

Underwater acoustic target recognition involves collecting

target radiated noise using hydrophones, analyzing and

processing the data to discern target types (Ma et al., 2022). It

holds significant importance in maritime vessel monitoring and

underwater vehicle detection. Acoustic target recognition models

typically consist of two modules: feature extraction and feature

classification (Hong et al., 2021), and research in this field revolves

around these modules.

Traditional methods of underwater acoustic target feature

extraction can be categorized into signal physics-based and brain-

like computing methods (Zhu et al., 2023). Signal physics-based

methods rely on basic characteristics, temporal features, and non-

Gaussian characteristics of underwater acoustic signals (Yao X.
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et al., 2023). This includes time-domain features like zero-crossing

distribution, frequency-domain features like cepstral analysis (Zhu

et al., 2022), and joint time-frequency domain features such as

wavelet transforms (Han et al., 2022; Liu et al., 2022; Tian et al.,

2023). Brain-like computing features for underwater acoustic

signals include Mel-frequency cepstral coefficients (MFCC)

simulating nonlinear processing of the human ear (Di et al.,

2023) and Gammatone filtering simulating peripheral auditory

processing (Zhou et al., 2022). Traditional classifier models

include case-based reasoning (Ali et al., 2018) and perceptron

neural networks (Linka and Kuhl, 2023). While traditional

methods provide explicit directional analysis based on the

physical meaning of underwater acoustic signals, they depend on

prior knowledge and exhibit poor model generalization (Xiao

et al., 2021).

Deep learning models, including Convolutional Neural

Networks (CNN) (Yao Q. et al., 2023), provide new solutions for

underwater acoustic target recognition (Jin and Zeng, 2023). Wang

and Zeng (2015). demonstrated the feasibility of CNN models in

underwater acoustic target recognition by testing them on three

different measured acoustic targets. Studies have validated the

applicability of deep learning in feature extraction. Huang et al.

(2021) used autoassociative neural networks (AANN) to directly

process mixed time-domain information of raw acoustic data

without prior information, filtering ocean background noise, and

obtaining effective spectral features of underwater acoustic targets.

Additionally, research on deep learning-based classifiers is active. Li

J. et al. (2022) designed AResNet to enhance feature extraction

capability by increasing the width of the ResNet (He et al., 2016)

residual network and incorporating channel attention mechanisms.

Yang S. et al. (2023) developed LW-SEResNet10 to improve target

recognition accuracy by reducing the number of ResNet residual

structures and adding attention mechanisms. These classifiers

operate similarly, performing feature extraction first and then

inputting the features to obtain classification results.

Despite the advantages of existing deep learning-based

underwater acoustic target recognition models in addressing some

shortcomings of traditional methods, several challenges persist:
1. Existing models have independent feature extraction and

classifiers (Zhufeng et al., 2022), failing to meet end-to-end

underwater acoustic target recognition requirements.

2. Current feature extraction methods primarily use two-

dimensional feature methods based on signal physics or

brain-like computing features or their fusion methods (Li J.

et al., 2022; Yang S. et al., 2023), overlooking the high-

dimensional features of underwater acoustic data, resulting

in insufficient representation capabilities of fused features.

3. Current classifiers mainly enhance feature extraction

capabilities by stacking convolutional layers (Ji et al.,

2023). However, due to the mixture of ocean

environmental noise and partial information of

underwater acoustic target features (Xu et al., 2019),

standard convolutional operations tend to lose some

effective features of underwater acoustic targets and

erroneously retain ocean environmental noise (Li J. et al.,
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Fron
2022), reducing the capability to extract effective features in

underwater acoustic target recognition models. Thus, the

model ’s parameter quantity and its recognition

performance cannot achieve an effective balance, failing

to meet the requirements of fast recognition speed and high

accuracy in underwater acoustic target recognition.

4. As underwater acoustic data collection requires substantial

financial and labor support, most existing publicly available

underwater acoustic datasets exhibit imbalances in sample

quantities across categories (Zhou et al., 2021). When

training deep learning-based target recognition models,

this can lead to overfitting phenomena (Li B. et al., 2022),

suppressing model recognition performance.
To address these issues, we propose a novel underwater acoustic

target automatic recognition network model based on a multi-

gradient flow global feature enhancement network, referred to

as MGFGNet.

Contributions of this work include:
1. Introducing a high-dimensional feature fusion method

based on signal analysis and brain-like features.

2. Proposing a multi-gradient network to reduce model

parameters and enhance feature extraction capabilities.

3. Presenting an adaptive feature fusion and enhancement

module to enrich the physical, channel, and contextual

information of pre-existing features.

4. Inventing a loss function, adding only three hyperparameters,

and transforming the multi-classification task into multiple

binary classification tasks, significantly improving the

model’s ability to suppress sample imbalances and

recognition accuracy.
The following outlines the general structural framework of the

remaining content in this article. Section 2 provides a detailed

exposition of the Ship Radiated Noise Classification Method,

known as MGFGNet. In Section 3, qualitative and quantitative

experiments are conducted to compare MGFGNet with existing

advanced underwater acoustic target recognition models, followed

by an analysis of the experimental findings. Finally, Section 4 serves

as the conclusion of this article.
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2 Methods

This section primarily delineates MGFGNet. Section 2.1

provides an overview of its architectural framework. Sections 2.2

through 2.5 subsequently delve into its Feature Extraction and

Fusion Module (FEFM), the Multi-gradient Flow Block with

Attention (Multi-grad Block), the Context Augmentation and

Fusion Module (CAFM), and the dynamic classification loss

function known as Taylor-MCE Loss.
2.1 Proposed model

MGFGNet comprises two core modules: FEFM and the

MGFGNet classifier. Figure 1 illustrates its detailed architecture.

FEFM utilizes various feature extraction algorithms based on

signal analysis and brain-like features to extract multidimensional

features from vessel radiated noise signals. Subsequently, multiple

three-dimensional features are fused using the proposed feature

fusion method to form high-dimensional fused features, which

serve as inputs to the MGFGNet network.

The MGFGNet classifier primarily consists of the Multi-grad

Block module and the CAFMmodule. The Multi-grad Block utilizes

a multi-gradient flow network and residual modules to rapidly

extract deep abstract features with different receptive fields from

underwater acoustic target signals while reducing model

parameters. Simultaneously, it leverages the multi-head self-

attention mechanism (MHSA) (Han et al., 2021) to enhance the

model’s focus on foreground information, aiming to preserve the

spatiotemporal characteristics of target line spectra in the acoustic

energy spectrogram. This enhances the model’s ability to extract

effective information from sonar signals.

The CAFM module uses dilated convolutions with different

dilation rates to adaptively fuse and enhance contextual

information with a broad range of receptive fields, enriching the

feature representation of physical, channel, and contextual

information extracted by the preceding module. Finally, the

Taylor-MCE Loss is employed to calculate prediction loss,

addressing the issue of suppressing model recognition

performance on imbalanced datasets. The Taylor-MCE Loss

incorporates Taylor series (Gonzalez and Miikkulainen, 2021)
FIGURE 1

MGFGNet model architecture.
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into binary cross-entropy loss (BCE) (Ruby and Yendapalli, 2020),

including two components: one suppresses imbalances in sample

components, and the other is a low-order term of the perturbation

factor aimed at enhancing model recognition accuracy.

Additionally, it transforms the multi-class classification task into

multiple independent binary classification tasks.
2.2 Feature extraction and fusion module

Although deep learning-based feature extraction methods can

capture more profound abstract features compared to traditional

signal processing methods, they also come with a substantial

increase in computational costs (Aggarwal et al., 2022). Vessel

radiated noise primarily consists of mechanical noise,

hydrodynamic noise, and propeller noise (Yang et al., 2019).

Additionally, different feature extraction methods express distinct

signal characteristics, and using multiple features for fusion can

yield improved recognition results (Li Y. et al., 2022). Therefore,

this paper, based on the generation mechanism of ship radiated

noise, employs a fusion feature extraction method grounded in

signal physical characteristics and brain-like features to represent

underwater acoustic signals in multiple dimensions.

The fusion features in this paper mainly comprise energy-

enhanced features from three types of features: CQT (Singh et al.,

2022), delta MFCC (Nouhaila et al., 2022), and double delta MFCC

(Nouhaila et al., 2022).

Firstly, since vessel radiated noise carries a significant amount

of valid information in the low-frequency subband (Zhang et al.,

2023), CQT provides better frequency resolution in the low-

frequency subband (Mateo and Talavera, 2020). Hence, CQT is

utilized as one of the feature extraction methods.

Secondly, MFCC, as a static feature, can not only eliminate ocean

background noise but also effectively represent the spectral

information of underwater acoustic targets. However, it lacks

dynamic temporal signal features (Yang S. et al., 2023). To

introduce temporal dynamic information, this paper performs local

estimation of the differential operation along the time axis for the

MFCC feature, obtaining delta MFCC and double-delta MFCC

features. Both of these feature extraction methods are incorporated

into the extraction of underwater acoustic target features.

Furthermore, as the single-channel feature information

(graphically represented as a grayscale image) formed by these

feature extraction methods can only express three-dimensional
Frontiers in Marine Science 04
information of underwater sound, such as time, frequency, and

energy domains, this paper expands the single-channel energy

domain digital features of the above feature extraction methods

into three-channel energy domain features using a color space

representation. The detailed expansion method is described

as follows.

Finally, this feature extraction and fusion module are embedded

in the front end of the target recognition network, significantly

reducing the computational burden of the classifier while achieving

end-to-end target recognition.

Figure 2 illustrates our raised feature extraction method. Its

process consists of four main parts:

1. In the first step, CQT features and MFCC features

are extracted.

2.2.1 CQT extraction process
In the feature extraction process, the frame length is 2048 and

the frame overlap is the portion between two frames of size 75% of

the frame length, then using a Hanning window with a window size

equal to the frame length for each frame signal.

The CQT transform of a finite length sequence x(n) is

XCQT (k) =
1
Nk

o
Nk � 1

n=0
x(n)wNk

(n)e� j2pQNk
n (1)

where wNk
(n) is a Hanning window of length Nk; Q is a constant

factor in the CQT; k is the CQT frequency number, and the value of

Nk is related to the value of k.

Q =
1

2
1
b � 1

; (2)

where b is the number of frequency spectral lines, the

fk = fmin � 2
k
b , k = 0, 1,…,K � 1; (3)

Nk =⌈Q
fs
fk⌉, k = 0, 1,…,K � 1; (4)

where CQT information are stored in a matrix XCQT (k,n),

fmin = 1, fs = 22050. Since the sampling rate of the raw underwater

acoustic data is 22050Hz for 5s, the shape of the CQT is 128×216.

2.2.2 MFCC extraction process
In the feature extraction process, the frame length and frame

overlap are set to be the same as in the CQT extraction process. A

Hanning window with a window size equal to the frame length is
FIGURE 2

Feature extraction process for fused features.
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then used for each frame. The short-time Fourier transform is then

used to filter the noise and the sum of squares is used to obtain the

power spectrum. Then 128 Mel filter banks were used to filter the

information of each frame and logarithm was obtained to obtain

Mel spectrum. Finally, MFCC was obtained by logarithm fitting the

Mel spectrum to human hearing and discrete cosine transform

(DCT). Since the sampling rate of the raw underwater acoustic data

is a 5s signal at 22050Hz, the shape of the MFCC is 128×216.

2. The second step focuses on the extraction of delta MFCC and

double-delta MFCC features by adding delta features and double-

delta features to the MFCC features.

3. The third step focuses on transforming the above three

features into spectrograms based on the size of 512, 12 and 0 for

Hop length, bins per octave and tuning, respectively, with a preset

image size of 3 × 640 × 480 for per image. Figure 3 illustrates the

time-domain waveform diagram of radiated noise of a ship in the

Deepship (Irfan et al., 2021) dataset and the spectrum diagram of

CQT, delta MFCC and double-delta MFCC.

4. In the fourth step, the spectral graphs of CQT, delta MFCC

and double-delta MFCC are fused respectively in channel

dimension. The detailed fusion process is as follows.
2.2.3 Feature compression
as a result of the image pixel values reflected the important degree

of information, so each spectrum diagram of three channel dimension

values together to form a characteristic picture of 640 x 480.
Frontiers in Marine Science 05
2.2.4 Feature range mapping
Since the original pixel size range of each channel dimension is

0-255, the pixel value range of the feature map at this time is 0-765.

To facilitate input for subsequent model calculations, map it to the

range [0,255].

2.2.5 Feature fusion
Finally, the mapped features are in the order of CQT and two

MFCC-derived features from top to bottom in the channel

dimension to form a fusion feature with a shape of 3×640×480.

The formula of the fusion process above is expressed as:

T
0
= Map(concat(o

2

j=0
TCQT
j ,o

2

j=0
TdeltaMFCC
j ,o

2

j=0
Tdouble� deltaMFCC
j )) (5)

Where TCQT

j represents the feature map of the J-th layer in the

channel dimension of the CQT spectral graph feature matrix, TdeltaMFCC
j

and Tdouble−deltaMFCC
j have the same meaning. Concat represents connecting

matrices in the channel dimension. Map represents the range mapping

of matrix data, a matrix T with data range of (xmin,xmax), mapping its

data to the range of (ymin,ymax), and the mapped matrix is

Map =
ymax � ymin

xmax � xmin
� (T �Txmin

) + Tymin
; (6)

Where Txmin
, and Tymin

both represent a constant matrix with the

same latitude as T, and its content is the value represented by the

Angle symbol.
B

C D

A

FIGURE 3

Spectrogram feature plots of radiated noise from a ship in the Deepship database: (A) Time-domain waveform; (B) CQT; (C) Delta MFCC; (D)
Double-delta MFCC.
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2.3 Multi-gradient flow with
attention block

Existing models primarily increase the depth of the network to

enhance feature extraction capabilities, but this leads to an increase

in parameters while also losing a substantial amount of valuable

information (Ji et al., 2023). In order to reduce the model’s

parameter count and enhance i t s abi l i ty to extract

multidimensional features, this paper, inspired by the Cross Stage

Partial Network (CSPNet) (Wang et al., 2020), which efficiently

extracts effective feature information to alleviate model complexity,

proposes the Multi-gradient flow bottleneck with attention Block

(Multi-grad Block).

The Multi-grad Block concatenates multiple residual modules

(Resblocks) to form a multi-gradient flow network. This structure

enables the rapid acquisition of target information and gradient

flow information from different receptive fields, accelerating the

model’s feature extraction speed while reducing the model’s

parameter count. Since traditional convolution operations lack

sufficient discrimination between the spectra of multiple target

lines and ocean background noise during feature extraction (Li J.

et al., 2022), MHSA is introduced in the Resblock to increase the

model’s focus on targets rather than background noise or other

irrelevant elements (Han et al., 2021). The detailed model structure

is illustrated in Figure 4.

The detailed calculation process for the MHSA is as follows.

MHSA is calculated as follows.

MH(A,B,C) = Concat(H1,H2,…,Hh)W
O; (7)

where A, B, C denote the query vector, key vector and value

vector respectively, Hi illustrates the output of the i-th head, h is the

number of headers, and W° is the output transformation matrix.

The output of each header headi can be expressed as

headi = Attention(QWA
i ,KW

B
i ,VW

C
i ) (8)
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where WA
i , W

B
i , W

C
i are the A, B, and C transformation

matrices for the i-th header, respectively, and Attention is a self-

attentive calculation function with the following equation.

Attention(Ah,Bh,Ch) = softmax (
AhB

T
hffiffiffiffiffi
dk

p )Ch; (9)

Where dk is the dimension of the key vector, softmax function

mainly performs normalization, calculates the weight of each key

vector, then multiplies the weight by the value vector, and finally

performs weighted summation to get the attention output.
2.4 Context augmentation and
fusion module

Due to the complex distribution of targets in the hybrid

spectrogram generated by the feature extraction and fusion

module of the original underwater acoustic signal, there are

numerous small targets locally and larger, medium-sized targets

globally (Wang B. et al., 2023). Using a single receptive field cannot

fully capture the multidimensional features of the original signal,

which reduces target classification accuracy (Wang Z. et al., 2023).

To address these issues, this article introduces the Context

Augmentation and Fusion Module (CAFM).

CAFM, as depicted in Figure 5, employs dilated convolution

with varying rates to extract feature information from different

receptive fields effectively (Gao et al., 2023). It enhances and fuses

the multidimensional feature information obtained from the

preceding gradient flow feature extraction module. Here’s a

breakdown of its structure:
1. The effective feature information obtained from the pre-

gradient flow feature extraction module is rapidly

processed using dilated convolution with three distinct

rate values.
FIGURE 4

Model structure of Multi-grad Block.
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2. Target feature information is subsequently enhanced

separately by the adaptive feature enhancement module

and the cascade computing module.

3. The effective features derived from the adaptive feature

enhancement module and the cascade computing module

are then weighted and fused.
The former approach initially employs 1×1 convolution to

compress and decrease the dimension of the pre-feature maps to

single-channel feature maps. It then concatenates the feature maps

in increasing rate order and calculates the weights for each channel

using softmax. Finally, it enhances the channel dimension features

through softmax-weighted multiplication.

The latter approach concatenates the feature maps obtained via

expansion convolution at different rates to create a new feature map.
2.5 Taylor-MCE Loss

Existing mainstream classification loss functions primarily

encompass the Cross-entropy Loss (CE) (Ho and Wookey, 2019)

and its variations tailored for specific classification tasks. These

adaptations include log loss (LL) (Lin et al., 2022) and BCE (Ruby

and Yendapalli, 2020) for binary classification and focal loss (FL)

(Lin et al., 2017) and categorical cross-entropy (CCE) (Ho and

Wookey, 2019) for multi-class classification. However, the presence

of a severe class imbalance among categories in underwater acoustic

datasets poses a significant challenge (Zhou et al., 2021). Utilizing

the aforementioned classification loss functions often leads to

model overfitting (Leng et al., 2022), subsequently impacting

recognition accuracy.

To tackle this challenge, this article introduces a novel loss

function termed the Taylor-MCE Loss (Multiple Cross-Entropy

Joint Loss Function based on Taylor Series). The Taylor-MCE Loss

combines the polynomial terms derived from Taylor series
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expansion with BCE, FL, and low-order perturbation factors. It

then transforms the multi-class classification task into a set of

independent binary classification tasks, effectively resolving the

issue of sample imbalance within the dataset and significantly

enhancing the model’s recognition performance.

The detailed design process is as follows:

1. Selection of the base loss function

Multi-class classification aims to calculate the likelihood of an

object belonging to multiple categories, while binary classification

seeks to identify whether an object is a specific category (e.g.,

discerning whether an object is a dog or not). Although these

tasks may seem to differ only in the number of predicted categories,

they have fundamental distinctions. In standard multi-class

classification, CCE serves as the loss function, primarily relying

on softmax to calculate the likelihood of an object belonging to

multiple categories and selecting the category with the highest

probability as the prediction. In contrast, binary classification

tasks primarily employ BCE as the loss function, using sigmoid

(output values between 0 and 1) to determine whether an object is

closer to category 0 or category 1.

To select a more suitable base loss function and assess whether

binary classification loss functions can be adapted for multi-class

tasks, we conducted experiments in multi-class target recognition.

The application of binary classification loss functions in multi-class

tasks involved treating each category as an independent binary

classification task. During our experiments, we made an intriguing

observation: when inter-class sample sizes were balanced, CCE

exhibited stable performance. However, in cases of sample

imbalance, the use of BCE for multi-class tasks resulted in a

significant improvement in accuracy compared to CCE (refer to

Table 1 for details).

Treating each category as an individual binary classification task

ensured that predictions for each category were mutually exclusive

and independent (Ruby and Yendapalli, 2020), thereby addressing

an issue. The problem when using CCE was that multiple categories
FIGURE 5

CAFM operation flows.
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were predicted simultaneously [mutually exclusive but not

independent (Ho and Wookey, 2019)]. Models employing CCE

often favored categories with larger sample sizes, potentially

overshadowing smaller categories during training (Leng et al.,

2022). Additionally, BCE’s core function was to enhance

foreground weights while suppressing backgrounds (considering

all other categories as backgrounds when predicting a single

category) (Ruby and Yendapalli, 2020). This effectively balanced

feature acquisition for different categories.

2. Exploring the relationship between loss functions using

taylor series

The mutual constraints imposed by multiple categories can slow

down model convergence. While combining multiple loss functions

can enhance convergence speed and recognition accuracy (Li et al.,

2019), it can also increase computational complexity. To minimize

computational overhead while mitigating the impact of imbalanced

datasets on the model, we drew inspiration from the Taylor series

(Gonzalez and Miikkulainen, 2021) and explored the mathematical

properties of BCE’s polynomial form and loss functions designed to

address imbalanced datasets. Our goal was to introduce minimal

perturbation terms that retained the essential functionality of the

loss function.

Since BCE can be represented as:

LBCE(a, b) = � bi log (a)� (1� bi) log (1� a); (10)

where bi ∈ {0,1} represents labels, and a represents predicted

probabilities, and BCE is a special form of CCE, assuming
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at =
a, b = 1

1� a, otherwise;

(
(11)

CCE can be expressed as:

LCCE(a, b) = − log (at) (12)

Applying Taylor series to CCE, the expression becomes:

LCCE = � log (at) =o
∞

i=1

1
i
(1� at)

i (13)

By observing the relationship between the Taylor expansion of

CCE and FL, it is apparent that FL is equivalent to a horizontal shift

(modulation factor) c of CCE. This is expressed as:

LFL = � (1� at)
c log (at) = (1� at)

cLCCE (14)

BCE is a special form of CCE; therefore, their physical

properties are fundamentally consistent, differing mainly in the

prediction process. To enhance the model’s ability to address

imbalanced datasets, we introduced an element to strengthen the

suppression of imbalanced samples within the original BCE. This

addition involved increasing the horizontal offset, resulting in the

loss function:

LTaylor�MCE
0 = a1LBCE + a2(1� at)

cLBCE

= ½a1 + a2(1� at)
c�LBCE (15)

where a1 + a2 = 1 represents a scaling factor.

3. Analyzing the impact of gradient on loss functions

To enhance model recognition accuracy with minimal

computational overhead, we compared the gradients of various

loss functions and evaluated the influence of low-order and high-

order terms on model recognition accuracy. The gradients of the

aforementioned two loss functions (Eqs. 13 and 14) are expressed as

follows:

−
dLCCE
dat

=o
∞

i=1
(1� at)

i� 1 = 1 + (1� at) + (1 − at)
2 +… (16)

−
dLFL
dat

=o
∞

i=1
(1 +

c
i
)(1� at)

i+c� 1

= (1 + c)(1� at) + (1 +
c
2
)(1� at)

1+c +… (17)

From the equations, it is evident that CCE possesses a fixed

gradient term of 1. As i surpasses 1 and ai approaches 1, the ith

gradient tends towards zero. FL exhibits similar characteristics but

introduces an additional perturbation factor (c). Consequently, the

coefficients of high-order, low-order, and high-order terms

collectively influence the outcomes of the loss function. The high-

order parts primarily serve to suppress model errors, while the low-

order components play a crucial role in fine-tuning the model to

reach correct conclusions (Zhang et al., 2023). Therefore, we

introduce a perturbation factor into the low-order term coefficients

of CCE to enhance the model’s recognition performance.

In summary, to mitigate the impact of sample imbalance on the

model while minimizing the increase in parameter complexity, we
TABLE 1 Recognition accuracy, convergence time and number of
parameters of CAFM at different locations of MGFGNet.

Model
Model

convergence
time (hours)

Parameters
(M) Accuracy

MGFGNet
(-)

0.766 5.576
0.968

MGFGNet
(+)

0.617 5.742
0.985

MGFGNet
(1)

0.635 5.742
0.985

MGFGNet
(2)

0.642 5.742
0.985

MGFGNet
(3)

0.654 5.742
0.987

MGFGNet
(4)

0.661 5.742
0.986

MGFGNet
(5)

0.673 5.742
0.986

MGFGNet
(6)

0.677 5.742
0.989

MGFGNet
(7)

0.692 5.742
0.991

MGFGNet
(8)

0.711 5.754
0.988
Bold font indicates the best-performing values within their respective columns.
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propose the Taylor-MCE Loss. The expression is as follows:

LTaylor�MCE = a1LBCE + a2(1� at)
cLBCE + b1(1� at) (18)

where b1 ∈ [-1,∞) represents the perturbation factor.
3 Experimentation and analysis

To evaluate the performance of MGFGNet in a real underwater

environment, we employ authentic underwater acoustic public

datasets for both qualitative and quantitative comparisons. These

comparisons involve MGFGNet and various versions with varying

network depth and width of mainstream existing underwater

acoustic target recognition models, including ResNet and

EfficientNet (Mateo and Talavera, 2020).
3.1 Experimental dataset

3.1.1 Deepship
To assess the model’s performance under ideal conditions, this

study employed the Deepship dataset (Irfan et al., 2021), comprised

of underwater acoustic data from vessels recorded by Northwestern

Polytechnical University in the marine environment beneath the sea

surface at depths ranging from 141 to 147 meters in the Georgia

Strait Delta from 2016 to 2018. The data and time labels for this

dataset were obtained by deploying sensors to locate vessel

positions. Only singular vessel signals within a 2-kilometer range

of the sonar device were considered, and recording ceased whenever

a vessel exceeded this range. The dataset encompasses data from

265 vessels, including Cargo ships, Passenger Ships, Oil Tankers,

and Tugs.

The data underwent preprocessing, with all WAV format audio

files standardized to a 22,050Hz sample rate. Additionally, the
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underwater acoustic data were segmented into 5-second units,

resulting in over 30,000 labeled sound samples. Recognizing that

the model’s recognition accuracy is proportional to the sample size

of the training set, a significant number of samples were allocated

for model training to mitigate the risk of overfitting. To prevent

substantial fluctuations in the model’s recognition accuracy due to a

small sample size, a portion of the data was reserved for validating

and testing the model’s performance. Consequently, for optimal

model parameter training, a large portion of the data was allocated

to model training, with only a small amount used for validation and

testing, following an 8:1:1 split ratio for the training, validation, and

test sets. Table 2 provides details of the dataset division.

3.1.2 ShipsEar
So as to assess the model’s capacity to adapt to diverse maritime

environments, emphasizing its generalization capability, this study

incorporated an additional authentic dataset of ship radiated noise

collected in a real-world marine setting. The data collection took place

along the Atlantic coast of Spain and encompasses recordings from 11

distinct ship types. These 11 ship categories were subsequently classified

into four classes based on ship categorization, with the actual ocean

background noise measurements, taken within these four categories,

amalgamated to construct a five-class underwater acoustic dataset.

The dataset encompasses a total of 90 audio recordings, with

individual recording durations varying from 15 seconds to 10

minutes. To ensure experimental precision, the “ShipsEar” dataset

(Santos-Domıńguez et al., 2016) underwent preprocessing identical

to that applied to the “Deepship” dataset. A comprehensive class

distribution is outlined in Table 3.

It is conspicuous that in the “Deepship” dataset, class

proportions for classes 1-4 approximate ratios of 1:1.2:1.15:1.06.

Conversely, the “ShipsEar” dataset presents imbalanced class

proportions for classes 1-5, displaying a ratio of approximately

1.64:1.34:3.76:2.17:1. Consequently, when compared to the
TABLE 2 Details of the four categories in the Deepship dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Cargo Ship 7621 6097 762 762

2 Passenger Ship 9211 7369 921 921

3 Oil Tanker 8776 7022 877 877

4 Tug 8085 6467 809 809
TABLE 3 Details of the five categories of the ShipsEar dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Fishing boats, Trawlers, Mussel boats, Tugboats, Drafgers 369 296 37 36

2 Motoboats, Pilot boats, Sailboats 301 241 30 30

3 Passenger ferries 843 675 84 84

4 Ocean liner, Ro-Ro vessels 486 389 49 48

5 Background noise recordings 224 180 22 22
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“Deepship” dataset, the “ShipsEar” dataset not only illustrates class

imbalance but also contains significantly fewer samples,

representing approximately 1/15 of the “Deepship” dataset. Such

a dataset is highly susceptible to overfitting during the training

process due to its limited sample size. Additionally, class imbalance

can lead to notably reduced accuracy in recognizing classes with

fewer samples.
3.1.3 SCTD
Synthetic Aperture Sonar (SAS) images (Huang and Yang,

2022; Wang and Huang, 2023; Yang, 2023; Zhang, 2023), known for

their high resolution, significantly aid in target recognition in

underwater acoustics. In order to assess the model’s performance

on a high-resolution underwater acoustic image dataset, this study

introduces the SCTD dataset (Zhou et al., 2021). Since the original

SCTD dataset is primarily designed for target detection tasks and its

structure is not conducive to underwater acoustic target recognition

models, certain modifications were implemented to adapt it to the

classification task. Specifically, for the aircraft, human, and

shipwreck categories within SCTD, the following steps were taken:

Firstly, multiple targets within a single image were individually

cropped to ensure that each final image contains only one target,

aligning it with the training sample format for target recognition.

Secondly, to augment the samples and balance the

representation of each category, random cropping and flipping

techniques were employed.

Finally, the dataset was partitioned into training, testing, and

validation sets in an 8:1:1 ratio, as detailed in Table 4.
3.2 Hyperparameter setting

During the experimental process, the underwater acoustic target

recognition model, MGFGNet, employed the Adaptive Moment

Estimation optimizer (Adam) (Irfan et al., 2021) to mitigate sample

noise interference. For this optimization process, the first-order

momentum factor, second-order momentum factor, and Fuzz

factor within Adam were configured at 0.9, 0.999, and 0.0000001,

respectively. The initial learning rate was set to 0.001, with a weight

decay coefficient of 0.0005, and a batch size of 32 was utilized.

Finally, a1 = 0.5, a2 = 0.5, c = 5 and b1 = 5 in Taylor-MCE Loss are

set. The model was trained for 120 epochs (iterations) using the

aforementioned parameters. Throughout the experimental process

described below, unless otherwise specified, the experiment

parameters mentioned above were consistently applied.
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3.3 Experimental environment and
performance indicators

The experiments were conducted on the PyTorch platform,

running on the Windows 10. The hardware setup employed for

these experiments is detailed in Table 5. To mitigate the potential

influence of experimental variability, a systematic approach was

taken. It involved the training and testing of various models, both

qualitatively and quantitatively. Subsequently, a comparative

analysis of algorithmic performance was performed.

Given that Accuracy can reflect the model’s recognition

capability across multiple classes, while Precision and Recall can

indicate the overall classification performance of the model, these

three evaluation criteria are employed to assess different models.

Their formulas are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
; (19)

precision =
TP

TP + FP
; (20)

recall =
TP

TP + FN
; (21)

where TP represents instances that were originally true positive

samples and were correctly predicted as positive samples by the

underwater acoustic target recognition model. TN corresponds to

instances that were originally true negative samples and were

accurately predicted as negative samples by the model. FP

signifies instances that were originally true negative samples but

were erroneously classified as positive samples by the underwater

acoustic target recognition model. FN stands for instances that were

originally true positive samples but were incorrectly predicted as

negative samples by the model.
3.4 Ablation experiments

3.4.1 Feature ablation experiments
To confirm the representational capabilities of the feature

extraction approach raised in this study for original underwater

acoustic signals, Table 6 presents an extensive comparison of

diverse characteristics abstraction approachs on the Deepship.

This comparison encompasses the original two-dimensional

features, their corresponding three-dimensional counterparts, and

the three-dimensional feature fusion approach introduced in

Section 2.2 within the MGFGNet model. Notably, the recognition
TABLE 4 Details of the three categories of the SCTD dataset after pre-processing.

Class Number Target Total Training set Validation set Testing set

1 Aircraft 575 459 58 58

2 Human 546 436 55 55

3 Shipwreck 488 390 49 49
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accuracy of spectral features for each feature extraction method

surpasses that of the original two-dimensional features. Delta

MFCC, owing to its ability to capture temporal correlations of

MFCC, exhibits higher experimental accuracy than MFCC features,

albeit with a modest 0.2% increase. Similarly, double-delta MFCC

records a mere 0.4% improvement over delta MFCC since it

primarily focuses on local estimations along the time axis for the

differential operations of MFCC. CQT features, reflecting the

frequency distribution patterns of underwater acoustic targets,

outperform MFCC and its derivative features in terms of

classification accuracy, thereby validating the superiority of CQT

features over mel-spectrogram features (Domingos et al., 2022) in

underwater acoustic target recognition. The horizontal comparison

of spectral feature extraction methods among various feature

extraction techniques exhibits similar characteristics as

mentioned above.

It’s worth mentioning that the overall accuracy of the fusion

feature approach proposed in Section 2.2 surpasses that of other

feature extraction techniques, achieving 99.1%. This represents a

substantial increase of 3.9%, 3.7%, and 3.3% over the spectral

features of MFCC, delta MFCC, and double-delta MFCC,

respectively. Additionally, it outperforms CQT’s spectral features

by 1.6%. Moreover, there is a substantial increase in recognition

accuracy across all categories compared to the spectral feature

extraction methods of the remaining four features, thus validating

the superiority of the fusion approach based on signal processing

and brain-like features proposed in this study.

So as to provide a clearer illustration of the computational cost

and efficiency of the feature extraction and fusion method
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introduced in this paper, we conducted additional experiments to

assess the performance metrics of various feature extraction

techniques. The testing dataset comprised 10 sets, each containing

10 noise data samples, and the experimental results represent the

average of these 10 sets. Detailed experimental data is displayed

in Table 6.

It is evident that the execution time for each feature extraction

method ’s feature mapping technique increased by only

approximately 0.0003 in comparison to the original method, with

a memory consumption increment of around 20 MiB.

Concurrently, the execution time of the feature extraction and

fusion method proposed in this paper, which integrates three

original feature components, remains within the same order of

magnitude as their individual runtimes, indicating minimal

additional time overhead.

Moreover, the memory consumption of the proposed method

in this paper remains approximately at 350 MiB, aligning with the

memory usage of all other feature extraction methods. This

reaffirms the superiority and efficiency of the proposed method.

3.4.2 CAFM ablation experiment
So as to comprehensively evaluate the computational cost,

convergence time, and performance of the feature extraction and

fusion method presented in this paper at various positions within

MGFGNet, a series of experiments were conducted. The

experimental results on the Deepship dataset are presented in

Table 1. In the model parameter nomenclature, the suffix

indicates the layer within the target recognition model as depicted

in Figure 1. For instance, “MGFGNet (1)” signifies the placement of

the CAFM module after Layer 1 of MGFGNet, “-” indicates the

absence of the CAFM module, and “+” denotes its placement at the

beginning of MGFGNet, as illustrated in Figure 1.

Firstly, the integration of the CAFM module results in a modest

2.9% increase in model parameters compared to the original model.

However, it significantly expedites the model’s convergence speed.

Furthermore, the convergence speed varies when the CAFM

module is positioned at different locations within the model, and
TABLE 6 Recognition Accuracy of MGFG model on Deepship dataset using different features and the memory consumption and efficiency of each
feature extraction method.

Feature Cargo Passenger Ship Tanker Tug all Time consumption (s) Memory used (MiB)

MFCC 0.542 0.671 0.670 0.843 0.683 0.00033257 348.960938

MFCC Spec 0.930 0.950 0.951 0.975 0.952 0.00060603 368.828125

delta MFCC 0.629 0.655 0.623 0.849 0.687 0.00134368 352.488281

delta MFCC Spec 0.946 0.949 0.944 0.977 0.954 0.00166959 373.804688

double-delta MFCC 0.606 0.681 0.681 0.794 0.691 0.00137352 351.417969

double-delta MFCC Spec 0.946 0.957 0.957 0.97 0.958 0.00169537 372.640625

CQT 0.765 0.767 0.771 0.865 0.791 0.00353861 352.429688

CQT Spec 0.973 0.973 0.973 0.984 0.975 0.00356747 372.406250

Fusion Feature 0.929 0.929 0.977 0.993 0.957 0.00381105 357.812500

Fusion Feature of Spec 0.984 0.985 0.994 1 0.991 0.00384105 376.367188
Bold font indicates the best-performing values within their respective columns.
TABLE 5 Details of the hardware environment for the experiment.

Hardware name Parameters Number

CPU Intel Xeon Sliver 4310 2

GPU NVIDIA Tesla A100 80G 1

RAM SAMSUNG RECC DDR4 32GB 8
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the speed is directly proportional to the sequence of the CAFM

within the model. This is primarily due to the enhanced

discriminability between background and target foreground in the

feature maps when this module is applied, resulting in accelerated

model convergence speed. Notably, after introducing the CAFM,

the convergence time consistently remains between 0.6 and 0.7

hours, confirming the model’s stability. In this experiment,

convergence is defined as the point at which the loss remains

unchanged in the thousandths place for three consecutive iterations.

Additionally, the incorporation of the CAFM module leads to a

minimum 1.7% enhancement in recognition accuracy within

MGFGNet, validating the CAFM module’s capacity to boost

model recognition accuracy through feature fusion and

enhancement. However, the placement of the CAFM module also

exerts an impact on recognition accuracy. For example, when the

CAFM module is positioned at the head of MGFGNet and after

Layer 1-2, the model exhibits improved recognition accuracy due to

the fusion of multiscale acoustic target information and enhanced

channel features. However, when the CAFM is placed at Layer 1, it

leads to a rapid extraction of raw input features through a large

convolutional kernel (kernel size of 6), resulting in the loss of

significant valuable features and, consequently, inhibiting

recognition accuracy. Furthermore, there is no subsequent feature

enhancement in the feature extraction process, causing lower

recognition accuracy compared to when the CAFM is placed after

Layer 3-6.

Conversely, placing the CAFM module after Layer 3-6

introduces the Multi-gradient Block in front of the CAFM

module, enriching the fused and enhanced features with a

substantial amount of multi-gradient flow contextual

information compared to the original information. This, in turn,

enhances target feature information, leading to improved

recognition accuracy. The highest recognition accuracy is

achieved when the CAFM module is placed after Layer 7, as the

model has undergone all the Multi-gradient Blocks by this stage,

resulting in feature maps rich in multi-gradient flow, physical

features, and numerous feature details. When the CAFM module

is employed for feature fusion and enhancement at this stage, it

effectively increases the importance of target information, thereby

enhancing recognition accuracy.

However, due to the feature enhancement process preserving a

substantial amount of suppressed background features, direct

utilization of these feature maps for predictions can compromise

experimental accuracy (Hu et al., 2018; Hou et al., 2021). Therefore,

after employing the feature enhancement module, it is necessary to

conduct further feature extraction on the enhanced feature maps

using convolutional or feature extraction modules. This step helps

discard numerous non-target features. For instance, attention

mechanisms (AM) (Yang S. et al., 2023) and channel attention

modules (CAM) (Li J. et al., 2022) both serve as feature

enhancement modules. Ablation experiments have demonstrated

that utilizing feature extraction or convolutional modules after

feature enhancement enhances model recognition accuracy (Li J.

et al., 2022; Yang S. et al., 2023). This substantiates why placing

CAFM after Layer 7 results in higher recognition accuracy

compared to after Layer 8.
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3.4.3 Classification loss function
ablation experiments

To assess the impact of the Taylor-MCE Loss on MGFGNet,

this paper compared the recognition results of MGFGNet with

various loss versions, including BCE, CCE, FL, and Taylor-MCE

Loss, utilizing the Deepship dataset. The numbers 1, 2, and 3

following Taylor-MCE represent a1LBCE , a2(1 − at)
cLBCE , and

b1(1 − at), respectively. Notably, a1 and a2 have real values only

when coexisting; otherwise, both are set to 1. A comprehensive

summary of the experimental results is presented in Table 7.

Firstly, it is evident that Taylor-MCE Loss outperforms CCE,

FL, and BCE in terms of recognition accuracy, demonstrating

improvements of 2.4%, 2.2%, and 1.9%, respectively. The

recognition accuracy of CCE and FL is quite similar. FL is

derived from CCE through lateral shifting, aimed at mitigating

the issue of sample imbalance. However, within the context of the

Deepship dataset, where various classes exhibit a good balance, its

effectiveness in addressing sample imbalance is reduced, resulting in

a modest improvement of 0.2% compared to CCE. BCE, serving as a

special form of CCE for binary classification, achieves a recognition

accuracy improvement of 0.5%. This is primarily because BCE

transforms multi-class classification into multiple binary

classification tasks, where the predictions for each class are

mutually exclusive and independent. This approach addresses a

problem present in CCE where multiple classes are predicted

simultaneously, leading the model to favor classes with larger

sample sizes. This imbalance gradually drowns out smaller classes

during training, providing a key rationale for choosing BCE as the

base loss function for Taylor-MCE Loss. Taylor-MCE (1,3),

inclusive of low-order perturbation terms (b1(1 − at)), contributes

to the model’s improved recognition accuracy, resulting in a

significant advantage over Taylor-MCE (1,2), which only

encompasses the component for addressing imbalance

(a2(1 − at)
cLBCE). This finding reinforces the conclusion that low-

order terms enhance recognition accuracy (Zhang et al., 2023).

Taylor-MCE (2,3) achieves similar recognition accuracy to (1,3),

primarily due to the relatively balanced distribution of class samples

in the Deepship dataset, rendering the influence of (2,3) insufficient

to significantly alter recognition accuracy.
TABLE 7 Recognition accuracy of MGFGNet with different classification
loss functions on Deepship and ShipsEar.

Loss
Function

Accuracy
(Deepship)

Accuracy
(ShipsEar)

CCE 0.967 0.937

FL 0.969 0.953

BCE 0.972 0.959

Taylor-MCE (1,2) 0.977 0.982

Taylor-MCE (1,3) 0.985 0.972

Taylor-MCE (2,3) 0.983 0.976

Taylor-MCE 0.991 0.995
Bold font indicates the best-performing values within their respective columns.
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As the Deepship dataset comprises a substantial number of

samples with a relatively balanced class distribution, it does not

effectively validate the loss function’s ability to suppress small

samples and enhance recognition accuracy in unbalanced

datasets. To further confirm the adaptability of Taylor-MCE Loss

to imbalanced, small-sample underwater sound datasets, we

conducted experiments using different classification loss functions

on the ShipsEar dataset, characterized by class imbalance and

limited sample sizes. A detailed overview of the experimental

results is provided in Table 7. The unique sample characteristics

of ShipsEar, featuring fewer samples and imbalanced class

distributions, result in notable differences in model recognition

accuracy when employing various loss functions. CCE, due to its

lack of optimization for class imbalance, exhibits lower recognition

accuracy compared to other loss functions. Both FL and BCE, which

address class imbalance using different approaches (FL introduces

horizontal shifting on top of CCE, while BCE transforms multi-class

into multiple binary classification tasks to mitigate imbalance), yield

similar and significantly improved recognition accuracy compared

to CCE. In contrast, the results of the various versions of Taylor-

MCE Loss are entirely opposite to those observed in the Deepship

dataset. Given that the ShipsEar dataset has fewer samples and

imbalanced class distributions, it necessitates substantial

suppression of the imbalance component. When utilizing only the

low-order perturbation term to enhance recognition accuracy,

specifically Taylor-MCE (1,2), its recognition accuracy surpasses

BCE by 2.3%, compared to the mere 0.9% improvement. Taylor-

MCE effectively balances recognition accuracy and mitigates model
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overfitting attributed to class imbalance during training, ultimately

yielding a recognition accuracy of 99.5%. This figure is 5.8%, 4.2%,

and 3.6% higher than CCE, FL, and BCE, respectively.

These experiments affirm the adaptability of Taylor-MCE Loss

to small-sample, imbalanced datasets, significantly enhancing

model recognition accuracy.
3.5 Performance analysis

In this section, we compare the performance of MGFGNet with

existing state-of-the-art target recognition models [such as ResNet

(He et al., 2016), EfficientNet (Koonce, 2021), DenseNet (Iandola

et al., 2014), etc.] under the same experimental conditions,

examining various aspects.

3.5.1 Model identification accuracy and
parameter analysis

To validate whether MGFGNet outperforms existing mainstream

target recognition models, we trained and validated MGFGNet and

other mainstream models under the experimental conditions described

in Sections 3.2 and 3.3. The parameters of each model and their

experimental accuracy on the Deepship test set are presented in Table 8.

It is noteworthy that, to reduce the training time for various models, we

modified the training epochs for all models on the Deepship dataset to 90.

This decision is supported by the observation, as depicted in Figure 6, that

MGFGNet exhibits a tendency toward convergence in loss before 90

epochs, with the optimal model being formed around the 71st epoch.
TABLE 8 Details of the number of parameters and the recognition accuracy on the Deepship dataset for various models.

Model MFCC delta MFCC double-delta MFCC CQT Fusion Feature Parameters (M)

ResNet18 (He et al., 2016) 0.939 0.942 0.947 0.963 0.970 11.7

ResNet34 (He et al., 2016) 0.929 0.937 0.942 0.966 0.971 21.8

ResNet50 (He et al., 2016) 0.921 0.933 0.937 0.952 0.965 25.6

ResNet101 (He et al., 2016) 0.913 0.931 0.937 0.947 0.953 44.5

EfficientNet_b0 (Koonce, 2021) 0.931 0.941 0.949 0.964 0.971 5.3

EfficientNet_b1 (Koonce, 2021) 0.930 0.938 0.945 0.967 0.968 7.8

EfficientNet_b2 (Koonce, 2021) 0.917 0.935 0.939 0.955 0.959 9.1

EfficientNet_b3 (Koonce, 2021) 0.915 0.931 0.934 0.945 0.951 12.2

DenseNet (Iandola et al., 2014) 0.866 0.871 0.878 0.913 0.931 1.1

CSPDenseNet (Wang et al., 2020) 0.889 0.896 0.913 0.937 0.951 0.9

CSPResNet18 (Wang et al., 2020) 0.938 0.945 0.953 0.966 0.973 5.6

MobileNetV1 (Howard et al., 2017) 0.759 0.787 0.793 0.822 0.841 3.2

MobileNetV2 (Sandler et al., 2018) 0.876 0.888 0.893 0.907 0.921 2.2

MobileNetV3-S (Howard et al., 2019) 0.732 0.747 0.752 0.773 0.806 1.5

MobileNetV3-L (Howard et al., 2019) 0.820 0.822 0.829 0.877 0.894 4.2

ViT (Dosovitskiy et al., 2020) 0.871 0.875 0.879 0.882 0.889 86.6

MGFGNet 0.952 0.954 0.958 0.975 0.991 5.7
Bold font indicates the best-performing values within their respective columns.
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Clearly, MGFGNet demonstrates experiment accuracy superior

to existing mainstream target recognition models across various

feature input scenarios. This validates the robust feature extraction

capability of MGFGNet in diverse experimental environments.

Furthermore, CSPNet (Wang et al., 2020) not only reduces

model parameters but also effectively promotes the model’s feature

extraction capability. For instance, testing the original versions of

ResNet18 (He et al., 2016) and DenseNet (Iandola et al., 2014),

along with their versions incorporating CSPNet, reveals a noticeable

reduction in parameters and an improvement in model

performance under various feature inputs. MGFGNet, based on

the CSPNet philosophy with the multi-gradient flow module as a

primary component, successfully achieves an effective balance

between recognition accuracy and parameter count.

The size of the model’s parameters also influences recognition

accuracy. Models with either too many or too few parameters yield

suboptimal experimental accuracy. For example, ViT (Dosovitskiy

et al., 2020) has significantly more parameters than other models,

yet its recognition rate is lower than most models. In contrast, the

MobileNet (Howard et al., 2017; Sandler et al., 2018; Howard et al.,

2019) series, characterized by smaller parameter counts as

lightweight models, generally exhibits lower recognition accuracy

compared to other models. However, DenseNet and CSPDenseNet

(Wang et al., 2020), despite having fewer parameters, achieve high

recognition accuracy. This is mainly attributed to the dense

connectivity in DenseNet, ensuring low-dimensional feature

information and a stronger gradient flow (Iandola et al., 2014).

Within the same model, variations in recognition accuracy due to

changes in model depth show a negative correlation with the number

of parameters. As the number of parameters increases from ResNet18

to ResNet101 in the ResNet model, the recognition accuracy gradually

decreases. A similar trend is observed in the EfficientNet (Koonce,

2021) model. However, different network models do not exhibit this

phenomenon due to diverse feature extraction methods. For example,

ResNet18 and EfficientNet_b3 have similar parameter counts, but

ResNet18 outperforms EfficientNet_b2 in recognition accuracy across

various feature extraction methods. Different versions of MobileNet do

not show this phenomenon because new feature extraction or

enhancement modules are introduced in each version.
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3.5.2 Analysis of computational load, training
time, and prediction time

To assess the training and inference efficiency of MGFGNet,

this section analyzes the time consumption for training and

inference of MGFGNet and its comparative models. Detailed

comparative results are provided in Table 9. It is noteworthy that,

to reduce the training time of the models, we maintained

consistency with Section 3.5.1 and modified the training epochs

for all models on the Deepship dataset to 90. The convergence

definition for this experiment is when the value of the thousandth

loss percentile remains unchanged for three consecutive times

during the training process, indicating model convergence.

During the experiments, variations in the training and

prediction times of models were observed in different operating

environments. To ensure the accuracy of experimental data, each

model, during its runtime, had the host free of other GPU-intensive

deep learning tasks, preventing interference with the experimental

results. Additionally, to mitigate random factors, all experimental

data are the averages of results obtained from five repeated

experiments. Floating Point Operations per Second (FLOPs) are

used to measure the computational complexity of the model.

Training time refers to the total time for model training and

validation. Inference time denotes the total time required for

predicting 3369 individual samples from the validation set

of Deepship.

Notably, MGFGNet exhibits superior inference time compared

to all comparative models, especially the lightweight MobileNet

series commonly used in embedded systems, demonstrating its

practical utility. This is primarily attributed to the inference time

reduction effect of CSPNet (Wang et al., 2020). For instance, the

inclusion of CSPNet in ResNet and DenseNet also significantly

reduces inference time. MGFGNet, incorporating the CSPNet

philosophy through the Multi-grad Block, outperforms

EfficientNet_b0 in prediction time, despite having similar

parameter counts and FLOPs values.

Furthermore, MGFGNet achieves convergence in the fewest

epochs, indicating a faster convergence rate. This is mainly due to

Taylor-Loss suppressing the rate of model variation under different

numbers of input categories, thereby accelerating model
BA

FIGURE 6

Variation of parameters during MGFGNet training: (A) Loss variation plot; (B) Precision, recall, and accuracy variation plot.
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convergence. It is observed that within models of the same

architecture, parameters and convergence epochs exhibit a

positive correlation, as seen in ResNet and EfficientNet series.

While MobileNet has a smaller parameter count, its frequent

occurrence of gradient vanishing during training, mainly due to

the use of depthwise separable convolution, leads to extensive time

spent correcting and updating the model, resulting in an increased

number of convergence epochs.

Additionally, while MGFGNet’s training time is lower than that of

most target recognition models, it still exceeds that of ResNet18,

ResNet34, and CSPResNet18. This is mainly because the Multi-grad

Block module, based on the CSPNet philosophy, invented in

MGFGNet, reduces the number of parameters but increases the

computational workload for backward gradient updates (Wang et al.,

2020), thus extending the model’s training time. The increased training

time for CSPDenseNet and ResNet18 with CSPNet also validates this

characteristic. However, since practical applications primarily require

low prediction times for rapid target recognition, this drawback has

minimal impact in real-world scenarios.

Finally, upon contrasting Tables 8 and 9, it becomes evident

that there is no inherent correlation between the training time,

model parameters, and FLOPs for the models. For instance, when

compared to ResNet18, DenseNet, CSPDenseNet, and the

MobileNet series all exhibit smaller parameter counts and FLOPs.

However, these models demonstrate longer training times than

ResNet18. A similar experimental pattern is observed between the

EfficientNet and ResNet series.
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3.5.3 Model stability validation
Figure 6 presents the loss variation chart as well as the precision,

recall, and accuracy variation charts on the validation set during the

same 120-epoch training process on the Deepship dataset.

From the loss curve, it can be observed that the network gradually

stabilizes after the 60th epoch. By examining the changes in precision,

recall, and accuracy on the validation set during the training process,

with smooth variations and the absence of overfitting, it can be

concluded that the proposed underwater acoustic target recognition

model, MGFGNet, demonstrates stability.

3.5.4 Robustness analysis of models.
To assess the robustness of MGFGNet, i.e., the extent to which

the model is affected by small variations in the data, we utilized

spectrogram features of MFCC and its derived characteristics. Due

to the high similarity between spectrograms of MFCC and its

derived features (Yang S. et al., 2023), this study thoroughly

compared the dependency of various models on different input

conditions based on spectrogram features of MFCC and its

derivatives, as illustrated in Figure 7.

It is evident that MGFGNet exhibits a relatively small disparity

in experimental accuracy when considering spectrogram features of

MFCC and its derived characteristics. However, there is still some

improvement, indicating that MGFGNet can capture minor

variations in the derived features of MFCC without causing

significant predictive differences due to slight changes. This

validates the robustness of the model.
TABLE 9 Floating-point computation vs. training and predicting time.

Model FLOPs@224(B) Training Time (hours) Epochs at convergence Predicting Time(s) Support

ResNet18 3.7 1.075 52 56 3369

ResNet34 7.4 1.391 68 59 3369

ResNet50 8.5 1.868 75 67 3369

ResNet101 15.9 4.975 98 104 3369

EfficientNet_b0 1.0 3.423 83 91 3369

EfficientNet_b0 1.5 5.121 91 102 3369

EfficientNet_b0 1.7 5.368 97 104 3369

EfficientNet_b0 2.4 5.753 102 107 3369

DenseNet 1.6 4.792 62 135 3369

CSPDenseNet 1.4 4.872 57 119 3369

CSPResNet18 0.5 1.397 48 42 3369

MobileNetV1 0.6 4.693 96 66 3369

MobileNetV2 0.4 4.401 72 63 3369

MobileNetV3-S 0.1 2.661 65 55 3369

MobileNetV3-L 0.2 3.100 78 75 3369

ViT 17.6 7.295 107 139 3369

MGFGNet 0.7 1.779 41 37 3369
fr
Bold font indicates the best-performing values within their respective columns.
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ResNet18, DenseNet, and ViT models demonstrate comparable

recognition accuracy across these three different feature extraction

methods. In contrast, other models exhibit significant variations in

model responses under these three feature extraction methods,

indicating their reliance on features with high separability.

3.5.5 Generalizability analysis of the model
Due to varying predictive capabilities of models across different

variable domains (distinct real underwater acoustic datasets), it is

essential to assess the generalization performance of MGFGNet on

additional datasets. This study conducts experiments placing each

model under the experimental conditions defined in Sections 3.2

and 3.3, utilizing the shipsEar dataset. Detailed experimental results

are presented in Table 10.

Evidently, MGFGNet exhibits a recognition accuracy

surpassing all comparative models, achieving 99.5%. Furthermore,

it is observed that MGFGNet achieves a 100% recognition rate for

all categories except Class 1. This fact indicates a robust

generalization capability of the model.

Additionally, on the shipsEar dataset, the ResNet series, Efficient

series, and DenseNet also demonstrate strong performance, with

recognition accuracies exceeding 93%. It is noteworthy that, with the

involvement of CSPNet, DenseNet and ResNet18 show improved

recognition accuracy, exceeding 96%, validating their enhancement

in model feature extraction capabilities (Wang et al., 2020).

Finally, the MobileNet series performs poorly, with MGFGNet

surpassing the highest recognition accuracy within its series,
Frontiers in Marine Science 16
MobileNetV2, by 12.2%, and outperforming the lowest accuracy

in MobileNetV3Small by 35%.

3.5.6 Scalability analysis
In order to further validate the scalability of MGFGNet on high-

resolution sonar images, this study conducted experimental

analyses, comparing MGFGNet with 16 other underwater

acoustic target recognition models on the high-resolution sonar

dataset SCTD. The recognition accuracy of each model is depicted

in Figure 8.

Clearly, MGFGNet’s recognition rate continues to surpass that

of all other models, confirming the model’s scalability. Due to the

interference of underwater background noise, which results in poor

separability between targets and background in sonar images

(Huang and Yang, 2022), the multi-gradient flow model proposed

in MGFGNet, based on CSPNet and MHSA, enhances the model’s

attention to targets (Wang et al., 2020; Han et al., 2021), ensuring

the retention of a substantial amount of relevant target information

during the feature extraction process. Additionally, further feature

enhancement and fusion through CAFM contribute to an improved

distinction between target foreground and background, effectively

enhancing the model’s recognition accuracy.

It is noteworthy that, as indicated in the performance and

parameter analysis in Section 4.2, under the same model

architecture, depth and recognition rate exhibit a proportional

relationship in underwater sonar image target recognition. For

instance, the recognition rates of the ResNet series and EfficientNet
FIGURE 7

Recognition accuracy of multiple models under MFCC, delta MFCC and double-delta MFCC features.
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FIGURE 8

Details of the recognition Accuracy of the model on the SCTD dataset.
TABLE 10 Details of the models’s recognition Accuracy on the shipsEar dataset.

Model Class 1 Class 2 Class 3 Class 4 Class 5 All

ResNet18 0.944 0.933 0.952 0.979 0.955 0.954

ResNet34 0.917 0.933 0.952 0.979 0.955 0.950

ResNet50 0.917 0.933 0.952 0.979 0.955 0.950

ResNet101 0.889 0.900 0.952 0.979 0.955 0.941

EfficientNet_b0 0.889 0.933 0.988 0.958 0.909 0.950

EfficientNet_b1 0.889 0.933 0.976 0.979 0.909 0.950

EfficientNet_b2 0.861 0.933 0.988 0.958 0.909 0.945

EfficientNet_b3 0.833 0.867 0.964 0.979 0.935 0.931

DenseNet 0.944 0.933 0.976 0.958 0.864 0.950

CSPDenseNet 0.972 0.9 0.988 0.958 0.955 0.964

CSPResNet18 0.972 1 0.964 0.979 0.909 0.968

MobileNetV1 0.861 0.8 0.905 0.792 0.818 0.85

MobileNetV2 0.889 0.867 0.917 0.854 0.727 0.873

MobileNetV3-S 0.667 0.6 0.655 0.625 0.682 0.645

MobileNetV3-L 0.917 0.867 0.786 0.854 0.909 0.845

ViT 0.944 0.933 0.929 0.938 0.909 0.875

MGFGNet 0.972 1 1 1 1 0.995
F
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Bold font indicates the best-performing values within their respective columns.
sin.org

https://doi.org/10.3389/fmars.2023.1306229
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2023.1306229
series validate this conclusion. Conversely, lightweight models such as

MobileNet perform poorly, with recognition rates not exceeding 73%,

once again confirming that MobileNet is not well-suited for

underwater acoustic target recognition scenarios.

3.5.7 Computational bottleneck analysis
Due to the challenges associated with acquiring underwater

acoustic datasets, the currently available open datasets are primarily

limited to two ship radiated noise datasets: Deepship and ShipsEar.

Given that the ShipsEar dataset comprises multiple ship types within

each category and has a limited data volume, we conducted

experiments with a substantial sample dataset extracted from

Deepship to examine MGFGNet’s recognition accuracy in relation

to dataset size and to identify potential computational bottlenecks.

This dataset, which was subject to preprocessing, included a total of

33,693 samples. Figure 9 presents the model accuracy of MGFGNet

for various training set sizes sourced from Deepship.

The numerical values in the dataset version indicate the

quantity of samples randomly chosen from each category in the

Deepship dataset to form the training set for model training, while

the test set configuration remained consistent with that presented in

Table 2. The results clearly show that as the training set sizes for

each category range from 100 to 800, the network model’s

recognition accuracy experiences rapid growth. Beyond the 800

mark, recognition accuracy tends to plateau, although there is still

noticeable improvement as the dataset size increases. Importantly,

no indications of encountering computational bottlenecks

were observed.
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4 Conclusion

An underwater acoustic object identification model MGFGNet

based on multi-gradient flow global feature enhancement network

is raised in this article. Firstly, by embedding feature extraction

module into the target recognition network, the whole target

recognition network forms an end-to-end model with underwater

acoustic signal as input and classification result as output. Secondly,

the invention of Muti-grad block uses multi-gradient flow network

to obtain underwater acoustic signal features quickly and effectively,

reducing the quantity of model parameters and feature extraction

time. Then the CAFMmodule is used for multi-dimensional feature

fusion and feature enhancement to improve the effective

characteristic weight of underwater sound. Finally, the Taylor-

MCE Loss function is introduced, which enhances model

recognition accuracy and mitigates sample imbalance issues

within the binary cross-entropy loss. This is achieved by

incorporating low-order perturbation terms into the binary cross-

entropy loss to suppress sample imbalance components.

Consequently, the multi-class classification task is transformed

into a set of independent binary classification tasks, effectively

addressing the problem of dataset sample imbalance and

improving model recognition performance.

The experimental results show that on the Deepship and

ShipsEar underwater acoustic data sets, the feature extraction and

fusion methods raised in this article have better ability to represent

the original underwater acoustic signals. Compared with

mainstream underwater acoustic target recognition models such
FIGURE 9

Details of the recognition Accuracy of the model on different versions of the Deepship dataset.
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as ResNet and EfficientNet, the recognition accuracy of MGFGNet

was greatly improved, and the inference time was greatly reduced.

MGFGNet network has simple structure and few parameters, which

can meet the requirements of end-to-end high precision and low

latency in underwater acoustic target identification.

The experimental results of the model proposed in this article

have the following potential implications for current underwater

target recognition models:

Firstly, our feature extraction and fusion methods have

demonstrated that traditional spectrogram-based feature extraction

methods are better suited for representing the raw underwater

acoustic features. This suggests that current methods for extracting

underwater target features, such as those based on signal analysis and

bio-inspired features, can be effectively combined with computer vision’s

feature enhancement techniques (e.g., channel and spatial feature

enhancement methods) to further enhance feature representation.

Secondly, the design and experimentation with the Multi-grad

block in our proposed classifier have shown that multi-gradient flow

networks can better extract deep abstract features of the model while

reducing the number of model parameters. This enables underwater

target recognition models to depart from the mainstream design

pattern of extracting effective features for underwater targets solely

through convolution and residual network stacking.

Furthermore, the design of the CAFM in our proposed classifier

has demonstrated that incorporating feature fusion and

enhancement modules before the classification module in the

classifier can significantly enhance the model’s recognition

accuracy. This enhancement may be related to feature loss during

the extraction of effective features before classification and the

numerical loss during the normalization process, as this process

lacks specific loss control. This can lead to similarities between

foreground and background values, making it difficult for the model

to effectively recognize the target foreground. Subsequent research

can focus on designing feature fusion and feature enhancement

modules to improve the distinguishability between target

foreground and background.

Lastly, the loss function designed in this paper was explored using

the Taylor series, revealing factors influencing the loss function’s

functionality, such as lateral shifting to address sample imbalance and

boosting model recognition accuracy through low-order terms in the

Taylor expansion of the function. This enables future research to

introduce fewer hyperparameters while gaining more benefits,

providing a reference for subsequent studies and better explaining

the underlying physical meaning of the loss function.

Additionally, the experimental results of the model proposed in

this paper open up potential avenues for future research:
Fron
1. Deep learning-based underwater target recognition models

have encountered certain bottlenecks, primarily due to

their reliance on convolution and residual network

stacking, which can lead to limitations in accuracy. The

model design approach presented in this paper transforms

traditional underwater target recognition into underwater

image target recognition, broadening the model

construction methods. In the future, lightweight module

design methods from computer vision and ideas for feature
tiers in Marine Science 19
enhancement and fusion based on the characteristics of

underwater feature images can be introduced to enhance

the model’s efficiency and recognition accuracy, enabling

real-time applications.

2. Existing underwater target recognition models mainly employ

multi-class classification, but empirical evidence suggests that

converting traditional multi-class tasks into multiple binary

classification tasks is more suitable for underwater target

recognition. Therefore, future research can delve into

designing more effective underwater target recognition

models based on multiple binary classification tasks that

align with the physical characteristics of underwater sound.

3. Current research primarily focuses on building underwater

target recognition models, with limited attention to loss

function research. Traditional classification loss functions

are primarily designed for object image classification and

may not be highly adaptable to underwater target feature.

Future research can focus on designing loss functions that

better align with underwater target features based on the

physical characteristics of underwater targets.
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