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Introduction: During the processes of formation and maturation of farmed

salmonids, bone deformities could be associated with changes in the

mineralization levels of the axial skeleton and the bone-signaling pathways.

Therefore, we aimed to evaluate the gene expression during bone formation and

regeneration and their relationship with mineralization in rainbow trout with

mandibular deformation.

Methods: We included five normal fish and five specimens with mandibular

deformation in smolt rainbow trout weighing 400 g and measuring 25 to 35 cm in

length. We assessed 1. serummetabolites, 2. microstructure and mandibular bone

mineralization and, 3. gene expression of bone signaling pathways. These analyses

were done to determine the main causes and/or mechanisms of deformity.

Results and discussion: Our results show a marked elevation of bone

morphogenetic protein 2 (Bmp2). Also, we found a distinct expression pattern

for transcriptional factors, observing diminished RUNX family transcription factor

2 (Runx-2) expression coupled with a simultaneous elevation of osterix (Osx)

levels. We also observed decreased osteocalcin and alkaline phosphatase levels

related to mineral content loss and an increase in collagen type I as a

compensatory structural response. In conclusion, rainbow trout deformation

was characterized by demineralization, increased porosity without destruction of

the organic matrix, and a moderate decrease in bone mineral content.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1301449/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1301449/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1301449/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1301449/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1301449/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1301449&domain=pdf&date_stamp=2023-11-24
mailto:luis.salazar@ufrontera.cl
https://doi.org/10.3389/fmars.2023.1301449
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1301449
https://www.frontiersin.org/journals/marine-science


Godoy et al. 10.3389/fmars.2023.1301449
1 Introduction

Bone deformation is a multifactorial pathology of fish mainly

associated with environmental, nutritional, and genetic factors

(Iaria et al., 2021). More importantly, its incidence is considered a

quality index (Boglione et al., 2013; Le Luyer et al., 2015; Lall and

Kaushik, 2021). Environmental and nutritional factors related to

management conditions, physicochemical characteristics, fish

density, nutrients, and microelement composition within the diet

(Boglione et al., 2013). At the same time, genetic factors such as the

aberrant expression of genes participating in processes like bone

tissue formation, remodeling, and repair can also affect different and

relevant pathways (Krossøy et al., 2009; Boglione et al., 2013).

Many genes have been implicated in different stages of skeleton

formation in salmonids, constituting a complex of highly regulated

signaling pathways represented by families such as bone

morphogenetic proteins (Bmps), waterproof (Wat), and neurogenic

locus notch homolog protein (Notch) proteins (Day et al., 2005; Lin

and Hankenson, 2011; Zhao et al., 2019). During osteogenesis, the

expression of sonic hedgehog (Shh) genes involved in axial bone

growth, the spine, and fins (Olivares and Rojas, 2013) and

homeobox (Hox) genes related to skull and tooth growth regulate

the activation of these signaling pathways (Theslelf, 1995; Liu et al.,

2004; Lin and Hankenson, 2011).

BMPs represent one of the best-described pathways, with more

than 30 isoforms reported. Bone morphogenetic protein 2 (BMP2),

bonemorphogenetic protein 4 (BMP4), bonemorphogenetic protein5

(BMP5), bonemorphogenetic protein 6 (BMP6), bonemorphogenetic

protein 7 (BMP7), bone morphogenetic protein 8 (BMP8), bone

morphogenetic protein 9 (BMP9), bone morphogenetic protein 11

(BMP11), bone morphogenetic protein 12 (BMP12), bone

morphogenetic protein 13 (BMP13), and bone morphogenetic

protein 14 (BMP14) have osteogenic activity (Dumic-Cule et al.,

2018). However, one of the critical BMP markers corresponds to

Bmp2/BMP2 since it allows bone regeneration by activating the

expression of transcription factors such as SRY-box transcription

factor 9 (Sox9), RUNX family transcription factor 2 (Runx2), and

Osterix (Osx), leading tobone formationanddevelopment (Ducy et al.,

1997; Kirkham and Cartmell, 2007; Matsubara et al., 2008; Lin and

Hankenson, 2011).

Runx-2 has been a transcription factor considered an exclusive

marker ofmineralized tissues, playing a central role during osteogenesis

(Kirkham and Cartmell, 2007). Its activation directly stimulates the

transcription of genes such as osteocalcin, osteopontin, collagen I,

collagenase 3 (matrix metalloproteinase 1), sialoprotein, and alkaline

phosphatase (ALP), all related to extracellular matrix formation (Ducy

et al., 1997; Franceschi andXiao, 2003; KirkhamandCartmell, 2007; Lin

and Hankenson, 2011). Osterix, also known as transcription factor Sp7,

is another transcription factor essential for osteoblast differentiation and

bone construction (Nakashima et al., 2002; Kirkham and Cartmell,

2007). Its activation has been related to the formation, development, and

maturation of bone tissue during embryogenesis, the formation of new

bone and osteoblast differentiation (Komori et al., 1997; Nakashima
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et al., 2002; Kirkham and Cartmell, 2007; Matsubara et al., 2008; Zhou

et al., 2010; Sinha and Xin Zhou, 2013).

Among the proteins involved in bone matrix formation, the

most relevant are osteocalcin (OCN), collagen type I (COL-I), and

alkaline phosphatase (ALP). Osteocalcin is a protein secreted by

osteoblasts as part of the extracellular matrix and is the most

abundant of the non-collagenous proteins (Koga et al., 2005;

Fernández-Tresguerres et al., 2006; Perez-Amodio et al.; 2006;

Hayman, 2008). Collagen type I is an extracellular matrix protein

in bone tissue and represents the most important and abundant of

the collagen proteins found in bone (Matsubara et al., 2008;

Gistelinck et al., 2016). The expression of Col-I has been

considered an early marker of osteoblast activity and plays a

crucial role in osteoblast differentiation (Matsubara et al., 2008).

According to research, rainbow trout have a subunit composition of

1 (I), 2 (I), and 3 (I), with 3 (I) being specific for bone (Saito et al.,

1998; Saito et al., 2001).

Alkaline phosphatase, due to its wide distribution in the body and

the many isoenzymes it presents in the blood, saliva, liver, and kidney,

represents an excellent early clinical marker for multiple pathologies in

fish (Congleton andWagner, 2006; Matsubara et al., 2008). Osteoblasts

produce the bone ALP fraction, a feature of phenotypic differentiation,

proliferation, and migration (Matsubara et al., 2008). Plasma levels of

ALP represent a marker of osteoblastic activity (Delmas et al., 2000;

Kuo and Chen, 2017). Moreover, there was a direct relationship

between the presence of ALP and the correct mineralization of bone

tissue in vertebrates (Delmas et al., 2000; Fernández-Tresguerres et al.,

2006; Kuo and Chen, 2017). Another phosphatase fraction in bone

tissue is an acid phosphatase, a marker of tartrate-resistant acid

phosphatase (TRAP) activity (Fernández-Tresguerres et al., 2006;

Perez-Amodio et al., 2006; Hayman, 2008). Finally, calcium and

phosphorus in both bone and plasma represent systemic regulation

of bone formation and remodeling, as these minerals are bioavailability

indicators (Beck et al., 2000; Sugiura et al., 2003; Pombinho et al., 2004).

Therefore, we aimed to evaluate the changes in the expression of genes

involved in formation and regeneration and their relationship with

bone mineralization in rainbow trout with mandibular deformation.
2 Materials and methods

2.1 Sampling and bone tissue collection

In the salmon farming industry in Chile, three different species of

salmonids are farmed, mainly Salmo salar, followed by Salmon coho

(Oncorhynchus kisutch) and, to a lesser extent, rainbow trout. The

production model is subdivided into two parts: fresh water and sea.

Currently, fresh water is delivered through open flow centers (rivers,

springs,wells), aswell as in recirculation systems; however, in the sea, it

is only done through a culture cage module in a completely open flow

system. The cultivation of the specimens is under strict inspection

control for SERNAPESCA aquaculture, with different standards and

active surveillance programs: Exempt Resolution N° 1.577/2011
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(Ministerio de Economı́ a, Fomento y Turismo et al., 2023b), Exempt

ResolutionN°228/2013 (Ministerio deEconomı́ a, FomentoyTurismo

et al., 2023a) and Exempt Resolution N° 3610/2019 (Ministerio de

Economı́ a, Fomento y Turismo et al., 2023c).

We selected and collected specimens of juvenile (smolt)

freshwater rainbow trout of 25 to 35 cm in size, weigh <400 g,

from pre-cordillera fish farming in the La Araucanıá region (Chile).

The fish were farmed under general standards (water temperature

of 12°C, dissolved oxygen of 8.5 ppm, carbon dioxide <7 ppm, pH

6.5 to 8.5, and antibiotic concentration of 0.002–6.0 mg/L). The
capture of farmed fish was realized by authorized fish farming

personnel. The ten specimens were then divided into two groups:

five clinically normal control specimens with no deformation

(Group 1), and five specimens with jaw deformities (Group 2).

Both groups were anesthetized to obtain blood samples with

benzocaine 20% (Veterquimica S.A., Chile) at 30–40 ppm.

Subsequently, they were euthanized by overexposure to the

anesthetic for more than 10 minutes. Blood samples and specimens

were stored at 0°C in a container with ice during 4 h (Supplementary

Figure 1). The Scientific Ethics Committee of the Universidad de La

Frontera has approved the experimental protocol (N°061_20).
2.2 Sample processing

Blood samples were centrifuged at 1500 rpm, and the serum was

separated from the cellular component and stored at -20°C until

further analysis. The euthanized specimens were decapitated. Blood

samples were obtained and immediately frozen in cryotubes at

-80°C until analysis. For microstructure analysis, the samples were

dissected to remove the skin, muscle, connective tissue, and other

organic components by treating them with deionized water at 60–

70°C for about 20 min to facilitate the removal of tissue, leaving the

inorganic component to interfere free without altering the structure.

Then, were fixed with glutaraldehyde 1.5% in 0.1 mol of cacodylate

buffer pH 7.4. The samples were analyzed by Scanning Electron

Microscopy - Energy Dispersive X-ray spectroscopy detector (SEM-

EDX) and subsequently reduced to a fine powder by pulverization

with a thermogravimetric analysis and differential scanning

calorimetry (TGA-DSC) and porosity analyses. For gene

expression, the jaw was dissected to remove the skin, muscle,

connective tissue, and other organic components, which were

immediately frozen in cryotubes at -80°C until analysis.
2.3 Quantification of serum metabolites

Serum samples were thawed at room temperature. Total

proteins, albumin, globulins, glucose, phosphatase activity, and

microelements (calcium, phosphorus, iron, and magnesium) were

quantified in a multimodal Synergy HT reader (BIOTEK,Winooski,

VT, USA) following the manufacturer’s protocol (Human

Diagnostics, Wiesbaden, Germany).
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2.4 Microstructure and mandibular
bone mineralization

2.4.1 Microstructure and microelemental
analysis by scanning electron microscopy
coupled with EDX

The fixed mandibular bone samples were washed with distilled

and deionized water three times and dried in an oven at 25°C for 24

hours. The dried sample was adhered to the sample holder with

double-sided carbon tape. The quantification element was coupled

to the X-ray energy dispersive spectroscopy detector (EDX), and

three quantification points were chosen for each region of interest

(ROI), as has been described previously by Godoy et al. (2022). The

acquisition was performed under the following parameters: an

applied energy of 15 KV, a pressure of 20 Pa, and a WD of

10 mm, using a scanning electron microscope (HITACHI

SU3500, Tokyo-Japan) coupled to an XFlash ® Detector 410 and

a Quantax ESPRIT 1.8.1 software controller (Bruker, Germany).
2.4.2 Superficial area and porosity analysis
in mandibular bone

The powder samples were dried in an oven at 40°C for 48 hours.

Approximately 100 mg of the samples (pooled samples) were

degasified for 16 hours at 160°C and subjected to a surface area

and pore size gas sorption analyzer in mandibular bone (NovaWin-

Quantachrome, Boynton Beach, Florida, USA). Data acquisition

was realized using NOVA instruments (version 11.03,

Florida, USA).
2.4.3 Thermogravimetric analysis and differential
scanning calorimetry in mandibular bone

Approximately 20 mg of samples (bone powder, pooled

samples) were subjected to two thermogravimetric analyses: first,

from 25°C to 850°C (10°C per minute rate) to evaluate bone sample

stability in the air atmosphere by monitoring weight loss, and

second, differential thermal behavior (DSC) from 25°C to 850°C

(50°C per minute rate) (Thermogravimetric Analysis TGA/DSC

STA 6000, Perkin Elmer, Waltham, MA, USA).
2.4.4 Crystallographic analysis by X- Ray
diffraction in mandibular bone

Approximately 500 mg of bone powder samples (pooled

samples) were subjected to analysis. In a diffractometer equipped

with a monochromatic copper anode radiation detector SSD160 1D

(CuKa, l = 1.5406 Å), the phases of HPA in mandibular bone were

investigated. The diffractograms were obtained in a 20-degree range

(5° and 80°), with a step size of 0.061° (total steps of 1236) and a

total step time of 0.5 s over a 60-minute period. The sample was

analyzed with a diffractometer (2D PHAZER, Bruker, Munich,

Germany). Data acquisition was realized using DIFFRAC.SUITE

software (Bruker, Munich, Germany).
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2.4.5 Functional groups by infrared spectroscopy
(FT-IR) in mandibular bone

Approximately 5 mg of bone powder (pooled samples) was

mixed with 50 mg potassium bromide powder (KBr-Merck), finely

ground manually with an agate mortar, and pressed into 13 mm

discs with a manual press. Disc samples (20 mg) were inserted into

the system sample chamber for analysis. The characterization of

functional groups was analyzed in the mid-infrared from 4000 to

400 cm-1 with an FT-IR spectrometer (TENSOR 27, Bruker,

Munich, Germany) equipped with a DLATG detector. Data

collection and analysis were realized using spectroscopy software

(OPUSTM, Bruker, Munich, Germany).
2.5 Bone gene expression

2.5.1 RNA extraction and purification
The samples were ground with liquid nitrogen. Total RNA was

extracted using TRIzol™ Plus RNA Purification Kit according to

the manufacturer’s instructions (ThermoFisher Scientific, USA),

and homogenized with zirconium beads in a FastPrep-24™ tube

(MP Biomedicals, USA) at 6.5 m/s for 1 minute. DNase treatment

eliminated genomic DNA from the samples (ThermoFisher

Scientific, USA). The RNA sample extract was transferred and

purified on a column according to the manufacturer’s instructions

(PureLink™ Kit, ThermoFisher Scientific, USA). The fluorimeter

(Quit 4 Fluorimeter, ThermoFisher Scientific, USA) was used to

assess RNA quality (Supplementary Table 1), and the Multimode

Reader (Synergy H1 Hybrid Reader, Take3, Biotek, USA) was used

to assess RNA integrity. The RNA was then stored at -80°C before

further processing.

2.5.2 Synthesis of cDNA
Purified RNA was incubated with the RT-reaction mix (10 mM

dNTPs, 50 ng/µL random hexameters, DECP-treated water) to a

10-µL final volume reaction and set at 65°C for 5 minutes, then

cooled quickly on the ice. Subsequently, 2 µL of total RNA were

incubated for cDNA synthesis with 9 µL of reaction mix (10X RT

buffer, 25 nM MgCl2, 0.1 DTT, and RNase Out 40 U/µL), mixed,

and incubated at room temperature for 2 minutes, and then one µL

of the mixture was added to each sample (SuperScript II Reverse
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Transcriptase™, ThermoFisher Scientific, USA). cDNA synthesis

was performed in 40 cycles under the following conditions: 10

minutes at room temperature, followed by 50 minutes at 42°C. The

reaction was finished at 70°C for 15 minutes, quickly cooled on ice,

and 1 µL of RNase H was added to each tube (ThermoFisher

Scientific, USA) for incubation at 37°C for 20 minutes (StepONe

Plus, Applied Biosystems, Waltham, Massachusetts, USA). The

obtained cDNA was stored at -20°C until qPCR analysis.

2.5.3 Fragment amplification by qPCR
The PCR reactions were run in triplicate on strips with the

StepOne Plus equipment (Applied Biosystems, Waltham,

Massachusetts, USA) using Evagreen 5X Hot Firepol qPCR

according to the protocols (Solis BioDyne, Tartu, Estonia). qPCR

was achieved with a 12-minute denaturation phase at 95°C,

followed by 40 cycles of 15 s at 95°C and 60 s at 60°C. A melting

curve analysis of each qPCR was carried out after each cycle. The

following genes were evaluated: 1) transcription factors Runx2 and

Osx), 2) osteogenic factors Bmp2 and Bmp4, and 3) bone matrix

genes Alp, Col-I and Ocn (Table 1, Designed by Larama SPA

Informatics, Chile, Syntethized by Macrogen, Seoul, Republic of

Korea). The data were normalized according to the mRNA

expression levels of housekeeping genes, such as Ef1a (Table 1).

The number of times the reporter dye in the PCR reaction crossed a

software-defined threshold, which was computed automatically by

the StepOnePlus™ Software, is referred to as the ‘Ct’, or threshold

cycle (version 2.3, Applied Biosystems, Waltham, MA, USA). The

relative expression level of each RNA was estimated using the

comparative threshold cycle (Ct) technique (2−DDCt method) by

averaging the Ct values from three replicates. We utilized the

threshold cycle values automatically generated by the qPCR

equipment for the 2−DDCt technique. The 2−DDCt comparative

approach was used to estimate relative gene expression, as has

been previously described (Sandoval et al., 2022).
2.6 Statistical analysis

Data normality was analyzed using the D’Agostino-Pearson test

for descriptive statistics. The differences between groups were

analyzed with the Mann-Whitney U test. The value of p <0.05
TABLE 1 Primers for RT-qPCR.

Gene Accession number Forward primer Reverse primer Amplicon-Length

Runx2 XM_021613996.1 AAGTTGTGGCATTGGGAGAG TGCTACTTGAGGAGGGTTGG 212 bp

Ostx XM_021570138.1 CAGAGGAGGAGGAGAGAGCA GACATGGAGGTCTGGAAGGA 153 bp

Bmp2 XM_021612508.1 CTGCACAGGGACAAGAGACA GTTGGTGGAGTTGAGGTGGT 207 bp

Bmp4 XM_021585091.1 ACTCTACCAACCACGCCATC CACCCTTCCACAACCATTTC 106 bp

Alp3 XM_021587006.1 ATGGGCATTACCACCATCAC GACCGTGTTCAGGTTGGTCT 201 bp

Col-1 NM_001124177.1 TGCTAATGGAGCCAAAGGAG TCCATCAGAACCAGGGAAAC 190 bp

Ocn XM_021567820.1 CCGCATACTATGGACCACCT ACTTGTGGCTGGTCTTGCTC 205 bp

Ef1a XM_021580472.1 CCACTGGCCACCTGATCTAC CCTGCTGGTCTCAAACTTCC 185 bp
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was considered statistically significant (GraphPad Software, version

9.0, San Diego, CA, USA).
3 Results

3.1 Blood metabolites and microelements

The values of metabolites and microelements for controls were

within the parameters previously observed. Protein, albumin, and

globulin content decreased significantly in deformed fish compared

with controls. However, phosphatase activity increased in both

deformed and normal fish, especially the value of alkaline

phosphatase (Table 2).

Although, calcium and magnesium (Mg) seem to show similar

levels, significant differences were found between groups (p<0.001).

In addition, increased phosphorus (p<0.001) and decreased iron

(p<0.001) levels in control and deformed fish were found,

respectively (Table 3).
3.2 Microstructure and mandibular
bone mineralization

In the micro-structural analysis of a normal fish’s mandibular

bone, regular bone porosity characteristics were observed

(Figure 1A). However, the mandibular bone of deformed fish

presents many microstructure defects, including increased

fractures, porosity, and hypermineralization zones (Figures 1B–D).

The elemental analysis differed in the percentage of elements.

We found higher carbon (C), oxygen (O), calcium (Ca) and

phosphorous (P) mass percent (%) values in mandibular bones

from normal fish (Figure 2A) in comparison to deformed fish

(Figure 2B), but significant differences were found only in the

oxygen mass percent (p = 0.010).

In the elemental distribution (mapping), we observed

roughness, porosity, and micro-fractures present in the

microstructure, which coincide with decreased Ca (red) and P

(green), as well as increased C (blue), of the bone-deformed

mandible (Figure 3B) in comparison to normal fish (Figure 3A).

The elemental analysis of the mandibular bone samples in three

ROI zones revealed significant differences in all but one of the
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elements that were looked at (Table 4). In fact, higher levels of Ca

and P in healthy fish were found (p > 0.05) as they represent the

inorganic component called hydroxyapatite (HPA). Also, higher

levels of Mg and fluoride were found because they are necessary for

bone metabolism (p > 0.05). However, the Ca/P ratio did not differ

significantly between the groups. In relation to C, it was higher in

deformed fish due to decreased bone mineralization in this group.
3.3 Superficial area and porosity analysis in
mandibular bone

Micrographs of the deformed mandibular bone show that it has

more pores, but a quantitative analysis showed that the surface area

was smaller, which means that the pores are bigger (Table 5).
3.4 Thermogravimetric analysis in
mandibular bone (TGA-DSC)

The proximal thermogravimetric analysis showed the loss ofmass

(blue) due to temperature (red) in the presence of oxygen or oxidative

decomposition (Figures 4–7). Both groups recorded mass changes

during the combustion time, the first at 2–6minutes following the loss

of water (H°), at 6–14 min, and the last between 18–22 minutes.

Humidity, fixed carbon, and volatile compounds derived from carbon

and ashes (minerals) values in the mandibular bones of normal fish

(Figure 4) and deformed fish (Figure 5) are shown.

Differential scanning calorimetry, or DSC analysis, describes

changes in the sample associated with increasing temperature in the

absence of oxygen (Figures 6, 7). These mass reductions or

transitions occurred at 93.1 °C, 340.6 °C, and 490.6 °C for normal

fish (Figure 6), while they occurred at 88 °C, 325.2 °C, and 441.9 °C

in deformed fish (Figure 7), with no significant differences in

temperature at the transitions between the groups.
3.5 Crystallographic analysis by X-Ray
diffraction in mandibular bone

X-ray powder diffraction is an exceptionally potent technique

for the qualitative examination of various forms of crystalline solids.
TABLE 2 Blood metabolites in rainbow trout from farmed.

Metabolites Median (minimum – maximum) p value

Normal Fish Deformed Fish

Albumin (g/L) 31.85 (20.30 – 40.20) 31.00 (17.51 – 66.20) 0.019

Glucose (mmol/L) 4.29 (1.77 – 5.18) 5.17 (4.18 – 6.33) <0.001

Globulins (g/L) 25.23 (6.63 – 37.72) 12.69 (1.35 – 23.83) <0.001

Total Proteins (g/L) 53.26 (44.56 – 74.82) 41.83 (30.05 – 56.58) <0.001

Acid Phosphatase (U/L) 34.70 (34.50 – 35.20) 39.75 (39.60 – 40.00) 0.029

Alkaline Phosphatase (U/L) 216.55 (193.50 – 257.70) 410.20 (224.70 – 493.00) 0.002
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All crystalline components of a sample contribute to the total

diffraction pattern and can be identified by utilizing data from

extensive databases, including commercially available ones (Downs

and Hall-Wallace, 2003), open-access databases (Gražulis et al.,

2009; Gražulis et al., 2012; Gražulis et al., 2015), and user-created

databases. Data obtained from XRD diffractograms showed the

main peak of greater intensity corresponding to HPA as

hydroxyapatite (H) and fluorapatite (F) at 2q = 32.5 in both

groups (Figure 8). A secondary peak of lesser intensity was also

observed at 2q = 25, which was identified as tri-calcium phosphate

(TCP). A small peak corresponding to apatite (A) was also

identified in the mandibular bone of normal fish.
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3.6 Functional groups analysis by infrared
spectroscopy (FT-IR) in mandibular bone

FTIR spectroscopy is a reliable technique used to analyze the

structural characteristics of biomaterials (Paschalis et al., 2011;

Kowalczuk and Pitucha, 2019). The chemical composition of

structures can be assessed and correlated with treatments and

pathologies by analyzing the spectrum profile and specific band

area ratios (Verdelis et al., 2007; Lubarsky et al., 2012; Liu et al.,

2014; Orilisi et al., 2021). The characterization of functional groups

for the mandibular bone samples using FT-IR showed similar

spectra corresponding to the spectrum of commercial HPA
B

C D

A

FIGURE 1

Microstructure of rainbow trout jaw. Normal fish at 1000× magnification (A). Deformed fish at 1000× magnification (A–D). Backscatter detector
(BSD) image. Scanning Electron Microscope SU3500, Hitachi, Tokyo, Japan.
TABLE 3 Blood microelements in rainbow trout from farmed.

Metabolites Median (minimum – maximum) p value

Normal Fish Deformed Fish

Calcium (mmol/L) 9.74 (6.88 – 11.00) 9.14 (5.70 – 11.67) <0.001

Phosphorous (mmol/L) 7.57 (5.64 – 9.70) 10.44 (6.35 – 11.35) <0.001

Ca/P ratio 1.27 (1.13 – 1.49) 0.87 (0.78 – 0.96) <0.001

Magnesium (mmol/L) 2.45 (1.47 – 3.17) 2.16 (1.55 – 2.73) <0.001

Iron (mmol/L) 16.04 (8.37 – 39.75) 6.58 (2.32 – 14.64) <0.001
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(Figure 9). The inorganic signal in the absorbed band was between

2600 and 3600 cm-1, with a more pronounced peak at 3570 cm-1

and a weaker peak at 630 cm-1. Meanwhile, the organic signals

range from 2850 to 3000/1553.5/1245.9 and 1645.5 cm-1 for the

carbonyl groups (C = O).
3.7 Bone gene expression

We divided the expression analysis into three gene groups

according to their functionality: 1) transcription factors Runx2

and Osx (Figure 10A), osteogenic proteins Bmp2, Bmp4

(Figure 10B), and bone matrix proteins Alp, Col-I, and Ocn

(Figure 10C), using Ef1a as the endogenous control. Our results

showed decreased expression of Runx2, Alp, and Ocn, while

observing increased expression of Col-I, Bmp2, and Osx. Bmp4

levels were reduced. The values obtained for Shh were

undetermined and, therefore, not included in this work.
4 Discussion

Successful genetic modification initiatives have been

implemented in various salmonid species to enhance the

production of commercially significant characteristics (Gjedrem,

2000; Gjedrem, 2012). However, the potential adverse outcome of

selective breeding has been the accumulation of inbreeding

(Robertson, 1961). In fact, there is a lot of inbreeding among

rainbow trout because of the selective breeding for desirable traits

in small, isolated populations (D’Ambrosio et al., 2019). Prior

studies have demonstrated notable negative impacts of inbreeding

on the weight of female rainbow trout and the weight of their spawn

(Kincaid, 1983), as well as on the number of eggs produced and the

age at which spawning occurs (Su et al., 1996). In addition, Chilean

studies have shown that the breeding effort has shown significant

genetic improvement in body weight at harvest, with an increase of

approximately 10 to 13% per generation (Neira et al., 2006; Yañez

et al., 2014).
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Shape differences can be found in both farmed and wild fish, but

they are studied more in aquaculture because they can lower the

number of fish that are produced and cause financial losses (Kause

et al., 2005). Genetic diversity in populations usually goes down

when culture systems are in place. This can cause inbreeding

depression and other problems (Aulstad and Kittelsen, 1971).

Populations with inbreeding experience slower rates of growth

and reproduction as well as increased vulnerability to externally

caused mortality. Inbreeding can be bad for natural populations

because it lowers the genetic diversity within a population (Kause

et al., 2005) and increases the number of harmful alleles that people

with two copies of the recessive gene often have (Keller, 2002).

Although the exact cost of inbreeding is still uncertain and subject

to debate (Pusey & Wolf, 1996; Crnokrak and Roff, 1999; Frommen

et al., 2008), its repercussions potentially heighten the risk of

extinction (Aulstad and Kittelsen, 1971; Keller, 2002; Kerniske

et al., 2021).

In Chile, the calculated genetic diversity among rainbow trout

(Oncorhynchus mykiss) was estimated to be between 22% (Cárcamo

et al., 2015) and 15.6-28.1% (Gajardo et al., 1998), which falls within

the range previously reported for this species (Currens et al., 1990).

Additionally, the average heterozygosity of 0.070 is higher than the

value of 0.059 reported previously (Hershberger, 1992) for the same

species. According to previous research on rainbow trout, the

estimates show that the populations being studied have a lot of

room to adapt and/or split apart. n these studies, genetic diversity,

measured as heterozygosity, has been linked to key fitness

characteristics (Danzmann et al., 1988).

Blood analysis was helpful in evaluating the physiological state

of all species, especially fish. Testing constitutes a minimally

invasive procedure and is also useful for evaluating new diets,

changes in culture conditions, immune status, or stress related to

fish farming management (Kaneko, 1997; Bellier, 2010; Li et al.,

2010; Servicio Nacional de Pesca y Acuicultura (SERNAPESCA),

2023). The metabolic parameters obtained in this study showed

differences between total protein content (53.26 g/L vs. 41.83 g/L,

p<0.01), mainly in the globulin fraction (25.23 g/L vs. 12.69 g/L,

p<0.01). This contrast was linked to a nutritional deficit in fish with
B

A

FIGURE 2

Elemental Microanalysis in the mandibular bone of rainbow trout. (A) Normal fish. (B) Deformed fish. BSD image, 1000× magnification. Scanning
Electron Microscope (Hitachi SU3500, Tokyo, Japan) coupled to XFlash® Detector 410 and Quantax Esprit 1.8.1 Software controller (Bruker,
Germany).
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mandibular deformity because they are unable to feed properly,

resulting in general deterioration with decreased size and weight

and a drastic loss of visceral fat.

The increased alkaline phosphatase levels reported here imply a

signal of phosphorus recovery at the systemic level (10.44 mmol/L

and 7.57 mmol/L, p< 0.001). In addition, it relates to renal

reabsorption and removal by the action of enzymes (Fernández-

Tresguerres et al., 2006). Calcium levels presented differences

between the control (9.96 mmol/L) and the deformed fish group

(9.14 mmol/L, p<0.001). While calcium is absorbed from the diet

and through the gills, skin, and fins from the water, the soluble

phosphorus forms are absorbed from the water, therefore, the most

crucial pathway of phosphorus uptake comes from food, and its

deficiency has been associated with demineralization and deformity
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(Organización de la Naciones Unidas para la Alimentación y la

Agricultura (FAO), 2023; Witten et al., 2015; Rojas et al., 2016;

Baejverjord et al., 2019).

The quantification of magnesium did not show significant

differences between groups because, as with calcium, uptake in

the gastrointestinal tract, gills, skin, and fins from the water is

completed by a similar transport system (Organización de la

Naciones Unidas para la Alimentación y la Agricultura, 2014).

We also found decreased iron levels in deformed fish, which has

been related to the development and growth problems of the fish,

and microcytic anemia due to poor nutrition (4, Desjardins et al.,

1987; Lall and Kaushik, 2021).

Salmonids, such as trout, can spend seasons without feeding,

and their physiological state tends to be normal (Godoy et al., 2022).
B

A

FIGURE 3

Mapping of elemental distribution in the mandibular bone of rainbow trout. (A) Normal fish. (B) Deformed fish. BSD image, 1000× magnification.
Mapping of C (blue), O (yellow), Mg (orange), Ca (red), and P (green) using a scanning electron microscope (Hitachi SU3500, Tokyo, Japan) coupled
to an XFlash®Detector 410 and a Quantax Esprit 1.8.1 software controller (Bruker, Germany).
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However, microelement deficiency, such as calcium and

phosphorus, causes skeletal alterations (Witten et al., 2015; Rojas

et al., 2016; Baejverjord et al., 2019; Godoy et al., 2022). Likewise, we

found higher glucose values in the mandibular deformity group

(5.17 mmol/L), suggesting stress in the fish (Polakof et al., 2011;

Godoy et al., 2022). The microstructural and mineralogical

characterization of mandibular bone reveals a loss of

mineralization that has been primarily associated with lower

phosphorus levels than with any other mineral in the mandibular

bone. This loss of mineralization was discrete (Figures 4, 5). The

SEM-EDX analysis exhibited higher mineral values because

homogenization by reduction to powder impacts the

quantification in areas of interest (porosity or fractures). The

porosity and surface area analysis showed a larger pore size, while

the available surface area was much smaller, indicating that controls

were less likely to develop microfractures (Godoy et al., 2022).

Consistent with what we obtained in TGA-DSC and mapping

the elements in SEM (phosphorous was more affected than

calcium), we found evidence of the inorganic forms of co-

precipitation or different chemical structures, which was reflected

in the XRD diffractograms and FT-IR spectra (Figures 8, 9). In the

XRD analysis (Figure 8), two peaks were identified in all samples,

one of greater intensity at 2q = 32-33° and a secondary peak at 2q =

25°. According to the analysis, they correspond to HPA and TCP,

respectively. This coincides with what was reported in the literature

for HPA crystal, but deformed fish showed a slightly stronger signal

to 2q = 29° which was not identified (Raina et al., 2019). We report

another peak 2q= 26-27°, which was positively identified as apatite

(A), indicating tissue formation. The functional groups’ analysis of

FT-IR (Figure 9) compared to commercial HPA with control and

deformed fish, revealed characteristic signals of structural
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compounds, such as hydroxyl and phosphate groups, in all

samples and showed the presence of carbonate groups probably

bound to HPA. We detected peaks at 2800-3000, 1553.5, and 1241.9

cm-1, which correspond to the presence of N-H (amide), and

another peak at 1645.5 that corresponded with carbonyl groups

(C=O). Both N-H and C=O groups indicated the presence of

collagen in the samples (Nesseri et al., 2020).

The gene expression analysis showed decreased Runx2 levels in

deformed fish vs. normal fish (Figure 10A), reducing Ocn and Alp

expression (Figure 10C), two proteins directly related to bone

mineralization. Therefore, if Ocn decreases, calcium fixation also

decreases. Consequently, phosphorus migrates for HPA formation

and deposition in the bone matrix to form new mineralized tissue.

ALP data indicate a lack of signal for phosphorus resorption in

bones, which explains why systemic levels increase. On the other

hand, we observed increased levels of type I collagen, which could

indicate bone tissue’s resistance to rupture or large fractures. Instead,

they progressively deform. This increase in collagen may be due to a

compensatory response to preserve the structure. The increased

expression of Osx, although it has not a relevant pathway in

juvenile states, can be related to Bmp2 induction (Figure 10B) and

is independent of the expression of Runx2 (Figure 10A) (Lee et al.,

2003; Javed et al., 2008). Like increased collagen, this drastic increase

in Bmp2 levels compared to Bmp4 can be considered an adaptive or

compensatory response to interrupting the primary signal mediated

by Runx2. Bone remodeling or repair processes are absent due to low

Bmp4 expression (Figure 10B) (Dumic-Cule et al., 2018). Likewise,

studies in mice indicate that over-expression of Bmp4 translates into

less bone formation (Fernández-Sánchez and Mayani, 2008).

According to previous results in rainbow trout (Nesseri et al.,

2020), the authors report a consistent Ca/P ratio due to the
TABLE 4 Semi-quantitative elemental microanalysis in mandibular bone of rainbow trout by SEM-EDX.

Mass percent (% W) Median (minimum – maximum) p value

Normal Fish Deformed Fish

Carbon 41.09 (23.93 – 44.53) 52.31 (38.78 – 66.12) 0.003

Oxygen 28.93 (25.76 – 35.35) 27.53 (17.98 – 38.54) 0.096

Calcium 21.36 (17.69 – 28.42) 13.18 (10.26 – 16.03) <0.001

Phosphorous 9.02 (7.53 – 12.30) 5.79 (4.15 – 9.21) <0.001

Ca/P ratio 2.29 (1.98 – 2.68) 2.24 (1.79 – 2.81) 0.572

Magnesium 0.11 (0.00 – 0.94) 0.03 (0.00 – 0.62) 0.028

Fluoride 0.13 (0.00 – 0.86) 0.04 (0.00 – 0.65) 0.017

Sodium 0.13 (0.00 – 1.06) 0.16 (0.00 – 0.98) 0.710
TABLE 5 Superficial area and porosity analysis in rainbow trout from farmed.

Superficial Area and Porosity Analysis

Parameters Normal Fish Deformed Fish

Porosity (nm) 3.49 6.41

Superficial Area (m2/g) 76.61 52.25
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crystallographic formation of HPA and TCP (Figure 8). Given its

size (nm), the porosity (indicated in Table 5) does not interfere with

cell adhesion. However, it affects its biomechanical properties, as

increased porosity decreases the surface area, making the bone more

susceptible to microfracture. Also, deregulated Runx2 expression,
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and therefore that of Ocn and Col-I (Figures 10A, C), may be

directly associated with stress suffered by the fish under culture

conditions. We also discovered elevated glucose levels in deformed

fish, implying that this skeletal alteration can occur at any stage of

development in freshwater.
FIGURE 4

Thermogravimetric Analysis-TGA (Compositional) in mandibular bone of normal fish. TGA-DSC STA6000, Perkin Elmer, Waltham, MA, USA.
FIGURE 5

Thermogravimetric Analysis-TGA (Compositional) in mandibular bone of deformed fish. TGA-DSC STA6000, Perkin Elmer, Waltham, MA, USA.
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Regarding the mechanisms involved in decreased Runx2

expression, the role of Bmp2 and its influence on the induction of

bone mineralization is not entirely clear. Studies indicate that even

when Bmp2 expression is high, the start of mineralization has been

associated with Smad/Runx2 interaction in the presence of Zn

(Javed et al., 2008). This coupling loss may be caused by stress,

resulting in decreased Runx2 levels. Even though Osx expression
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was stimulated (Fernández-Sánchez and Mayani, 2008), it was

insufficient to generate mineralization in deformed fish. In

addition, endogenous BMP2 induction replaces the effect of

Runx2, causing loss of mineralization (Kacem et al., 2000; Kacem

and Meunier, 2003), increased porosity and microfractures, and

advancing disease progression with deformities due to the increased

type I collagen. Finally, the fish’s inability to feed due to mandibular
FIGURE 6

Differential Scanning Calorimetry DSC (transitions-purity) in mandibular bone of normal fish. TGA-DSC STA6000, Perkin Elmer, Waltham, MA, USA.
FIGURE 7

Differential Scanning Calorimetry DSC (transitions-purity) in mandibular bone of deformed fish. TGA-DSC STA6000, Perkin Elmer, Waltham, MA, USA.
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B

A

FIGURE 8

Crystallographic analysis by X-Ray Diffraction (XRD) in mandibular bone. (A) Normal fish. (B) Deformed fish. Hydroxyapatite (H), Fluorapatite (F), Tri-
calcium phosphate (T), and Apatite (A) were identified using a diffractometer (2D PHAZER, Bruker, Munich, Germany).
B

C

A

FIGURE 9

Functional groups analysis by Infrared spectroscopy (FT-IR) in mandibular bone. (A) Normal fish (green spectrum). (B) Deformed fish (red spectrum).
(C). Commercial HPA (black spectrum). FT-IR spectrometer TENSOR 27, Bruker, Munich, Germany.
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deformation will ultimately lead to death (Fernández-Tresguerres

et al., 2006; Witten et al., 2015; Godoy et al., 2022).
5 Conclusions

The etiology of skeletal abnormalities remains an enigmatic and

contentious matter in fish populations. Skeletal deformities in

juvenile rainbow trout are driven by bone demineralization

associated with phosphorus deficiency rather than calcium.

Decreased iron and phosphorus levels are caused by poor

nutrition due to an impediment to eating properly (reflected in the

low content of total proteins and their fractions). This nutritional

deficit does not affect calcium, as it can be absorbed through the skin

and gills from the water, leaving other minerals such as magnesium

unaffected. Microstructurally, demineralized bone shows

microfractures and becomes more porous. Current evidence

suggests it generates crystallographic formations different from

HPA and TCP. Demineralization has been rather discreet or slight,

which implies that there was an incomplete pathway interruption.

There was deregulation between the signals of exogenous bone

tissue formation, Bmp2, and the expression of Runx2, and therefore

in the expression of bone matrix proteins, such as OCN and ALP,

inhibiting the formation of inorganic matrix by interfering with

calcium and phosphorus fixation while also promoting an increase in

the expression of organic matrix by type I collagen as a

compensatory measure. Stress under culture conditions may be the

most probable cause for this deregulation. It only affects a subset of

the specimens in the tank and has nothing to do with developmental

affections (malformations). However, genetic factors and inbreeding

could also be considered as potential causes of abnormalities.
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