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Research on underwater
acoustic field prediction
method based on physics-
informed neural network

Libin Du, Zhengkai Wang, Zhichao Lv*, Lei Wang
and Dongyue Han

College of Ocean Science and Engineering, Shandong University of Science and Technology,
Qingdao, China
In the field of underwater acoustic field prediction, numerical simulation

methods and machine learning techniques are two commonly used methods.

However, the numerical simulation method requires grid division. The machine

learning method can only sometimes analyze the physical significance of the

model. To address these problems, this paper proposes an underwater acoustic

field prediction method based on a physics-informed neural network (UAFP-

PINN). Firstly, a loss function incorporating physical constraints is introduced,

incorporating the Helmholtz equation that describes the characteristics of the

underwater acoustic field. This loss function is a foundation for establishing the

underwater acoustic field prediction model using a physics-informed neural

network. The model takes the coordinate information of the acoustic field point

as input and employs a fully connected deep neural network to output the

predicted values of the coordinates. The predicted value is refined using the loss

function with physical information, ensuring the trained model possesses clear

physical significance. Finally, the proposed prediction model is analyzed and

validated in two dimensions: the two-dimensional acoustic field and the three-

dimensional acoustic field. The results show that the mean square error between

the prediction and simulation values of the two-dimensional model is only 0.01.

The proposed model can effectively predict the distribution of the two-

dimensional underwater sound field, and the model can also predict the sound

field in the three-dimensional space.

KEYWORDS

underwater acoustic field, prediction model, neural network, physical constraints,
physics-informed neural network
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1 Introduction

High-precision underwater acoustic field model is of great

significance for underwater acoustic communication, sonar

effectiveness evaluation, underwater target recognition and

location, etc. Establishing a high-precision underwater acoustic

field prediction model is one of the important research contents

in underwater acoustic field. For example, the establishment of

highly accurate underwater acoustic field can help synthetic

aperture sonar (SAS) to obtain higher resolution sonar images.

Zhang (2023) proposed a new method to simulate the original SAS

echo. The transmitted signal was Fourier transformed and

multiplied by the phase shift of the delay, and the spectrum of

the echo signal was accurately obtained. Yang et al. (2023) proposed

a multi-receiver SAS imaging algorithm based on Loffeld Bistatic

formula (LBF). Zhang et al. (2021) proposed a multi-receiver SAS

image processing method and proved that under certain conditions,

the bistable formula of Loffeld can be simplified to the same formula

as the spectrum based on phase center approximation. Zhang et al.

(2023) proposed a SAS imaging algorithm by rerepresenting the

Loffeld bistable formula (LBF), which includes quasi-monostable

(QM) and multi-receiver deformed (MD) phases, as range-variant

phase and range-invariant phase. In the process of SAS signal

transmission, there will be attenuation, and the establishment of

high-precision underwater acoustic field can compensate the

attenuation signal accordingly. At present,the numerical

simulation and the machine learning are common methods to

forecast the underwater acoustic field. The numerical simulation

method mainly uses ray method, normal mode method, parabola

method, beam integration method (Belibassakis et al., 2014) to

establish physical models and calculate underwater acoustic field.

Kiryanov et al. (2015) established a random non-uniform wave field

model for evaluating sound velocity field based on the results of

deep-sea acoustic long-range propagation test. Miller (1954)

introduced the coupled mode to extend the solution range of the

differential equation to the number of waveguides dependent on the

distance. For the normal mode method, the finite element method is

usually used to build the acoustic field model, and the KRAKEN

model is widely used to build the acoustic field by finite element as a

representative model. Zhou and Luo (2021) established a finite

element model for predicting underwater acoustic field based on

Cartesian coordinate system in a two-dimensional environment,

whose universality is better than that of KRAKENmodel. Teng et al.

(2010) used the boundary element method to simulate the acoustic
Frontiers in Marine Science 02
field around two kinds of underwater communication transducers,

and the prediction results are generally applicable. The spectral

method is a high precision method for solving differential

equations, and it also plays an important role in promoting the

calculation of underwater acoustic field. Tu et al. (2022) used

spectral method and coupled modes to solve the acoustic field of

underwater linear source. In this paper, Chebyshev-Tau spectral

method was used to solve the horizontal wave number of irrelevant

segments in the approximate range, and a global matrix was

constructed to solve the coupling coefficient of the acoustic field

and synthesize the complete acoustic field. Tu et al. (2021) used

Chebyshev-Tau spectral method to construct the normal mode

model of underwater acoustic field, and converted the relevant

differential equations into a complex matrix eigenvalue problem

formed by orthogonal basis with Chebyshev polynomials to solve

the horizontal beam. Tu et al. (2020) used Chebyshev-Tau spectral

method to solve the normal mode model and parabolic equation,

and the solution accuracy was higher than that of the finite element

method. Although the numerical simulation method can directly

forecast the underwater acoustic field by using the physical rules,

the numerical solution often needs to divide the regular grid to

simplify the model calculation, and it is difficult to predict the

acoustic field model with irregular boundaries. With the

development of computer hardware, the neural network, which is

one of the important methods in machine learning, has been used

more and more to predict underwater acoustic field. Ahmed et al.

(2021) established a machine learning model to predict the sound

velocity profile in deep water and shallow water. The accuracy of

this model reached 99.99% and the prediction effect was better than

the acoustic field model forecasted by the equation. Based on the

self-defined loss function, He et al. (2022) constructed a single

output joint neural network and a multi-output neural network

with physical constraints to accurately forecast the beam and

feature function of the underwater acoustic field.

Machine learning method has greatly improved the accuracy of

underwater acoustic field prediction, but there are some obvious

problems. First of all, the model trained by the neural network does

not have a clear physical meaning, and it has poor adaptability to

different environments. Secondly, the neural network needs a large

amount of historical data as support to ensure that the trained

model has a high accuracy. Figure 1 (Karniadakis et al., 2021) shows

the relationship between data volume and physical parameters in

the model prediction problem. In case 1, assuming clear physical

laws and boundary conditions are known, the corresponding
FIGURE 1

The relationship between data volume and physical rules.
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problem can be solved according to physical rules. In this case, the

numerical simulation method can be used to predict the underwater

acoustic field. In case 2, only a large amount of data is known but

the specific physical rules are not clear, and machine learning can be

used to predict the acoustic field problem. The real underwater

acoustic field prediction is a problem in case 3: there are sufficient

data but some parameters in the physical rules are not clear, which

cannot be solved directly by the physical rules.

Physics-informed neural network (PINN) is a new kind of

neural network, which is used to solve the problem of case 3 in

Figure 1. It essentially trains the neural network with physical

equations as constraints, so that the prediction model can meet

certain physical rules. The method has been applied to geophysics,

fluid mechanics, plasma dynamics, high dimensional system

problems, quantum chemistry, materials science and other fields

closely related to physics. Zhu et al. (2021) introduced a deep

learning framework for inversion of seismic data. This paper

combined DNN and numerical partial differential equation

solvers to solve problems such as seismic wave velocity

estimation, fault rupture imaging, seismic location and source

time function inversion. Raissi et al. (2019) combined Navier-

Stokes equations with deep learning to build a model based on

physics-informed neural network and predict pressure distributions

in incompressible fluids. Shukla et al. (2020) used physics-informed

neural network to detect cracks on the surface of materials, designed

a trained PINN to solve the problem of identification and

characterization of cracks on the surface of metal plates, and

solved the acoustic wave equation using measured ultrasonic

surface acoustic wave data with a frequency of 5 MHz. Wu et al.

(2022) introduced the Helmholtz equation and its corresponding

boundary conditions into neural networks to establish physics-

informed neural networks describing acoustic problems. These

neural network algorithms can not only reflect the distribution of

training data samples, but also follow the physical laws described by

partial differential equations. Pfau et al. (2020) combined the wave

function of Fermi-Dirac statistics with deep learning networks to

calculate the solution of the multi-electron Schrodinger equation.

Rotskoff et al. (2022) used PINN method to solve the high-

dimensional problem and gave the results of the probability

distribution in the 144-dimensional Allen-Cahn type system,

indicating that the method is effective for high-dimensional

systems, but its adaptability needs to be optimized for more

complex systems. Zhang et al. (2022) used deep neural network

to modify the displacement factor of surrounding rock of Verruijt-

Booker solution, and constructed the correlation between the

surface settlement and the spatial position of tunnel excavation

face. Then, the physics equations of the corrected solutions were

used to construct PINN, and the results were better than those of

DNN alone. Zou et al. (2023) designed a PINN model to solve the

seismic wave equation. Du et al. (2023) used the three-dimensional

function equation and other physical rules to form a loss function,

and trained the neural network by minimizing the loss function.

The final output satisfied the function equation and the result was

better than the traditional calculation result.

In the underwater acoustic field, wave theory is usually used to

describe underwater acoustic propagation. In this paper, the
Frontiers in Marine Science 03
underwater sound propagation equation is derived based the

framework of wave theory, which is used as constraint to train

the deep neural network, and finally the underwater acoustic field

prediction model with practical physical significance is obtained.

The specific arrangement of this paper is as follows:
1) Deriving the Helmholtz equation of underwater acoustic

propagation in homogeneous medium and establishing the

model of underwater acoustic propagation based on the

Helmholtz equation.

2) Designing a fully connected deep neural network.

Introducing Helmholtz equation into the training process

of neural network. Establishing a physics-informed neural

network based on the Helmholtz equation.

3) Adjusting different training parameters of neural network,

analyzing model training efficiency and prediction

accuracy, and finding the best network design parameters.
The rest of the paper is organized as follows: in Chapter 2, the

Helmholtz equation describing the distribution of sound pressure in

underwater acoustic field is derived. In Chapter 3, the structure of

underwater acoustic field prediction physics-informed neural

network (UAFP-PINN) is described in detail. In Chapter 4,

UAFP-PINN is used to forecast the 2D and 3D underwater

acoustic fields, and the prediction results are analyzed in detail.

Finally, the conclusion and summary is mentioned in Chapter 5.

2 Theory

2.1 Helmholtz equation

Wave theory is a strict mathematical method, which can be used

to derive the Helmholtz equation describing the law of underwater

sound propagation. For ideal fluids, the wave equation for sound

pressure can be written as follows (Jensen et al., 2011):

r∇ ·
1
r
∇ p

� �
−
1
c2

∂2 p
∂ t2

= 0 (1)

In the above formula, p is the sound pressure value of the

acoustic field, r is the density of the medium, c is the speed of sound

in the medium, and both density and speed of sound are functions

of space and time. ∇   is a Hamiltonian operator. To simplify the

calculation, assuming that the density does not vary with space

(Jensen et al., 2011), Formula 1 can be simplified to the following

formula:

∇2 p −
1
c2

∂2 p
∂ t2

= 0 (2)

Formula 2 is the wave equation in a homogeneous medium,

which can be approximated to the ocean acoustic field in a

homogeneous medium for a smaller scale ocean acoustic field

model. ∇2 stands for Laplace operator. For simple harmonic

wave, ∂2

∂ t2 = −w2, w is radiant frequency, introducing the

potential function Y = pffiffi
r

p , Formula 2 can be written as the

following formula (Liu et al., 2019):
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∇2 Y + k2(x, y, z)Y = 0   (3)

In Formula 3,Y is the potential function, k is the wave number

in the medium, which is calculated by the formula k = w
c . The

density in a uniform medium is a constant, and it can be seen from

the potential function formula that there is a linear relationship

between the sound pressure and the potential function, so the sound

pressure also satisfies Formula 3. The Helmholtz equation

describing the sound pressure can be written as follows:

∇2 p + k2(x, y, z)p = 0 (4)

The Formula 4 describes the sound pressure relationship

between adjacent positions of sound waves in a uniform medium.

The beam k in the medium is a position function of space. The

equation belongs to the partial differential equation with variable

coefficient. In order to simplify the calculation, the density r and the

sound velocity c of the medium are regarded as constant value. In

this paper, k   is a fixed constant in the model presented.
2.2 Physics-informed neural network

Most physical laws can be expressed in the form of partial

differential equations, but it is difficult to find specific analytical

solutions of higher-order partial differential equations, which are

usually approximated by various methods. The superiority of neural

network is that it is a universal approximator. If the neural network

has at least one nonlinear hidden layer, as long as the network has a

sufficient number of neurons, it can fully approximate the

continuous function defined on any compact subset in theory.
Frontiers in Marine Science 04
Neural network is a data-driven approximation tool, and its

obvious disadvantage is that it needs a large amount of historical

data for training. The trained model reflects the characteristics of

the data dimension, and cannot clearly represent the physical

characteristics of the result. In order to solve these defects of

neural networks, the training process of neural networks can

incorporate partial differential equations describing physical laws

to constrain this model, so that the training results contain

corresponding physical characteristics. This kind of neural

network is called physics-informed neural network(PINN), and

its general structure is shown in Figure 2 (Karniadakis et al., 2021).

As shown in Figure 2, PINN consists of two parts: the deep

neural network prediction part and the partial differential equation

constraint part. Using the location (x, y, z) as input, the predicted

value P   in the region W is predicted after passing through the fully

connected layer. The mean square error is calculated as the loss

function 1, denoted as LOSS1 in Figure 2. The predicted value is put

into the pre-set partial differential equation and its loss function

LOSS2 is calculated. Finally, two kinds of loss functions are

combined to train the deep neural network as constraints.

An optimizer is an algorithm used to optimize the model

parameters in deep learning, which updates the model parameters

according to the gradient information of the loss function, so that the

model can gradually approximate the optimal results. The optimizers

commonly used in neural networks are stochastic gradient descent

(SGD), Adam, AdaGrad and RMSProp. Two optimizers, SGD and

Adam, are used to train the PINN in this paper. SGD is one of the most

basic optimizers in neural networks. Adam is an optimizer that

combines momentum method and adaptive learning rate

adjustment, which is a commonly used optimizer in neural networks.
FIGURE 2

General structure of PINN.
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3 UAFP-PINN

This section introduces the underwater acoustic field prediction

model based on physics-informed neural network(UAFP-PINN),

builds a fully connected deep neural network with six hidden layers,

and uses Helmholtz equation to construct the loss function in the

neural network and add it to the training of the neural network.

This section introduces the specific content of UAFP-PINN model

from three parts: model structure, loss function based on Helmholtz

equation and model activation function.
3.1 Frame of prediction

The neural network takes the position coordinate of sound

pressure P as the input and the corresponding sound pressure value

as the output for training. The network consists of one input layer,

six hidden layers and one output layer. In order to verify

the difference between two-dimensional and three-dimensional

model, two-dimensional and three-dimensional physics-informed

neural network is established respectively, and the models are

trained using (x, z, p) and (x, y, z, p) as inputs respectively.

The input layer of the neural network is the coordinate information

of sound pressure, the output layer is the predicted sound pressure, and

there are six hidden layers in this neural network. The number of

neurons in the hidden layer was (8, 16, 32, 64, 128, 256) and each

neuron is connected by full connection. The i neuron in layer l − 1 and

the j neuron in layer l are connected by weighting parameters wl
ji. Each

neuron trains the model through input weighting parameters  wl
ji and

bias terms   bl in layer l − 1. Figure 3 shows the computational

relationship between the two related neurons. In the feedforward

model, Formula 5 shows the output of the k neuron in the next

layer l (Bishop and Nasrabadi, 2006). s   is the activation function,

which is covered in the third part of this section.

ulk = s oNl−1
j=1 w

l
kju

l−1
j + blk

� �
(5)
3.2 Loss function

The key of physics-informed neural network is to train the

neural network with physical partial differential equation which

describes the state of object. The traditional neural network usually

use the mean square error of predicted and simulated values to

evaluate the training results. In this study, a Helmholtz equation

describing underwater sound propagation is added as another loss

function. The loss function of the mean square error and the loss

function of the physical constraint are used as constraints to train

the model. The loss function of mean square error is denoted as

LOSS1 and the loss function of physical constraint is denoted as

LOSS2 (Borrel-Jensen et al., 2021).

The reference formula of loss function LOSS1 is the formula for

calculating mean square error, and the specific content is shown in

Formula 6:
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MSE =
1
no

n
i=1 Pi − Tij j2 (6)

In the above formula, MSE represents the mean square error, n

is the total number of samples, P is the predicted value, and T is the

true value. Formula 6 is one of the important indicators to measure

the accuracy and precision of the prediction model.

For the prediction model in this paper, the sound pressure value

predicted by the neural network is denoted as ppre, the

corresponding simulated sound pressure value is denoted as ptra,
and the number of samples is denoted as N, then the mean square

error loss function LOSS1 of the neural network is shown as

Formula 7:

LOSS1 =
1
No

N
i=1(p

pre
i − ptrai )2 (7)

The mean square error loss function LOSS1 represents the

degree of similarity between the predicted value and the

simulated value. Traditional neural networks use this loss

function to continuously approximate the predicted value to the

simulated value. In essence, the model trained by means of

the mean square error loss function represents the characteristics

of the data dimension.

The sound pressure value   ppre predicted by the neural network

is a function of spatial coordinates, and the Laplacian operator of

the sound pressure p in formula 4 can be expressed as:

∇2 p =
∂2 p
∂ x2

+
∂2 p
∂ y2

+
∂2 p
∂ z2

(8)

According to Formula 4, k is the medium beam and the

calculation formula is k = w
c , w is the radiation frequency, c is

the medium sound speed. Bringing Formula 8 into Formula 4 gives
FIGURE 3

Computational relationship between adjacent neurons.
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the Helmholtz equation with the predicted values.

L =
∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2
+ k2ppre (9)

Formula 9 describes the Helmholtz equation of the predicted

value of the neural network, which is a vector, and defines the

square of the 2-norm of this vector as the loss function LOSS2 of the

physical constraint (Song et al., 2022), from which the expression of

the loss function of the physical constraint can be obtained as:

LOSS2 =║ ∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2
+ k2ppre║

2

2
(10)

The physical constraint loss function LOSS2 represents the

physical characteristics of the predicted value and brings

the predicted value into the Helmholtz equation describing the

underwater sound field. The model trained with the loss function 2

represents the characteristics of the physical dimension.

In order to make the trained neural network have both data

characteristics and physical characteristics, the mean square error

loss function LOSS1 and physical constraint loss function LOSS2 will

be combined in this paper. In order to make the model better fitting

effect and have strong physical interpretability, the two loss

functions will be summed with the same weight. As a whole, the

LOSS function LOSS trains the model. The model trained by the

LOSS function has clear physical interpretability. The calculation

formula of the loss function is as follows:

LOSS =
1
No

N
i=1(p

pre
i − ptrai )2 +║ ∂2 ppre

∂ x2
+
∂2 ppre

∂ y2
+
∂2 ppre

∂ z2

+ k2ppre║
2

2
(11)
3.3 Activation function

As an important parameter in deep neural network training, the

activation function (s ) has great influence on the training efficiency

and prediction accuracy of the neural network. The activation

functions are mainly used to introduce nonlinear properties that

enables neural networks to learn and represent complex nonlinear

relationships. The activation function is typically applied to each

neuron in a neural network, converts the input signal to nonlinear

and passes the transformed result to the next layer. In the training of

neural network, common activation functions mainly include tangent

activation function (Tanh(x)), sine activation function (sin(x)), Relu

function (Relu(x)), and arctangent activation function (Atan(x)). The

images of these four activation functions are shown in Figure 4.

The tangent function is more commonly used in cases where the

neuronal output has negative values, such as symmetric centralized

data. Using tangential activation functions can help neural network

introduce nonlinear transformations so that neural network can

learn and represent more complex patterns and relationships. The

tangent activation function outputs a negative value when the input

is negative and a positive value when the input is positive. This

makes the tangent activation function more suitable for processing

data with positive and negative symmetries.
Frontiers in Marine Science 06
The sine function is a nonlinear activation function that maps

the input values to an output range between -1 and 1. Sine

activation functions have nonlinear properties, which can help

neural network model learn and represent nonlinear patterns

and relationships.

The Relu function is one of the widely used activation functions

in deep learning, especially in the hidden layer. Its main advantages

are computational efficiency and avoiding gradient saturation

problems. Relu function passes positive values and truncate

negative values to zero, which makes Relu sparsely active, that is,

only some neurons are activated while others are zero. Sparse

activation can provide higher model representation and help to

reduce the computational load and complexity of the model.

The arctangent function can help mitigate gradient vanishing or

gradient explosion problems in some cases because it has a gentler

gradient as the input approaches the boundary, and these problems

can affect the model’s learning ability and convergence.

In this study, the tangent function, the sine function, the Relu

function and the arctangent function (Al-Safwan et al., 2021; Song

et al., 2022) are used to predict the model. Different activation

functions are selected to observe the decline of the model’s loss

function, and the effect of different activation functions is evaluated

according to the model prediction effect. Finally, we select the

activation function that best fits PINN model.
4 Experiment

4.1 Data

In order to verify the feasibility of the physics-informed neural

network, an ocean environment model is established using

COMSOL software. A point sound source is placed at the edge of

the ocean environment to simulate the excitation conditions of the

underwater acoustic field, and the effectiveness of the physics-

information neural network is verified according to the acoustic

field data.

The test area is 30 meters long, 10 meters wide and 10 meters

high, and the test point sound source is located at coordinates

(0,5,5). The upper boundary of the area is the air-sea interface,

which can be approximated as an absolute soft boundary, and the

sound pressure values on the boundary are satisfied the condition

p(x, y, z) = 0; the lower boundary of the area is a hard submarine

interface, which can be approximated as an absolute hard boundary,

and the sound pressure values on the boundary are satisfied the

formula ∂ p
∂ z = 0. The surrounding boundary is a perfectly matched

layer (Chen et al., 2013). Due to the small scale of the area, the

density of seawater in the area can be approximately constant, the

average density of seawater is 1025 kg=m3, and the sound velocity in

the seawater medium is 1500m=s. The structure of the area model is

shown in Figure 5.

In order to avoid the influence of reverberation on the acoustic

field, the point sound source with a frequency of 100 Hz is selected

in this paper, the sound wave is a sine wave, and the amplitude is

selected as one. Figure 6 shows the spatial acoustic field distribution

at 0.1s drawn by COMSOL according to the above conditions, and
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Figure 7 shows the sound pressure distribution at XZ-plane when

coordinate y is five meters.

In this paper, the sound pressure data in 2-dimensional plane and

3-dimensional space are predicted respectively. In this study, prediction

data and test data are separated. A total of 28,100 sets of simulated

values are collected in the 2-dimensional plane data training set and

112,400 sets of simulated values are collected in the test set. A set of 2-

dimensional plane training data is collected every 0.1 m. A total of

352,500 sets of simulated values are collected in the 3-dimensional

training set and 982,150 sets of simulated values are collected in the test

set. A set of 3-dimensional training data is collected every 0.2 m.
4.2 Introduction to experimental
environment

The experimental environment will affect the predicted rate, so

this section describes the hardware configuration for the

experiment. The GPU is NVIDIA GeForce GT370, the CPU is

Intel i7-9700, the operating system is Windows10, and the memory

is 64 GB. This paper establishes a prediction model based on Python
Frontiers in Marine Science 07
language, and uses Pytorch framework to establish a neural

network. The compiler uses Pycharm2018.
4.3 Hyper parameter setting

In the experiment, the adaptive moment estimation (Adam)

optimizer and stochastic gradient Descent (SGD) are used to

analyze the influence of the optimizer on the prediction accuracy of

the model. For this optimization process, the first-order momentum

factor, second-order momentum factor and Fuzz factor in Adam are

configured as 0.9, 0.999 and 0.0000001, respectively. The initial

learning rate is set to 0.001, the weight attenuation factor is set to

0.0005, and 1/10 of the total training data is used for a batch. Before

the actual test, a small batch of test data was used for training, and it is

found that the model could converge within 100 times. Therefore, the

number of iterations of the 2-dimensional model is set to 500 epochs

and the number of iterations of the 3-dimensional model was set to

250 epochs. Finally, in order to ensure that the weight of data-driven

and physical constraints is the same, the two loss functions are

summed with the same proportional coefficient 1 and combined into
A B

DC

FIGURE 4

(A) is the tangent activation function, (B) is the sine activation function, (C) is the Relu activation function, and (D) is the arctangent activation function.
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an overall loss function to train the model. For the specific loss

function, see Formula 11.
4.4 Results and analysis

In order to verify the effectiveness of the underwater acoustic

field prediction model, 2D underwater acoustic prediction model

based on physics-informed neural network (2D UAFP-PINN) and

3D underwater acoustic prediction model based on physics-

information neural network (3D UAFP-PINN) are established by

using 2D and 3D acoustic field data. The two models are used to

predict the acoustic field data of the test location, adjust different
Frontiers in Marine Science 08
optimizers and activation functions to analyze the optimal model

parameters, and finally evaluate the model by analyzing the

statistical characteristics between the predicted values and the

simulated values.

4.4.1 2D UAFP-PINN
In this section, a 2D underwater acoustic prediction model

based on physics-informed neural network (2D UAFP-PINN) is

established, and the effects of different activation functions and

optimizers on the prediction accuracy of the model are analyzed.

Model parameters are as follows: there are 28100 sets of training

data and 112,400 sets of test data;The training iteration epochs are

500 times, the data of each training is 1/10 of the total training data.
FIGURE 6

Sound pressure distribution at t= 0.1s.
FIGURE 5

Area model structure.
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It selects different activation functions and optimizers to train the

model and gets the curve of loss function with training times.

Figure 8 shows the change curves of the different loss functions

using the two optimizers. Since the loss function reached the

optimal trend after about 100 training times, only the results of

the first 100 training times are shown in the figure to make it clearer.

As can be seen from Figure 8, when the Relu activation function

is combined with the Adam optimizer, the loss function drops to the

lowest values, reaching 1.09, and the minimum trend is reached

when the training times are about 13 times. The model convergence

speed is faster than other activation functions. Therefore, using the

Adam optimizer, the loss function decreases faster than the SGD

optimizer, indicating that the Adam optimizer is more suitable for

the training of 2D UAFP-PINN model. In summary, it can be seen

that using the Adam optimizer and Relu activation function is the

best choice for the 2D UAFP-PINN model.

In order to verify the prediction effect of this model, 112,400 sets

of data simulated by COMSOL are selected as simulation values to
Frontiers in Marine Science 09
evaluate this model. In this paper, the validity of the forecast results

is analyzed from four perspectives: R-squared (R2), mean square

error (MSE), mean absolute error (MAE) and absolute error

distribution. R-squared is a common regression model evaluation

metric used to measure the model’s ability to explain the target

variable. The value range of R-squared is between zero and one,

when it is closer to one indicates that the model has a better ability

to explain the target variable, and when it is closer to zero indicates

that the model has a worse ability to explain the target variable. The

expression of R-squared is as follows:

R2 = 1 −
SSE
SST

= 1 −o(yi − byi)2
o(yi − �y)2

  (12)

Where yi are the simulated values of the test set, ŷi are the

predicted values by PINN, �y are the mean of the simulated values.

SSE represents the sum of squares of residuals, which is the sum of

squares of the difference between the predicted values and the
A B

FIGURE 8

(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer.
FIGURE 7

Sound pressure distribution in the XZ-plane at y=5 m.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1302077
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Du et al. 10.3389/fmars.2023.1302077
simulated values. SST represents the total sum of squares, which is

the sum of squares of the difference between the predicted values

and the mean of the simulated values.

The formula for calculating the mean square error can be

referred to formula 6 in Section 3.2 of the article. The formula for

calculating the mean absolute error is as follows:

MAE =
1
no

n
i=1 Pi − Tij j (13)

In the above formula, MAE represents the mean absolute error,

n is the total number of samples, P is the predicted value, and T is

the true value.

Table 1 shows the results of R-squared, mean square error and

absolute mean values error of predicted values and simulated values

of different activation functions under the Adam optimizer, and

Figure 9 shows the absolute error distribution of predicted

and simulated values of different activation functions. Table 1 and

Figure 9 show the statistical characteristics between the predicted

values and the simulated values.

The R-squared values represents the correlation between the

predicted values and the simulated values, and the larger the value,

the stronger the correlation between the predicted values and the

simulated values. It can be seen from Table 1 that the model using

Relu activation function for prediction has the strongest correlation

with the simulated values, that the R-squared value is 0.98953.The

mean square error between the predicted values and the simulated

values is only 0.01047 Pa when the model uses Relu activation

function, and the mean square error of other activation functions

are all around 0.75.The mean absolute error between the predicted

values and the simulated values is only 0.06759 Pa when the model

uses Relu activation function, and other activation functions’ mean

absolute error are all around 0.67 Pa. The data predicted by the Relu

activation function is very close to the simulated values. Figure 9

shows the distribution of absolute error between the predicted and

simulated values of several activation functions. It can be analyzed

from the figure that the absolute error of the data predicted by the

Relu activation function is distributed within 0.05 Pa, and the data

with an absolute error higher than 0.3 Pa is basically not distributed,

while the error distribution of the other three activation functions

are basically similar, and most of them are concentrated within

1.5 Pa. It can be analyzed that the prediction accuracy is much lower

than that of the Relu activation function. Therefore, the best

activation function and optimizer for this model are Relu

and Adam.
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4.4.2 3D UAFP-PINN
In this section, a 3D underwater acoustic prediction model

based on physics-informed neural network (3D UAFP-PINN) is

established, and the effects of different activation functions and

optimizers on the prediction accuracy of the model are analyzed.

Model parameters are as follows: there are 352500 pieces of training

data and 982150 sets of test data; The training iteration epochs are

250 times, the data of each training is 1/10 of the total training data.

It selects different activation functions and optimizers to train the

model and gets the curve of loss function with training times.

Figure 10 shows the variation curves of the different loss functions

using the two optimizers. The optimal trend reached by the loss

function after about 20 training sessions. To make it clearer, Adam

only shows the results of the first 100 training sessions in the figure,

while SGD only shows the results of the first 20 training sessions.

It can be seen from Figure 10 that when Relu activation function

and Adam optimizer are used, the loss function decreases to the lowest

degree, reaching 6.94, and reaches the lowest trend when the training

times are about 10 times. The model convergent speed is faster than

other activation functions. The loss function has the best decreasing

effect when the optimizer chooses Adam. It can be concluded that the

loss function reduction effect using the Adam optimizer is slightly

better than that of the SGD optimizer. In summary, it can be seen that

using the Adam optimizer and the Relu activation function is the best

choice for the PINN framework. However, compared with the two-

dimensional training model, with the increase of data dimension, the

training complexity greatly increases, and the gap between the

optimization effect of the optimizer and the activation function on

the network is also significantly reduced, which indicates that with the

increase of data dimension, it is necessary to appropriately increase the

network complexity to represent the features of higher-dimensional

data. Simply changing the activation function and the optimizer does

not make the model convergence better.

In order to verify the prediction effect of the model, 982,152

pieces of data were selected to evaluate the model. Table 2 shows the

results of R-squared, mean square error and absolute values error of

the predicted values and the simulated values using different

activation functions under the Adam optimizer. Figure 11 shows

the absolute error distribution between the predicted values and the

simulated values of different activation functions, which is used to

visually display the error distribution of the predicted values.

As can be seen from Table 2, the largest R-squared value is the

result predicted by Relu activation function, which reaches 0.47823,

and the predicted values have a relatively high correlation with the

simulated values. The correlations of the other three functions are very

low. From themean square error and the mean absolute error, it can be

seen that the prediction effect of Relu activation function is much better

than that of other activation functions. From the absolute error

distribution in Figure 11, the absolute error range of the four

activation functions is basically the same, but the absolute error of

Relu activation function is mostly concentrated within 0.5 Pa, and the

absolute error distribution is the largest around 0.25 Pa, and there is a

small peak around 1.0 Pa. However, compared with the prediction

results of other activation functions, the prediction effect of Relu
TABLE 1 Statistical results of different activation functions.

Activation
function

R-squared MSE MAE

Tanh 0.24107 0.75893 0.68727

Sin 0.23773 0.76223 0.67919

Relu 0.98953 0.01047 0.06759

Atan 0.23879 0.76121 0.67166
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activation function is obviously better than that of the other three

activation functions.

Comparing the 2D UAFP-PINN and 3D UAFP-PINN training

and forecasting results, under the condition of Adam optimizer and

Relu activation function, the 2D UAFP-PINN model is much better

than the 3D UAFP-PINN model, and the error difference between
Frontiers in Marine Science 11
the two models can reach tens of times. The reason for the big

difference between the two models is that the complexity of the

acoustic field will also increase with the increase of the dimension of

the forecast data. Therefore, if the number of hidden layers and

neurons of the 3D model remains the same as that of the 2D model,

the fitting effect of the 3D model will have the problem of
A B

FIGURE 10

(A) shows the different loss function changes under the Adam optimizer, (B) shows the different loss function changes under the SGD optimizer.
A B

DC

FIGURE 9

(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.
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underfitting. If the dimension of the prediction model is increased,

the number of hidden layers and neurons of the model should be

increased to match the corresponding complexity and prevent the

problem of underfitting.
5 Conclusion

Compared with the numerical method to solve the underwater

acoustic field, PINN has the advantage that it can handle the

acoustic field of different media and irregular shape models.

PINN does not use a regular network to predict the acoustic field.

It can be predicted at any point in the input region if the position is

known, and there is no limit to the irregular shape of the model. For
Frontiers in Marine Science 12
the three-dimensional acoustic field, the calculation cost of the

numerical method will increase sharply due to the addition of one

dimension of the data, and PINN can quickly forecast the high-

dimensional acoustic field space.

In addition to PINN, there are machine learning-based methods

to predict acoustic fields. Onasami et al. (2021) used deep neural

networks and long and short time memory networks to model

underwater acoustic channels, and established a data-driven

underwater acoustic channel model. The acoustic field prediction

model based on machine learning is mainly a data-driven method,

which needs a lot of training data to support, and has certain

timeliness. The underwater acoustic field is time-varying, and it is

often difficult to predict the time-varying underwater acoustic field

when the model is trained using only historical data. The advantage

of PINN is that new constraint variables can be added via partial

differential equations, and it has good environmental adaptability.

According to the experimental data, the convergence rate of the

model loss function is fast.

The experimental results show that PINN using Relu activation

function and Adam optimizer can effectively predict the underwater

acoustic field. The model is constrained by the Helmholtz equation

describing the underwater acoustic field and combined with the

excellent model approximation characteristics of the neural

network. It can realize the acoustic field prediction in the case of
A B

DC

FIGURE 11

(A) is the absolute error distribution using Tanh activation function, (B) is the absolute error distribution using Sin activation function, (C) is the
absolute error distribution using Relu activation function, and (D) is the absolute error distribution using Atan activation function.
TABLE 2 Statistical results of different activation functions.

Activation
function

R-squared MSE MAE

Tanh 0.10428 0.89572 0.70253

Sin 0.09045 0.90955 0.70488

Relu 0.47823 0.52177 0.51988

Atan 0.09411 0.90589 0.70217
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small samples. The Helmholtz equation, which describes the

underwater acoustic field, gives the parameters that affect the

acoustic field, such as medium density, medium sound velocity,

sound source position, vibration frequency, etc. These parameters

cannot be given directly in the loss function as constraints to be

trained. For the underwater acoustic field of large-scale medium, the

sound velocity and the density of medium change with space, so it is

difficult for the network to predict the underwater acoustic field of

large-scale medium. The main limitation of the underwater acoustic

field prediction model proposed in this paper is that the scale of

trained model is small. If the source frequency, medium density,

and medium sound velocity change, the new network model needs

to be retrained separately for these changing conditions. To solve

this problem, the source position, medium density, sound velocity

and different boundary conditions can be used as new inputs to

train the network model together with the coordinate information.

Song et al. (2022) and Alkhalifah et al. (2020) used the similar

method to generate wave field solutions of multiple seismic sources

with one network, and solved the problem of seismic field

adaptation of different seismic sources. In addition, time can also

be used as input to add time constraint term to Helmholtz equation,

and it can establish a kind of physics-informed neural network for

spatial-time cooperative prediction. Finally, the combination of

transfer learning and PINN is a research direction to solve the

problem of underwater sound field model prediction in

different scenes.

Using PINN to predict underwater acoustic field, it is necessary

to adjust the structure and training amount of prediction network

according to the complexity of acoustic field. By comparing the

prediction results of 2D UAFP-PINN and 3D UAFP-PINN models

in this paper, the following conclusions can be drawn: with the

increase of model dimensions, the complexity of model prediction

will increase accordingly, and simply changing the activation

function and optimizer cannot effectively improve the prediction

accuracy of the model. For acoustic fields with more complex

dimensions, it is necessary to increase the complexity of the

model with more neurons and hidden layers to adapt to more

complex physical environments, so as to achieve better

prediction results.

In this paper, it establishes physics-informed neural network to

forecast underwater acoustic field. By analyzing several activation

functions and the accuracy of the results predicted by the optimizer,

it is found that the Relu activation function and the Adam optimizer

can accurately predict the sound pressure value of the two-

dimensional acoustic field. For three-dimensional space, the

accuracy of PINN prediction is lower than the two-dimensional

acoustic field prediction model, because the complexity of the

problem increases with the increase of the dimension of acoustic

field. Therefore, it is also necessary to adjust the number of hidden

layers and the number of neurons in the network structure. The

two-dimensional and three-dimensional neural network structure

in this paper is the same as that of neurons, and subsequent work

can be verified in this direction. Compared with the numerical

method, this method can adapt to different media environments,

has certain physical characteristics, and the prediction accuracy can
Frontiers in Marine Science 13
be improved by adjusting the network structure and parameters, so

it is an effective method for underwater acoustic field prediction.
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