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Groundwater salinization under
the influence of paleo sea-level
fluctuation: a case study in
southern Laizhou Bay, China
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Hongjun Yu2, Keke Chen3, Baichuan Ran1, Tengfei Fu2,
Wenzhe Lyu2, Yancheng Wang2, Xueyan Jiang4

and Xihuang Zhong4

1State Key Laboratory of Estuarine and Coastal Research, East China Normal University,
Shanghai, China, 2Key Laboratory of Marine Geology and Metallogeny, First Institute of
Oceanography, Ministry of Natural Resources, Qingdao, China, 3North China Sea Ecological Center,
Ministry of Natural Resources, Qingdao, China, 4Department of Chemistry and Chemical Engineering,
Ocean University of China, Qingdao, China
The groundwater environment in low-lying coastal regions is significantly

impacted by global sea-level fluctuation. In Laizhou Bay, three large-scale

transgressions have occurred since the late Pleistocene, resulting in the

transformation of ancient seawater into brine. This brine has become a major

contributor to groundwater salinity in the area. This study establishes a

correlation between groundwater occurrence and paleoclimate changes in

Laizhou Bay using borehole sediment data. The source and mechanism of

groundwater salinity are analyzed based on sediment pore water

characteristics and hydrogen and oxygen isotopes. The study reveals that the

stratigraphic structures in the area consist of four layers: a Holocene

transgressive layer, a continental confining bed from the late Pleistocene, a

Cangzhou transgressive layer from the late Pleistocene, and a fluvial aquifer from

the middle Pleistocene. All aquifers in the study area have been infiltrated by

modern seawater, with the uppermost Holocene aquifer influenced by

evaporation and leaching processes, the central late Pleistocene aquifer

remaining relatively stable, and the lower middle Pleistocene aquifer affected

by subsurface low salinity runoff and exhibiting an increasing trend with depth.

Given the presence of numerous hydrogeological environments globally that are

similar to the study area, the obtained mechanisms of groundwater salinization in

this study will provide theoretical support for groundwater management in

similar regions worldwide.
KEYWORDS

groundwater salinization mechanisms, porewater analysis, hydrochemical
characteristics, stable isotope characteristics, southern coast of Laizhou Bay, global
sea level fluctuation
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Highlights
Fron
• Paleo sea-level changes primarily control the distribution of

coastal groundwater.

• Groundwater exploitation and modern seawater intrusion

are the main factors influencing salinization mechanisms.

• Modern seawater intrusion basically displaces the

paleo-brine.
1 Introduction

Coastal regions at lower elevations worldwide are highly

vulnerable to the impacts of climate change, such as rising sea

levels, tidal inundation, and storm surges. These factors contribute

to the intrusion of seawater into coastal groundwater, leading to

salinization. Groundwater salinization has been observed in

numerous regions across various countries, including China (Guo

and Huang, 2003). This salinization not only degrades groundwater

quality but also reduces water resources for industrial, agricultural,

and domestic purposes, exacerbating freshwater scarcity (Bordbar

et al., 2023; Tomaszkiewicz et al., 2014). Additionally, high salinity

levels in groundwater, particularly in arid and semi-arid regions,

can increase soil salinity through capillary action, affecting

agricultural productivity. Global groundwater salinization has

gained significant attention from the international community

(Yakirevich et al., 1998; Moussaoui et al., 2023; Parisi et al.,

2023). The main mechanisms contributing to groundwater

salinization are: (1) Modern seawater intrusion due to rising sea

levels caused by global warming (Laattoe et al., 2013; Agossou et al.,

2022; Balasubramanian et al., 2022; Sathish et al., 2022); (2) Modern

seawater intrusion resulting from excessive groundwater extraction

and hydraulic reclamation (Chen et al., 2021;Lio et al., 2015); and

(3) Transformation of paleo-seawater preserved in marine strata

during transgression into modern brine, which has significantly

higher salinity levels and a larger extent of salinization (Sanford

et al., 2013; Larsen et al., 2017). Among these mechanisms, brine-

induced salinization is the most severe (Giambastiani et al., 2013;

Liu et al., 2017; Chen et al., 2021).

Understanding groundwater mixing processes is crucial for

sustainable groundwater utilization in coastal regions. Extensive

research has been conducted over the past 60 years to better

comprehend coastal aquifer flow and transport processes.

Electrical resistivity tomography (ERT) is a widely used method in

coastal hydrogeology for visualizing subsurface resistivity

distribution in 2D or 3D (Werner et al., 2013). It has proven

effective in identifying mixing zones between saltwater and

freshwater (Acworth & Dasey, 2003). Chemical composition

analysis of coastal groundwater has also been utilized to determine

the origin of dissolved salts. While seawater intrusion is the primary

cause of increased groundwater salinity, other sources and processes

can contribute as well. A multi-tracer approach combining
tiers in Marine Science 02
hydrochemical and isotope data has been successful in identifying

salinity sources (Han et al., 2014; Petelet-Giraud et al., 2016).

The southern coast of Laizhou Bay is one of the most heavily

impacted areas by groundwater salinization globally, affecting an

extensive land area of over 25,000 km2. This region has experienced

three large-scale transgression events due to global sea level

fluctuations caused by glacial-interglacial climate change since the

late Pleistocene (Wang et al., 1981; Xu et al., 1997). The trapped

paleo-seawater in marine strata has undergone various evolutionary

processes, such as evaporation, fractionation, and ion exchange with

sediments, resulting in the formation of brine (Gao et al., 2015).

Groundwater resources from the southern coast of Laizhou Bay

have been utilized for agricultural, industrial, and domestic water

needs in North Shandong Province for several decades (Han et al.,

2020), leading to intensive groundwater exploitation. The mixing

mechanisms of different groundwater types in the region, including

seawater with freshwater, seawater with brine, and freshwater with

brine, are complex due to overexploitation. Consequently, the

sources and mixing mechanisms of groundwater salinization at

different depths in the sea-land interaction zone, influenced by

paleo sea-level fluctuations since the late Pleistocene, remain a

complex and unresolved scientific challenge.

Throughout the Quaternary period, the position of the interface

between fresh and saline water has been constantly changing. These

fluctuations, which could reach up to 130 m (Chappell et al., 1996),

resulted in the emergence or submergence of large coastal areas

(Vallejos et al., 2018). Consequently, the presence of ancient

seawater trapped in coastal aquifers is common worldwide. This

study aims to identify the source and mechanisms of groundwater

salinization at different depths in areas where brine is present.

Previous research has shown that the profiles of natural tracers in

porewaters of clay-rich sediments can serve as reliable records of

paleo-hydrogeological changes (Hendry and Woodbury, 2007). By

analyzing environmental tracers such as chloride (Cl-) and bromide

(Br-) in porewater, along with sediment core data on depositional

facies associations, the origin of salinity can be determined

(Cartwright et al., 2004; Edmunds et al., 2006; Alcalá and

Custodio, 2008; Alessandrino et al., 2023; Rajmohan et al., 2021).

The source of water can be identified using stable isotopes of

hydrogen (dD) and oxygen (d18O). (Han et al., 2020; Carretero

et al., 2022; Dun et al., 2022). In this study, we investigated the

hydrochemical characteristics, stable isotopes of hydrogen and

oxygen, and sedimentary environmental changes in the study area

to understand the origin and mechanisms of groundwater

salinization at different depths.
2 Materials and methods

Brine is commonly found in both inland and coastal areas

worldwide. In the coastal region, there are several other areas

similar to our study area that also have brine in their aquifers.

These areas are affected by seawater intrusion, freshwater recharge,

and groundwater extraction (Figure 1) (Lenahan & Bristow, 2010;
frontiersin.org
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Giambastiani et al., 2013; Aref & Taj, 2017; Saint-Loup et al., 2018;

Van Engelen et al., 2018; Gil-Meseguer et al., 2019; Omerspahic

et al., 2022; Jurikova et al., 2023).
2.1 Study area

The study area has a temperate continental to semi-arid climate,

with average annual rainfall ranging from 500-600 mm and

evaporation ranging from 1700-1900 mm. Rainfall is mainly

concentrated in the July-August period. The topography of the

study area is higher in the southern part and lower in the northern

part, resulting in lower topography in the coastal area compared to

the southern part of Laizhou Bay. The piedmont alluvial-proluvial

and marine plains serve as the regional groundwater recharge and

discharge zones, respectively. The central part of the piedmont

alluvial-proluvial plain is the groundwater transition zone (Chen

et al., 2004; Xu and Ding, 2008; Feng, 2016; Guo, 2016). The WF80

borehole is located in the groundwater discharge area, where the

sources of groundwater recharge are complex. These sources

include brine in the palaeosedimentary environment, lateral water

flow from the Yu River, subsurface runoff from the southern

region, atmospheric precipitation, and seawater from Laizhou

Bay (Figure 2).
2.2 Background of
groundwater salinization

The southern coastal area of Laizhou Bay is affected by changes

in relative sea level, resulting in the development of marine and

continental strata in alternating sequences. Previous studies have

identified three high paleo sea-level periods in the southern coastal

area of Laizhou Bay in the southern Bohai Sea since the late
Frontiers in Marine Science 03
Pleistocene: Cangzhou (Qp3
1), Xian (Qp3

3), and Huanghua (Q4)

transgressions (Figure 2A). These transgressions have led to the

formation of three sets of vertical marine strata, which have resulted

in the presence of abundant underground brine mineral deposits in

the southern coastal area of Laizhou Bay (Zhao et al., 1978; Han and

Wu, 1982; Xu and Wang, 1990; Gao et al., 2015; Zhang et al., 1996;

Wang et al., 2003; Yang, 2016; Yang et al., 2016).

Previous research has shown that the total dissolved solids

(TDS) in the three marine brine strata exhibit a zonal distribution

pattern from the southern (land area) to northern (sea area) parts of

the study area (Zheng et al., 2014; Gao et al., 2015). The coastal area

and the distant coastal area, spanning a width of 4-8 km and 5-10

km respectively, have low TDS contents (<100 g/L). In contrast, the

central part of the south coast of Laizhou Bay displays high TDS

contents (>100 g/L) over a width range of 10-15 km (Zhang and

Peng, 1998; Leng et al., 2009; Gao et al., 2015; Yang, 2016).

Specifically, the brine water within each marine stratum exhibits

varying TDS contents: 50 to 140 g/L for the uppermost layer, 50 to

165 g/L for the intermediate layer, and 50 to 130 g/L for the

lowermost layer (Figures 2B–D). Additionally, the saline aquifer

in the southern coastal area extends seaward, resulting in higher

TDS contents in the submarine groundwater compared to the

surrounding seawater (Figure 2E) (Bi et al., 2012; Zheng et al.,

2014; Gao et al., 2015; Liu, 2018).
2.3 Borehole description

The WF80 borehole (119.26741 E°; 37.20253 N°) is located in

the Yu River Delta of the southern coastal area of Laizhou Bay

(Figure 2A). The Lz908 borehole, on the other hand, is situated near

the south coast of the Bohai Sea, China (118.97 E°; 37.15 N°)

(Figure 2A). The Lz908 borehole was drilled to a depth of 101.3 m in

the summer of 2007 by the First Institute of Oceanography, State
FIGURE 1

Global distribution of brine along coastlines.
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Oceanic Administration, China. The WF80 borehole is part of the

delta cluster formed by the Weihe and Mihe rivers (Xue and Ding

2008) between the eastern and western branches of the Yishu Fault

in the Shandong section of the Tancheng-Lujiang Fault Zone. In
Frontiers in Marine Science 04
August 2020, core drilling was conducted in the WF80 borehole,

with a core length of 78.2 m. For this study, the upper 36.6 m layer,

which consists of fluvial and coastal sediments, was selected. Below

36.6 m, there is a dense semi-water-resisting layer with a thickness
FIGURE 2

Location of WF80 and Lz908 boreholes in the study area. Seawater transgression extents during Late Pleistocene and Holocene (A); Spatial
distribution of TDS contents in brine water during Holocene (Q4) (B), Late Pleistocene (Qp3

3) (C), and Late Pleistocene (Qp3
1) (D) [modified from

Zheng et al., 2014], Geological section showing the distribution of groundwater quality and flow directions from hydrological data and the location
of groundwater sampling site and monitoring wells. The hydrogeological profile is based on geological and hydrological data from past research and
monitoring data (Modified from Han et al., 2014) (E).
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of 5-6 m and significant lithologic changes. Prior to 2017, the WF80

drilling site was located in the intertidal zone with a seawater depth

of approximately 1 m. However, land reclamation in 2017 raised the

altitude to 4.3 m. The lithology of the upper 36.6 m layer, including

5.3 m of artificial backfill, primarily consists of yellow-gray clay,

silty clay, clay silt, and silty sand. The North China Plain, including

the study area, has experienced stable sedimentary conditions with

consistent strata and no major unconformities or topographic

reliefs (Wu et al., 2006). This provides a relatively complete

record of environmental changes in both marine and terrestrial

settings. Wang et al. (1981) reported that the southern coastal area

of Laizhou Bay has undergone three cycles of seawater transgression

and regression since the late Pleistocene. These cycles have led to

the formation of various sediment facies, including neritic, delta,

tidal flat, littoral neritic, and continental facies. During the seawater

transgression period, littoral neritic sediment facies developed and

retrograded to delta/tidal flat-fluvial sediments. The contribution of

fluvial sediments from the Yu River decreased, while sediments

from the Yellow River increased. Conversely, during the seawater

regression period, there was an increase in terrigenous input,

resulting in the development of fluvial facies and delta

progradation (Gao et al., 2018).
2.4 Sediment and porewater sampling
and analysis

In this study, we collected a total of 319 sediment samples

from the study area to analyze their particle sizes. The samples

were collected at intervals of 1-2 cm. We used a MASTERSIZER-

2000 laser particle size meter to determine the sediment particle

sizes (Appendix 1). To remove organic matter from the sediment

samples, we first mixed them evenly and then mixed 1g of

sediment with 10-15 ml of 30% hydrogen peroxide (H2O2) at

room temperature. We added 5-10 ml of 10% hydrochloric acid

(HCl) to remove calcium carbonate. The sediment samples were

then mixed with distilled water and stored for 24 hours before

being centrifuged. In addition, we collected 70 porewater samples

from the WF80 borehole to analyze their hydrochemical

characteristics. The porewater samples were collected at

intervals of 50 cm. We used ion chromatography (ICS-3000,

American DIONEX) to determine the concentrations of major

anions (Cl-, Br-, and SO4
2-) and inductively coupled plasma-

atomic emission spectrometer (ICP-MS, American Thermo

Fisher) to determine the concentrations of major cations (Ca2+,

Na+, and Mg2+) (Table 1). Before analyzing the cation

concentrations, we acidified the collected porewater samples to a

pH of approximately 2 using a nitric acid (HNO3) solution. The

charge balance errors of the porewater samples were less than 8%.

In this study, we used an LGR liquid water isotope laser mass

spectrometry at Nanjing Hydraulic Research Institute to analyze the

stable isotopic compositions (18O and 2H). The d18O and d2H
values were calculated using Equations (1) and based on the Vienna

Standard Mean Ocean Water (VSMOW). The analytical precision

values for the long-term standard measurement of d18O and d2H
were ±0.2‰ and ±0.6‰, respectively (Table 1).
Frontiers in Marine Science 05
d18O(d2H) =
RSample − RVSMOW

RVSMOW
� 1000‰   (1)

In formula (1), d18O and d2H represent the ratios of oxygen

(18O/16O) and hydrogen (2H/1H) isotopes, respectively. Rsample

represents the ratio of 18O or 2H in the porewater samples, while

RVSMOW represents the ratio of 18O or 2H in the VSMOW.
3 Results

3.1 Sedimentary characteristics and division
of sedimentary units

In this study, we conducted sedimentary unit (SU) and

sedimentary facies analyses of the Lz908 borehole using

optically stimulated luminescence (OSL) and K-feldspar/

polymineralplRIR290 age (Unpublished data from Yan Li, China

University of Geosciences) (Figure 3). The division of sedimentary

units was based on the lithology, color, particle size, shell contents,

porewater content, and other characteristics of the WF80 borehole

sediment samples. The WF80 borehole can be classified into

four SUs:

Sedimentary unit A (SUA) (5.3-12.8m): The OSL dating value

at 12.8m from the bottom was 12.66 ± 1.05 ka B.P, indicating that

Layer A is a marine sedimentary layer formed during the Holocene

seawater transgression.

Sedimentary unit B (SUB) (12.8-16.45m): It is important to note

that no pore water was observed in the SUB layer. The OSL dating

value at 14.8m was older than 48.52 ka B.P, suggesting that SUB is a

continental confining bed formed during the late Pleistocene.

Sedimentary unit C (SUC) (16.45-30.8m): In this layer, the

average particle size showed significant variation below 27m, with a

lack of sand particles. The K-feldspar dating value at 17.6m of the

borehole was 91.5 ± 7.7 ka B.P. Additionally, there were three peaks

of foraminifera counts in this layer. Based on the relationship

between global sea-level changes and foraminifera counts

(Figure 4), it can be concluded that SUC is a marine sedimentary

layer formed during the late Pleistocene seawater transgression

(Liang et al., 2012; Yi et al., 2012a).

Sedimentary unit D (SUD) (30.8-36.6m) had a wide range of

particle sizes, but was notably lacking in sand particles. This

suggests that SUD is a fluvial sedimentary layer that formed

during the middle Pleistocene.

To summarize, the formation of SUA and SUC can be

attributed to a period of high sea levels with abundant brine,

while SUB and SUD were formed during a period of low sea levels.
3.2 Hydrochemical characteristics of
the porewater

The porewater samples from SUA, SUC, and SUD showed

different average ion concentrations but had similar orders

(Figure 5). The main cation and anion concentrations followed

the order of Na+ > Mg2+ > Ca2+ and Cl- > SO4
2- > Br-, respectively.

Na+ and Cl- accounted for more than 75% of the milligram
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equivalent percentages, while HCO3
- concentrations were

negligible. The hydrochemical characteristics of the porewater in

SUA, SUC, and SUD were consistent with local seawater, indicating

a Na-Cl facies type according to the Shukarev classification method.

These characteristics differed significantly from those observed

in the southern brine water area with high total dissolved solids

(TDS>50g/L)(Zhang, 1993; Zhang and Peng, 1998; Leng et al., 2009;

Gao et al., 2015; Yang, 2016). However, the hydrochemical

characteristics of the porewater in SUA, SUC, and SUD were

relatively similar to those of the local coastal seawater. The
Frontiers in Marine Science 06
porewater in SUA had higher average Na+, Mg2+, Cl-, SO4
2-, and

Br- concentrations compared to SUC and SUD, while the average

Ca2+ concentration in SUA was lower. The concentrations of Na+,

Mg2+, Cl-, SO4
2-, and Br- in SUA showed significant changes with

depth compared to SUC and SUD. These concentrations were

general ly higher than those in seawater , while Ca2+

concentrations were generally lower. The hydrochemical

characteristics of the porewater in SUC showed slight changes

and were relatively similar to seawater. In SUD, the

concentrations of hydrochemical parameters gradually decreased
TABLE 1 Results of chemical analyses and stable isotopes of water samples.

Depth
(m)

CI-
(mg/L)

Br-
(mg/L)

SO4
2-

(mg/L)
Na+

(mg/L)
Mg2+

(mg/L)
Ca2+

(mg/L)
d D
(‰)

d18O
(‰)

5.5 15356.1 46.1 2327.6 6166.5 906.3 318.3 -21.0 -3.6

5.8 17588.6 51.1 2122.7 6877.5 1031.0 314.0 -19.4 -3.1

6.4 18186.4 52.4 2484.7 6778.5 1043.9 297.0 -19.6 -3.1

7.6 17174.7 50.5 2455.1 6738.0 1011.2 366.8 -17.1 -2.6

8.3 17232.0 48.0 2715.8 6388.5 966.2 369.8 -10.9 -2.0

8.7 17871.6 50.5 2218.8 6567.0 962.0 381.2 -13.3 -1.7

9.5 17020.7 43.8 2167.1 6093.0 881.6 349.4 -14.0 -1.8

9.8 17304.9 47.7 2225.7 6183.0 936.6 367.8 -15.6 -2.4

10.4 17366.8 48.6 2197.8 6388.5 921.3 365.0 -15.6 -2.9

10.7 17002.2 43.4 2180.7 6402.0 927.6 379.8 -13.7 -2.3

11.6 14556.3 40.7 1908.9 5590.5 760.8 317.7 -17.9 -2.7

12.4 14920.5 44.9 1942.2 6090.0 906.3 375.2 -12.8 -2.6

16.7 16020.6 46.9 2116.1 6138.0 837.8 431.4 -16.7 -2.2

17.8 15287.0 50.2 2095.3 6078.0 842.7 398.1 -18.0 -3.0

19.1 15582.8 50.8 2008.3 6139.5 853.8 393.0 -20.3 -3.5

19.8 14969.3 44.4 2935.7 6102.0 849.3 396.8 -17.0 -3.2

21.8 15373.1 46.8 1841.2 6078.0 855.3 374.6 -16.5 -2.7

22.1 16022.1 46.8 2097.2 5806.5 798.2 410.6 -16.1 -2.8

23.8 15433.6 48.2 2044.7 6381.0 903.8 420.6 -16.3 -2.5

24.5 15162.2 45.8 2033.9 6060.0 840.5 433.2 -17.7 -2.8

24.8 14318.5 46.4 1996.3 5985.0 831.0 423.3 -17.0 -2.8

28.3 15492.3 49.6 2137.4 5593.5 790.2 414.0 -10.3 -3.0

29.9 15242.8 48.9 2100.0 5992.5 847.5 433.5 -20.4 -3.3

30.1 16056.8 46.9 2903.8 5787.0 810.3 452.1 -19.0 -3.1

33.7 15164.0 45.6 2074.7 5805.0 805.5 400.1 -20.3 -3.1

34.3 15351.6 42.6 2110.3 5944.5 826.7 403.2 -19.7 -3.2

35.7 13242.5 40.5 1944.2 5574.0 734.4 377.1 -26.4 -4.0

36.3 12675.1 40.3 2121.1 5203.5 696.0 343.1 -27.2 -4.0

36.6 13641.0 40.6 2088.0 5218.5 714.9 345.8 -27.7 -4.3
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with depth near the water-resisting layer. The porewater in SUA

and SUC had similar characteristics to seawater due to the presence

of a potential high-salinity brine layer. However, the water-resisting

layer in the 12-16 m sediment layer caused slightly different ion

distributions in the porewater of SUA and SUC. This could be

attributed to the interaction between evaporation, seawater, and

aerosol deposition in the southern salt-pan area. The concentrations

of Na+, Mg2+, Cl-, SO4
2-, and Br- in the porewater of SUA might

increase near the surface due to rainwater infiltration and storm

surges, while the Ca2+ concentration decreased due to the formation

of gypsum through the bonding of Ca2+ and SO4
2-. The

concentrations of hydrochemical parameters in SUD were lower

than those in SUA and SUC.
Frontiers in Marine Science 07
3.3 Isotopic characteristics of porewater

In this study, we analyzed the d18O and dD values of porewater

samples to investigate the sources of porewater in the study area.

The d18O and dD stable isotopes can be used to identify the sources

and mixing history of water molecules in different waters, based on

the global meteoric water line (GMWL) equation (dD=8d18O + 10)

(Chen et al., 2021). The local meteoric water line (LMWL) equation

for Laizhou Bay was determined as dD=7.4d18O+1.1, using the

isotopic compositions of monthly precipitation recorded at the

Changyi weather station in 2006. The average annual d18O and

dD values of infiltrated rainwater in Laizhou Plain were -7.7 and

-52.2‰, respectively. In the southern mountains of Shouguang, the
A B D EC

FIGURE 3

Stratigraphic columns and OSL age of Lz908 borehole (A); Stratigraphic columns (excluding backfill soil) and OSL/K-feldspar ages of WF80 borehole
(B); Foraminiferal counts in WF80 borehole (C); Sediment grain size in WF80 borehole (D); Average grain sizes of sediments in WF80 borehole (E).
FIGURE 4

Foraminifera counts versus global sea level changes (Siddall et al., 2003). The blue dashed box corresponds to Marine Isotope Stage (MIS) 5 (A, C)
and (E).
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average annual d18O and dD values of infiltrated rainwater were -8.3

and -59.3‰, respectively (Yang et al., 2016).

Based on Figure 6, the dD and d18O values of SUA ranged from

-21.0 to -10.9‰ and -3.6‰ to -1.7‰, respectively. The dD and

d18O values of SUC ranged from -20.4 to -10.3‰ and -3.5 to -2.2‰,

respectively. For the five continuous data points of SUD, the dD and

d18O values ranged from -27.7 to -22.6‰ and -4.3 to -3.8‰,

respectively. Most of the stable isotope values of porewater

samples from SUA and SUC were plotted between the GMWL

and LMWL, with only a few values plotted below the LMWL. The

lines representing the dD and d18O values of SUA and SUC were

similar and can be expressed by the equation: dD = 5.2d18O-3.5.
These lines intersect with the GMWL and LMWL, while the

extension line passes through the stable isotope data points of

local seawater.
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4 Discussion

4.1 Groundwater dynamics

The ions profile (Figure 5) suggests that the sedimentation funnel

caused by subsurface brine mining activities in the southern part of

Laizhou Bay (Liu, 2018) may have influenced the groundwater

dynamics. This resulted in a hydraulic gradient close to 0 in the

horizontal direction on both sides of SUC, leading to a dynamic

equilibrium with seawater. The horizontal direction of water flow is

generally stable. However, brine mining reduced the porewater

pressure in SUC, causing freshwater from the lower fluvial facies to

flow through different sediment layers. This dilution process resulted in

lower ion concentrations in the bottom SUD layers compared to the

average ion concentrations of the SUC porewater.
FIGURE 5

Vertical distributions of Na+, Mg2+, Ca2+, Cl-, Br-, and SO4
2- concentrations in porewater of WF80 borehole. Black dashed lines represent average

concentration values of local seawater.
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4.2 Salt sources in the porewater

Groundwater can acquire salt from various sources, including

seawater intrusion, mobilization of salt from groundwater formation,

and dissolution of evaporites in marine deposits (Zhou and Li, 1995;

Han et al., 2011). The Cl/Br ratio can be used to identify the sources of

groundwater salinity, especially when the total dissolved solids (TDS)

content is high (above 2-3 g/L) (Cartwright et al., 2006; Du et al., 2015).

In our study, the TDS content in the porewater samples from the

WF80 borehole was significantly higher than 2-3 g/L, indicating the

effectiveness of the Cl/Br method in determining the sources of

porewater salinity.

The concentrations of Cl- and Br- in the world’s oceans are

relatively constant, with an average Cl/Br molar ratio of

approximately 655 (Cl- = 550 mmol/L and Br- = 0.84 mmol/L)

(Siemann, 2003). However, the concentrations of Cl- and Br- can vary

in marginal seas due to factors such as terrigenous inputs and brine

chemical wastewater discharge. In our study, the Cl/Br molar ratio of

the local seawater was approximately 710 (Cl- = 417.18 mmol/L and

Br- = 0.59 mmol/L), which is higher than the average value of

the ocean.

The Cl/Br ratio values of the porewater samples from SUA, SUC,

and SUDwere similar to that of the local seawater and lower than those

found in dissolved evaporated salt and diluted brine (Figure 7).

Notably, there were significant differences between the variations in

Cl/Br ratio and Cl- concentrations in SUA and SUC. The Cl/Br ratios in

SUA ranged from 748.8 to 883.2, with an average of 801.3, which was

higher than that of the local seawater. These data points were mainly

associated with high Cl- concentrations. The average Cl/Br ratios in
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SUC and SUD were lower than that of SUA, ranging from 686.8 to

771.7 and 708.7 to 812.4, respectively. However, it is important to

mention that six points in SUC had lower Cl/Br ratios than the average

Cl/Br ratio of the local seawater, indicating lower Cl concentrations

ranging from 14318.5-15582.8 mg/L.

The observed Cl/Br ratios suggest that marine salt is the primary

source of salinity in the porewaters of SUA, SUC, and SUD. High Cl/

Br ratios may be attributed to halite dissolution, while low values may

indicate brine dilution. However, it is challenging to determine

whether the porewater was diluted by seawater. Overall, SUA

exhibited high Cl- concentrations and Cl/Br ratio values, with

substantial variations in Cl- concentrations at different depths. This

suggests that the porewater in SUA is influenced by evaporation,

precipitation, dissolution, and infiltration processes of salts in the

southern salt pans. These salts may be transported from the southern

salt pans by the south wind. On the other hand, the observed Cl/Br

ratio values in SUC were lower than the average seawater value,

indicating the presence of small amounts of brine in this layer.
4.3 Porewater sources

The dD and d18O values of SUA and SUC were significantly

different from the average annual stable isotope values of rainwater in

the Laizhou Plain and southern mountain areas (Figure 6). SUC data

points were concentrated between the Global Meteoric Water Line

(GMWL) and Local Meteoric Water Line (LMWL), while the five data

points of SUD were notably different from those of SUC, with negative

dD and d18O values. These observations suggest that the porewaters of
FIGURE 6

Relationships between dD and d18O values of porewater samples. Red dashed line represents fitted least squares regression of groundwater stable
isotope values in study area (dD = 5.2d18O - 3.5).
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SUA and SUC mainly originated from local seawater, showing a slight

correlation with the rainwater in the Laizhou Plain and southern

mountain areas. Compared to SUC, the porewater samples from SUA

had dD and d18O values closer to local seawater. Additionally, SUC

exhibited greater stability and lower water exchange capacity, as

indicated by the more concentrated dD and d18O values in Figure 6.

The porewater samples of SUD were more influenced by the water-

bearing layers below the water-resisting layers, and they were mixed

with water characterized by ion concentrations much lower than that

of seawater in the water-bearing layers below the water-resisting layers

(Figures 5, 6).

In summary, as mentioned in Sections 4.2 and 4.3, marine salt

was identified as the primary source of salt in the porewater of the

WF80 borehole. The porewater mainly originated from local

seawater, as indicated by the relatively consistent Na+, Mg2+, Ca2

+, Cl-, SO4
2-, and Br- concentrations with those in local seawater.

Therefore, the saline water occupying the original brine layer is

likely derived from seawater through modern seawater intrusion.
4.4 Porewater mixing in groundwater
salinization process

The stable properties of d18O and Cl- have been studied by Kelln

et al. (2001) and Nefzaoui et al. (2023). The d18O values of

groundwater are closely related to the mixing of water sources.

Therefore, the deviation of observed d18O and Cl- values from the

mixing lines can be used to identify the main sources of water

mixing (Chen et al., 2021). In the Yu River delta, there are four

water resources that affect groundwater: seawater, rainwater, Yu

River water, and brine. This study investigates the relationship

between d18O values and Cl- concentrations to assess porewater

mixing in the WF80 borehole (Figure 8).
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The results show that the d18O values of SUA, SUC, and SUD

increase with increasing Cl- concentrations in the porewater. These

values fall between the mixing line of local seawater with rainwater

and that of brine with rainwater. The observed values are closer to

the mixing line of seawater with rainwater. The data points are

classified into three regions. The data points of SUA are close to the

values of local seawater, exhibiting high d18O values and Cl-

concentrations. The data points of SUC are plotted in the middle,

parallel to the data points of SUA, with lower d18O values and Cl-

concentrations. The data points of SUD are located in the lower

part, deviating from seawater values, and exhibiting the lowest d18O
values and Cl- concentrations. These findings support the previous

results, suggesting that SUA and SUC represent brine layers, while

SUD experienced infiltration of upper brine. Although the brine

was displaced by seawater, a small amount of residual brine mixed

with the intruded seawater. The porewaters of SUA and SUC have

the same source, with SUA being more affected by salt dissolution

and infiltration from salt pans carried by the south wind. In

contrast, the porewater of SUC is relatively stable, while that of

SUD is more influenced by water inputs from the lower layer,

characterized by low salinity.
5 Conclusions

The study shows that fluctuations in paleo sea levels are crucial

in determining the distribution of underground water sources in

coastal areas. Groundwater exploitation and seawater intrusion

have a significant impact on the process of groundwater

salinization at different depths in regions with original brine

layers. The depth at which salt is leached from atmospheric

precipitation is limited. The extraction of groundwater and the

intrusion of seawater have greatly altered the original state of
FIGURE 7

Relationship between Cl/Br ratio values (molar ratios) and Cl- concentrations in porewater.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1302064
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cui et al. 10.3389/fmars.2023.1302064
the groundwater. Most of the brine layer has been replaced

by modern seawater, but a small portion remains mixed

with seawater. Groundwater extraction changes the flow of

groundwater and reduces the pressure of water in the

underground sources. The intrusion of seawater and the recharge

of other stratified water bodies have caused fundamental changes

in the chemical and isotopic properties of the groundwater. This

mechanism of salinization may also be applicable to similar

areas worldwide.
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