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Where, when, how and what
seagrass to transplant for long
lasting results in transitional
water systems: the cases of
Cymodocea nodosa, Zostera
marina, Zostera noltei and
Ruppia cirrhosa

Andrea Augusto Sfriso1*, Katia Sciuto1, Michele Mistri 1,
Cristina Munari1, Abdul-Salam Juhmani2, Alessandro Buosi3,
Yari Tomio3 and Adriano Sfriso3

1Department of Chemical Pharmaceutical and Agricultural Sciences, University of Ferrara,
Ferrara, Italy, 2Department of Biology and Biotechnology, Faculty of Science, The Hashemite
University, Zarqa, Jordan, 3Department of Environmental Sciences Informatics and Statistics,
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Seagrasses play a vital role in marine ecosystems worldwide. However, until

recently these ecosystems were experiencing declines due to various global and

local threats. In response to this issue, initiatives have been launched to combat

seagrass loss by addressing local and regional major stressors and actively

engaging in restoration efforts by transplantation. Although seagrass

restoration has progressed significantly with the development of numerous

transplant techniques, these are not always crowned with success. This is

often due to the fact that the environmental parameters of water, sediment

and biota of the recipient sites are not carefully considered in their suitability for

transplantation. In this study, the multi-year experiences and data from

numerous environmental surveys in transitional water systems have been

condensed to define limit values for the ideal growth conditions and the

extreme values in which the survival of four aquatic angiosperm species is

possible: Cymodocea nodosa, Zostera marina, Zostera noltei and Ruppia

cirrhosa. Approaches to transplants, seasonality and critical issues have been

explored. The identified limits and parameters of water, sediment and biota will

help to define the suitability of a recipient site for the rooting of seagrasses,

increasing the chances of success for transplant operations.

KEYWORDS

seagrasses, restoration, transplants, parameters, success, coastal areas
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1299428/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1299428&domain=pdf&date_stamp=2023-12-22
mailto:sfrndr@unife.it
https://doi.org/10.3389/fmars.2023.1299428
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1299428
https://www.frontiersin.org/journals/marine-science


Sfriso et al. 10.3389/fmars.2023.1299428
1 Introduction

Seagrass meadows, or better aquatic angiosperm meadows (to

consider also the species of the genus Ruppia which, not being

exclusively marine, are not universally accepted as seagrasses but

are classified as freshwater plants - Short, 2003) are often considered

the stamp of approval for the environmental quality of coastal and

transitional water systems (TWS) and are the landmark of nearly

pristine conditions (Sfriso et al., 2021). However, these aquatic

angiosperms are also vulnerable to increasing human pressures in

coastal areas such as: nutrient loading, siltation, mechanical

disturbance, direct boat propeller damage, dredging and

reclamation of marine areas, pollution, aquaculture, introduction

of new competitors such as exotic marine organisms (Duarte et al.,

2004), boat traffic, destructive fishing practices and harbor activities

(Nordlund and Gullström, 2013). All these represent important

forcing factors inducing severe decline in seagrass coverage. A

comprehensive analysis of 215 studies (Waycott et al., 2009)

revealed that seagrasses have been receding rapidly, with an

average annual loss of 110 km² since 1980. Since the initial

documentation of seagrass areas in 1879, approximately 29% of

the known extent vanished with a significant escalation, increasing

from a median of 0.9% per year before 1940 to 7% per year since

1990 (Waycott et al., 2009). In a more recent work by Dunic et al.

(2021), an update of the situation confirms how losses still outweigh

gains of seagrass meadows but it outlines how improvements and

even reversals in the global trend have been recorded locally

especially in the Temperate North Atlantic East (De los Santos

et al., 2019; Zoffoli et al., 2021).

Seagrass loss has a significant impact on coastal biodiversity,

leading to alterations in food webs and depletion of harvestable

resources (Sfriso et al., 2021). The degradation of seagrass meadows

leads to changes in vegetation composition and structure, primarily

characterized by the replacement of seagrasses with problematic

macroalgae such as: Gracilariaceae, Solieriaceae, Cladophoraceae

and Ulvaceae (Morand and Briand, 1996). Especially the latter in

eutrophic conditions present an unstable fast pulsing growth that

can compromise ecosystem stability and trigger hypo-anoxic crises

in early summer due to biomass collapse (Sfriso and Sfriso, 2017).

In more extreme conditions, blooms of phytoplankton and

cyanobacteria may occur (Sorokin and Zakuskina, 2010; Munari

and Mistri, 2012). The presence of high and persistent biomasses of

these macroalgae leads to a gradual disappearance of aquatic

angiosperms and sensitive macroalgal species, resulting in a

cascading loss of biodiversity and ecosystem services (Short and

Wyllie-Echeverria, 1996; Orth et al., 2006; Burkholder et al., 2007;

Boudouresque et al., 2009; UNEP, 2020; Rodil et al., 2022).

The global loss of seagrass meadows and the parallel growing

awareness of their environmental value are leading to additional

attention for projects aimed at their restoration and/or

rehabilitation (Airoldi and Beck, 2007; Nellemann et al., 2009;

Barbier et al., 2011; Unsworth et al., 2015; Nordlund et al., 2016;

Sfriso et al., 2019a; Unsworth et al., 2019; Da Ros et al., 2020; UNEP,

2020; Calvo et al., 2021; Pansini et al., 2022).
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Human-mediated restoration/rehabilitation is achieved in

different ways, starting from assessing the reasons for seagrass loss

and consequently trying to eliminate the drivers of pressure inducing

the decline with different managing options (e.g., establishment of

marine protected areas, imposing boating access-restrictions, using

wastewater treatment systems to reduce eutrophication and digging

canals to favor water circulation in choked areas with high water

residence time) and both supporting and speeding up the natural

recovery of seagrass meadows (e.g., substrate stabilization activities,

tidal exchange restoration if altered, management of freshwater

inflow). Therefore, human-mediated seagrass restoration/

rehabilitation is recommended only in those cases where the

seagrass ecosystem has been damaged to such an extent that the

self-recovery is no longer possible. The evaluation of possible

bottlenecks in the recruitment of new natural seagrass meadows

(e.g., physical barriers preventing the connectivity between meadows,

limited sexual reproduction in the dominant seagrass species and

lacking or scarce seed production and dispersion) and activities to

overcome these recruitment bottlenecks should be addressed first

(Airoldi and Beck, 2007; Duarte et al., 2020; UNEP-Nairobi

Convention, 2020). If all these human-mediated activities oriented

to help the natural restoration of seagrass meadows would be

unsuccessful or, anyway, not so effective, the active seagrass

restoration by transplantation should be considered.

In other cases, human-mediated seagrass restoration can be

employed as a form of compensatory mitigation by creating new

seagrass meadows in areas that appear to be suitable for their

growth in order to balance their destruction and recession from

other areas due to anthropogenic activities (e.g., port expansion,

land reclamation – UNEP-Nairobi Convention, 2020). Moreover,

human-mediated creation of new seagrass meadows has been

suggested to mitigate the effects of climate change, by acting as

“blue carbon farming” sites aiming to reduce ocean acidification

(Nellemann et al., 2009; Duarte et al., 2020).

The TWS coastal areas present very high temporal fluctuations and

spatial variability of environmental conditions, therefore the

identification of a transplantation area can be cryptic to assess, such

as the ideal seasons andmethods to implement the seagrass restoration.

The literature on the topic of seagrass transplantation is

extremely broad and varied, as numerous environmental

restoration project results have been published; however, in these

papers, the limits between success (hereinafter referred to as “a

long-lasting and persistent establishment of seagrass meadows, even

when limited in size”) and failure of a seagrass restoration activity

are not always clear (Zedler, 2007; Tan et al., 2020). The presence of

this gray area especially for TWS seagrasses, where failures are only

occasionally reported, does not allow to define clear limits of the

environmental conditions that may be critical for rooting of the

transplanted species.

The conditions that facilitate the seagrass rooting, as previously

stated by Tan et al. (2020), are generally well documented and

among these there are: light and water transparency (Duarte, 1991;

Greve and Binzer, 2004), limited nutrients availability (Touchette

and Burkholder, 2000; Sfriso et al., 2005a; Sfriso et al., 2017a), water
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hydrodynamics (Fonseca and Kenworthy, 1987; Schanz and Asmus,

2003), and sediment type (Erftemeijer and Middelburg, 1993; Van

Katwijk and Wijgergangs, 2004). However, so far only general

trends usually have been indicated and few studies provided

mean values (Garmendia et al., 2010; Garmendia, 2021;

Garmendia et al., 2023), ranges and limits of physico-chemical

parameters to define a recipient site suitability for transplant. In

Italy for marine seagrass species, such as Posidonia oceanica (L.)

Delile, some efforts have been carried out to define the most

influential aspects for monitoring and evaluating the success of

restoration programmes (see Life SEPOSSO Project, LIFE16 GIE/

IT/000761; Curiel et al., 2021; Mancini et al., 2022; Pansini et al.,

2022) and actions to reduce meadow degradation (see Life

SEAFOREST Project, LIFE16 CCM/IT/000121). However, a study

carried out in the lagoon of Venice in the framework of the EU Life

SERESTO seagrass transplantation Project (LIFE12 NAT/IT/

000331) highlighted the challenge related to the identification of

fixed ranges of physico-chemical values decisive for a long-lasting

settlement of TWS seagrass meadows (Sfriso et al., 2021). Therefore,

in order to facilitate the success of future transplantation activities

in TWS, in this study we aim to: 1) define reliable ranges and limits

of the main physico-chemical parameters of water and sediment for

which it is possible to find and/or successfully transplant seagrasses;

2) identify seasons, techniques and species most suitable for a

successful colonization of different areas; 3) fill in knowledge gaps

on transplantation of the less common species R. cirrhosa.

In this study we decided to consider four main species of aquatic

angiosperms present inMediterranean TWS:Cymodocea nodosa (Ucria)

Ascherson, Zostera marina Linnaeus, Zostera noltei Hornemann and

Ruppia cirrhosa (Petagna) Grande (Duarte et al., 2004).
2 Materials and methods

2.1 Study areas

Samples were collected by our marine ecology research team in the

framework of many projects carried out in the Venice Lagoon in this last
Frontiers in Marine Science 03
decade (Life12 NAT/IT/000331-SeResto; Venice2021; Mo.Ve.Co. III

2018; LIFE19 NAT/IT/000264-TRANSFER) both with temporal

(monthly sampling per one year in single stations) and spatial

frequency (late spring-early summer sampling stations spread in the

whole lagoon). Sampling stations and study areas are recorded in Figure 1.

The Venice Lagoon, situated in the northern Adriatic Sea, is the

largest coastal lagoon in the Mediterranean Sea. It spans an area of

549 km2 and has an average depth of approx. 1.2 meters. The lagoon

is connected to the Adriatic Sea through three inlets: Lido,

Malamocco, and Chioggia, in that order from North to South.

Tidal influence is significant in the lagoon, with approximately 60%

of the water volume exchanged with the sea every 12 hours (Masiol

et al., 2014). The primary sources of freshwater inflow into the lagoon

are the Dese and Silone rivers, which contribute 44% of the total

freshwater, while the Marzenego river provides additional smaller

inputs. The central basin, which is the most anthropized, has

experienced significant impacts from industrial waste, sewage, and

anthropogenic activities in the past. However, in recent years, there

has been a reduction in these impacts and the lagoon has shown signs

of environmental recovery. The southern basin has lower nutrient

levels and is densely populated by seagrasses (mainly C. nodosa and

Z. marina), while the northern basin has limited water turnover and

is mainly colonized by Z. noltei and R. cirrhosa, with a spot presence

of Z. marina and C. nodosa along the edges of the canals with higher

water exchange. In the past, many of these species disappeared due to

excessive nutrients, clam fishing, and a bloom of picocyanobacteria

(Sorokin et al., 2004). However, efforts have been made to reintroduce

aquatic angiosperms into the affected areas, resulting in a significant

recolonization and recovery (Sfriso et al., 2022).

In the Life SeResto project (a seagrass restoration project funded

by the European Union to favor the recolonization by aquatic

angiosperm in the northern basin of the Venice Lagoon in an area of

interest of approx. 36.6 km2), water and sediment parameters and

macrophytes collected from April 2014 to June 2017 (29 surveys)

were analyzed in 8 stations representative of the overall

environmental conditions of the area. The surveys were

conducted monthly for one year at the project’s start and end,

with quarterly surveys during the intermediate period. The number
FIGURE 1

Map of the sampling stations in the Venice Lagoon, Goro Lagoon, Fattibello pond (Italy). White dots (Mo.Ve.Co.III), red dots (Venice2021), blue dots
(Life12 NAT/IT/000331-SeResto); purple dots (LIFE19 NAT/IT/000264-TRANSFER).
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of samples implemented for our investigation was 232 (8 stations

per 29 surveys) for water column and macrophytes analysis

and 64 (8 stations per 2 samples per year per 4 years) for

sediments evaluation.

During the Mo.Ve.Co. III (2018) project, water column and

surface sediment parameters and macrophytes (aquatic

angiosperms and macroalgae) were sampled in late spring-early

summer in 87 stations spread in the whole lagoon to determine the

ecological status according to the European Water Framework

Directive (WFD 2000/60/EC).

Additional information was acquired in the “Venice 2021

mission” of CORILA (Consortium for the Coordination of the

Research related to the Venice Lagoon System), a survey carried out

in order to provide integrated knowledge for the management of the

Venice Lagoon ecosystem upon the activation of the MOSE gate

system (tidal regulating barriers with mobile gates). Samples were

collected monthly for one year, before and after the operation of the

“MOSE” system, in proximity of the three water inlets of the lagoon

and in three stations placed inside the lagoon. On the whole, the

total number of samples was 144 (6 stations per 24 months).

We integrated the data collected from surveys carried out

monthly over one year in two additional stations (24 samples),

one monitored in the lagoon of Goro and the other at Fattibello

(Comacchio Valleys) in the framework of the project LIFE19 NAT/

IT/000264-TRANSFER, a seagrass restoration project funded by the

European Union to favor the seagrass recolonization in the lagoons

of the Po Delta (Italy), in the lagoons of Amvrakikos (Greece) and

in Mar Menor (Spain). The lagoon of Goro is a small shallow-water

embayment, placed in the southernmost basin of the Po River Delta

system, covering an area of 26 km2, whereas Fattibello is a small,

choked pond of 6 km2, located in the northern side of the

Comacchio Ponds, weakly affected by the flow of the tides.
2.2 Environmental parameters

The main physico-chemical parameters of the water column

[temperature; pH (pHw); Eh (Ehw); salinity; dissolved oxygen

(DO); dissolved inorganic nitrogen (DIN), as sum of nitrite,

nitrates and ammonium; reactive phosphorus (RP); reactive

silicates (RSi); total suspended solids (TSS); total chlorophyll-a

(Chl-a tot), as sum of chlorophyll-a and pheophytin-a; water

transparency by Secchi disk] and sediment [pH (pHs); Eh (Ehs);

total nitrogen (Ntot); organic carbon (Corg); organic phosphorus

(Porg); the fine fraction <63 μm (Fines); moisture; density] were

analyzed following the procedures described in Sfriso et al. (2019b)

and Sfriso et al. (2020a) and Strickland and Parsons (1984). Settled

particulate matter (SPM) was collected monthly for one year in the

stations by sedimentation traps according to the procedure

described in Sfriso et al. (2005b).
2.3 Macrophyte variables

In all the aforementioned stations, together with the main

environmental physico-chemical parameters, the presence/
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absence and cover of aquatic angiosperms, the biomass and

cover of macroalgae, the number of total macrophyte taxa,

macrophyte sensitive taxa (Sens.), the number of crustose

calcareous algae (CCA) and the abundance of Chlorophyta and

Rhodophyta were also monitored (Sfriso et al., 2014; Sfriso et al.,

2017a; Sfriso et al., 2020b). The ecological status and the list of

sensitive species of each station was determined by the

application of the Macrophyte Quality Index (MaQI, Sfriso

et al., 2014).
2.4 Data summary and statistical analysis

The data collected in all the surveys were used to calculate the

annual mean, minimum and maximum values of the physico-

chemical parameters of sediment and water for which seagrass

presence was recorded in the sampling site or in which successful

colonization was achieved. The minimum and maximum values

describe the extreme tolerance limits found in the present study in

the Northern Adriatic Sea, the mean instead was expressed as a

range (summarizing the annual -12 months- data ranging from

different stations) and describe the ideal conditions for

seagrass growth.

All the analyses were performed with the software Statistica 7.1

(Statsoft). The spring dataset was processed by Spearman’s non-

parametric analysis and principal component analysis after data

normalization (PCA; including 103 stations sampled in June, 16

water parameters, 12 sediment parameters, 12 macrophyte

variables) from: Mo.Ve.Co. III, 2018; SeResto, 2014-2017;

CORILA mission, 2020-2021; Fattibello, Goro, 2022-2023;

Cagnoni (1997).
3 Results

3.1 Relevant parameters/variables

The non-parametric Spearman’s coefficients between the

physico-chemical parameters and macrophyte variables are shown

in Table 1, highlighting the most relevant ones from the highest

number of significant values. In this hierarchy, water transparency,

Chl-a tot and Porg in the sediment gather in the top three most

significant values, followed by Fines (sediment fraction < 63 μm),

nitrates (NO3
-), Ptot and Pinorg in surface sediments. Therefore,

together with sediment moisture, Ehs and water temperature, we

obtain the 10 parameters that most heavily influenced macrophytes

presence, abundance, and type.

Overall, water transparency had a positive effect on CCA,

sensitive macroalgal species, Chlorophyta, and aquatic

angiosperm growth, conversely high Chl-a values (i.e. high

phytoplankton densities) had a depressing effect especially on

seagrass, CCA, sensitive macroalgal species.

Similarly, high values of Porg in the sediment were positively

linked to the presence of algal biomass, algal cover and R. cirrhosa

cover and inversely to seagrasses. Among these first parameters, R.

cirrhosa stands out from other aquatic angiosperms, not only
frontiersin.org
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because it was not correlated, and therefore not affected, by water

transparency and phytoplankton (Chl-a), but also since it was

positively correlated with Porg, together with algal biomass and

cover and with other sedimentary parameters like Corg, Ntot and

Ctot, associated with sediments of eutrophic areas. In the same way,

high values of Fines had a negative effect on all aquatic angiosperms,

except on R. cirrhosa, which was also positively correlated with high

levels of sediment moisture. The associations between

environmental parameters and macrophyte variables are better

visualized by the PCA analysis. The plotting of the first two

components, explaining a cumulative variance of 26.9%, is

reported in Figure 2. On the right side of the graph, the

parameters that negatively influenced on the angiosperm presence

and growth can be found: i.e. in the sediments, high amounts of

Fines, high values of moisture, Corg, Porg and Ntot and, in the

water column, high Chl-a (phytoplankton) concentrations, high

water temperature, high RSi, RP and TSS (turbidity) values.

Conversely, on the left side of the graph, the values associated

with the presence of Z. marina, Z. noltei, and C. nodosa are present:

high salinity, high water transparency and pHs, well oxidized waters

and sediments (Ehw/Ehs), high sediment density. These parameters

were also associated with the presence of a higher number of

macroalgal taxa, especially sensitive and calcified species and

higher ecological scores, according to the MaQI ecological quality

index. R. cirrhosa falls in the middle of the graph, showing to be less

sensitive to the environmental trophic level and the ecological status

compared to the other angiosperm species.
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3.2 The limits for success: water column

In this part of data elaboration, we tried to define extreme limits

and ideal environmental conditions out of which the survival of

aquatic angiosperms is disadvantaged and will lead to their

disappearance in the short-medium term or, conversely, will

allow a new plant introduction and successful growth.

Additionally, these values can help to predict a shift in ecologic

succession between different species with changing environmental

conditions and the suitability of each species to different

environmental parameters.

In Tables 2 and 3, the ranges of the annual means, recorded in

several stations on monthly basis (the ideal condition range), and

the minimum/maximum values, recorded in all the stations

sampled on temporal and spatial basis where macrophytes were

present (limits of tolerance and survival), are reported. In this way,

the mean and the extreme values of each physico-chemical

parameter of water and sediment or macrophyte variable, which

favor or hamper the angiosperm presence and rule their transplant

success, can be determined.

As recoded in Table 1 water transparency and Chl-a are

prominent factors in aquatic angiosperm rooting, survival and

growth. All the plants thrived in waters with a mean water

transparency allowing a bottom visibility higher than 98%, i.e.

affected only by occasional turbidity events; conversely,

macroalgae lived also in turbid waters (especially red algae, such

as Gracilariaceae and Solieriaceae) and tolerated very low minimum
TABLE 1 Spearman’s non-parametric correlation matrix of the ten most significant parameters of sediment and water column with
macrophyte variables.

p< |0.194|
Transp.
(water)

Chl-a
tot
(water)

Porg
(sed.)

Fines
(sed.)

NO3
-

(water)
Ptot
(sed.)

Pinorg
(sed.)

Moist.
(sed.)

Eh
(sed.)

Temp
(water)

N° Signifi-
cant values

MaQI 0.29 -0.40 -0.23 -0.17 -0.29 -0.33 -0.30 -0.16 0.42 -0.30 12

% R.cirrhosa 0.09 0.05 0.22 0.22 -0.20 -0.14 -0.31 0.29 0.09 0.04 11

Algal Biomass -0.25 0.23 0.35 0.15 -0.03 0.36 0.31 0.31 -0.15 0.19 10

% Z marina 0.18 -0.30 -0.34 -0.19 -0.24 -0.16 -0.01 -0.25 0.23 -0.26 9

N° Sens. Taxa 0.30 -0.33 -0.12 -0.05 -0.34 -0.28 -0.31 0.00 0.26 -0.14 8

N° CCA Taxa 0.20 -0.27 -0.11 0.00 -0.29 -0.17 -0.19 -0.02 0.23 -0.18 7

% C. nodosa 0.12 -0.30 -0.14 -0.33 -0.12 -0.17 -0.18 -0.18 0.10 -0.26 4

% Algal Cover -0.14 0.09 0.31 0.06 -0.03 0.27 0.21 0.21 -0.12 0.14 4

N° Algal Taxa 0.17 -0.33 -0.15 -0.21 -0.15 -0.19 -0.16 -0.18 0.03 -0.09 3

% Z. noltei 0.16 -0.17 -0.23 -0.20 -0.01 -0.25 -0.16 -0.11 0.12 -0.06 3

%
Chlor. Biomass

0.24 -0.12 -0.06 -0.16 0.02 0.05 0.12 -0.06 -0.03 0.00
2

%
Rhod. Biomass

-0.24 0.11 0.07 0.16 -0.01 -0.04 -0.11 0.06 0.03 -0.01
2

N°
Significant
values

6 6 6 5 5 5 5 4 4 3
Significant scores highlighted in red. Full matrix provided in Supplementary Material Table S1.
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values (less than 30% of bottom visibility). Likewise, Chl-a, that

traces the presence of phytoplankton, hampered aquatic

angiosperm optimal growth at mean concentrations higher than

2.5 μg L-1, while macroalgae well tolerated mean concentrations up

to 13.7 μg L-1. The TSS ideal average range for Z. noltei, Z. marina

and C. nodosa was between 12.5 and 49.9 mg L-1, with higher

extreme values for macroalgae (183 mg L-1). SPM, instead, describes

a higher tolerance of seagrasses, especially C. nodosa for areas

characterized by higher hydrodynamics and sedimentation rates

associated with marine-like areas. Macroalgae showed the widest

tolerance limit range for salinity and were present between 5.0 and

40.6 psu. Among aquatic angiosperms, R. cirrhosa survived at the

lowest values (13.1 psu), but overall aquatic angiosperms thrived

between 28.7 and 32.4 psu, while macroalgae preferred lower

salinities living in the optimal range 20.6-27.0 psu.

Macroalgae showed the widest tolerance range for DIN, as for

salinity. Indeed, the maximum recorded DIN value was 154 μM.

The ideal range in terms of DIN values, in which macroalgae and

phytoplankton thrived competing with aquatic angiosperms,

started from mean values of 9.45 μM, reaching even 35.8 μM.

The seagrasses Z. marina and Z. noltei lived within maximum DIN
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concentrations of 21.6 μM. The species R. cirrhosa, instead, was

more tolerant proliferating well up to 56.8 μM. The situation was

similar for RP; also in this case, the ideal growing ranges for R.

cirrhosa showed higher values at the upper limit (RP: 11.1 μM) in

comparison with the other aquatic angiosperms (maximum

tolerated RP was 2.58 μM), even in comparison with the

maximum scores from areas colonized by macroalgae (RP: 2.79

μM). Eventually, about the pH of the water column (pHw) no

important differences within the limits of ideal conditions were

noticed, although some differences were recorded in the extreme

minimum values. Macroalgae were found also in the presence of the

lowest pH scores (pHw: 7.30), while the minimum pHw values

found for aquatic angiosperms were higher than 7.80. CCA species

live as epiphytes on aquatic angiosperms and large macroalgae in

our samples and were represented by 5 species (Pneophyllum fragile

Kützing, Hydroliton boreale (Foslie) Y. M. Chamberlain, H.

cruciatum (Bressan) Y. M. Chamberlain, H. farinosum (J. V.

Lamouroux) D. Penrose et Y. M. Chamberlain, Melobesia

membranacea (Esper) J. V. Lamouroux), showing a monthly

mean number of 0.40-2.41 species on the leaves of aquatic

angiosperms, on annual basis. Conversely, the mean number of

CCA on macroalgae was in the range 0-0.6 species. The situation

was quite similar for the number of sensitive species and the total

macroalgal biodiversity, which was the highest in the presence of

aquatic angiosperms. In this context, the mean macroalgal biomass

well tolerated by aquatic angiosperms was in the range between 32

and 792 g fw m-2. However, during these surveys, among the aquatic

angiosperm prairies, macroalgal biomasses up to 7500 g fw m-2 were

also recorded.
3.3 The limits for success: sediment

The nature of the sedimentary substrate is often crucial for

effective colonization by aquatic angiosperms and sediment

physico-chemical characteristics and trophy play a key role in

angiosperm rooting. High levels of Ntot in surface sediments

were better tolerated by R. cirrhosa and macroalgae, while

seagrasses had an upper tolerance limit of 4.66 mg g-1 and an

ideal condition range within 1.77 mg g-1. Similarly, Corg was poorly

tolerated by all aquatic angiosperms at values higher than 59.2 mg g-

1 and presented ideal conditions below 23.5 mg g-1. Porg displayed

higher values in the upper optimal ranges for R. cirrhosa (199 μg g-

1), whereas in the presence of macroalgae reached 239 μg g-1. Fines,

Ehs, moisture and density of the sediments were also important in

determining the establishment of plants. The optimal percent of

Fines for R. cirrhosa was in the range of muddy sediment, i.e. 74.6-

91.1%; conversely, a wider range was tolerated by macroalgae (34.4-

94.3%) and seagrasses (2.55-95.0%), which displayed the widest

optimal ranges at values between 1.27 and 98.7% thriving also in

sandy sediments (especially C. nodosa). Similarly, aquatic

angiosperms thrived at higher sediment density (0.68-1.34 g dw

cm-3). The Ehs displayed the widest range for aquatic angiosperms,

especially in C. nodosa (growing both in choked and marine-like

areas) ranging for optimal values in the range -190 - +124. R.
FIGURE 2

Principal Component Analysis of spring variables. The first two
components explain a cumulative variance of 26.9%. Brown writings
(sediment parameters); blue writings (water parameters); green
writings (macrophyte biota parameters). The dotted line
discriminates parameters/variables associated with high quality from
those associated with poor quality. Biom. (biomass); CCA (crustose
coralline algae); Chl-a (total chlorophyll-a); Chlor. (Chlorophyta); C.
nod (C. nodosa); Cover (coverage); Corg (organic carbon); Dens.
(density); DO(dissolved oxygen); Ehw/Ehs (Eh of the water column/
sediment); MaQI (macrophyte quality index); Moist (moisture); NH4

+

(ammonium); NO2
- (nitrite); NO3

-(nitrate); Ntot (total nitrogen);
pHw/pHs (pH of water/sediment); Porg/Pinorg (organic/inorganic
phosphorus); R. cirr (R. cirrhosa); Rhod. (Rhodophyta), RP (reactive
phosphorus); RSi (reactive silicates); Sens. Taxa (macroalgae sensitive
species); Taxa (total number of macroalgae species); Temp.
(Temperature of water); Transp. (Transparency); TSS (total
suspended solids); Z. mar (Z. marina); Z. nolt (Z. noltei).
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cirrhosa was present in areas characterized by the lowest Ehs scores

(range: -250 - +73).
4 Discussion

4.1 Transplantation approaches and
critical issues

The survival of aquatic angiosperms is not always supported by

environmental conditions and their transplant is not ubiquitously

guaranteed in any type of TWS, regardless of the type of technique

implemented to perform the transplant. A critical analysis performed

by Curiel et al. (2021) summarized in few focal points the common

mistakes that can compromise the success of a seagrass

transplantation project. The highlighted points deal with: seabed

alteration interventions that fail to alleviate habitat stress (e.g.

excavation of canals, creation of salt marshes); adverse effects of

climate change, such as high summer temperatures, prolonged low

tide and emersion periods; macroalgal blooms leading to anoxic crises;

execution of transplants on inconsistent sediments or in shallow

bathymetry; poor alignment of the intervention’s seasonality with

species characteristics; incorrect levelling of transplanted sods

concerning the surrounding substrate; mistakes in selecting suitable

species for transplantation. The main problems are therefore linked to

the choice of unsuitable transplant sites (due to inappropriate

bathymetry, water trophy, recipient substrate); to the transplant of

the wrong species, not only in the wrong places but also in the wrong

seasons, and to potential critical conditions triggered by extreme

climatic events or disrupting species. To the critical points listed

above by Curiel et al. (2021), we should add those raised by Cronau

et al. (2023), such as the occurrence of extreme events (e.g. storms,

siltation, salinity fluctuations, or drought) – fairly typical in some

coastal ecosystems –which can readily compromise restoration efforts.

Additionally, disruptions in trophic interactions could theoretically

impede the progress of recovery attempts. For instance, the absence of

apex predators (often linked to fishing activities) could result in an

overabundance of meso-predators, which, in turn, might excessively

exploit invertebrate grazers essential for managing the growth of

epiphytic algae on seagrass leaves. Therefore, if direct anthropogenic

impacts (e.g. pollution discharge, sediment dredging, unauthorized

fishing) or unpredictable extreme climatic events (e.g. heat waves) are

excluded for the choice of the intervention site, it is a preliminary need

to monitor the main physico-chemical conditions of water column

and surface sediments from the candidate recipient sites, which are the

first drivers for recruitment, thriving or survival of new

aquatic angiosperms.

Provided that sites suitable for aquatic angiosperm

transplantation are identified on the basis of the limits described

in Table 2 and Table 3, numerous and different approaches to the

transplantation have been so far implemented in different projects

in function of the species and donor/recipient substrates (Ganassin

and Gibbs, 2008; Tan et al., 2020). In Figure 3 and Table S2, some

aquatic angiosperm restoration trials published to date for C.

nodosa, Z. marina, Z. noltei and R. cirrhosa are summarized, with

a focus on species, locations, transplant approaches, planting
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periods, monitoring strategies and outcomes. Globally, these trials

can be divided firstly into two main groups: mechanical transplants

and manual transplants. Both methods require knowledge of plant

species growth habits, seasonality, life histories and nearby available

seagrass stocks to be used as donor meadows (either cultivated or

wild, with the wild meadows usually being the most used). Different

parts of the donor meadow can be used for the transplant activity

(e.g. entire shoots, just the rhizomes, fragments, seeds or seedlings)

and each of these parts can be prepared with different methods to be

used as planting units. Different planting arrangements were also

tested, but these were reported to have no effect on plant survival

(Suykerbuyk et al., 2012). The planting units in transplant projects

can be sediment-free (as anchored or unanchored sprigs, shoots or

rhizomes), sediment-intact (as sods, cores or plugs, characterized by

sediment plus intact rhizome/root systems) or seeds/seedlings

(Ganassin and Gibbs, 2008; Matheson et al., 2017). Generally,

sediment-intact transplanting units are preferred since the root

and rhizome system is relatively undamaged and they also provide a

reservoir of the original rooting medium (Fonseca et al., 1998;

Matheson et al., 2017). However, single shoot/rhizome transplants

ensure an increased dispersion of implants, elevating the likelihood

of successful outcomes (Sfriso et al., 2019a; Zhang et al., 2021).

Furthermore, in favorable conditions (Sfriso et al., 2021) the

transplants of individual rhizomes resulted in clusters displaying a

higher average growth rate compared to sods (rhizomes: 0.19 cm

day-1, sods: 0.14 cm day-1). The greater abundance of single

transplants can foster the rapid formation of expansive

angiosperm meadows within a single year, with a survival of

single shoots/rhizomes reported after one year ranging from 39%

(Sfriso, 2018) to 95% (Davis and Short, 1997).

In environments characterized by high hydrodynamics, like

open coastal areas or where severe storms rage, larger planting units

have generally more chances of survival than smaller ones or single

shoots (Suykerbuyk et al., 2016; Paulo et al., 2019), because they

offer greater anchorage and less rhizome disturbance (Paling et al.,

2001). Conversely, sediment-free transplants are more favored in

habitats characterized by fine sands, moderate water movement and

good light availability (Orth et al., 1999; Paling et al., 2007). In order

to protect the transplants and mark the transplanted areas,

sheltering or sediment stabilizing devices (e.g. meshes, fences,

screens of wooden fascines, artificial seagrass mats) and poles or

buoys can also be used. However, these protective and marking

structures must be arranged with attention, as they can limit the

water circulation by creating choked areas in which algal blooms

can flourish, especially in sites with low hydrodynamics.

Additionally, marking poles or buoys often act as a collection

point for fast growing pleustophytic algae, such as the Ulvaceae,

which remain trapped on signalling poles and wooden fascines

accumulating and suffocating the nearby transplanted seagrasses (a

problem recorded in the framework of the seagrass restoration

project Life SERESTO - Sfriso et al., 2017b). Many authors also

raised critical issues on the presence of antagonistic species that can

compromise the success of transplantation activities and to which

attention should be paid. These are well known fast-growing

macroalgae, both epiphytic and pleustophytic. In our case

however macroalgae were often present in association with
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TABLE 2 Limits for water column parameters in Northern Italian lagoons.

r Column

SPM
g m-2 day-1

NO2
-

µM
NO3

-

µM
DIN
µM

RP
µM

RSi
µM

TSS
mg L-1

Chl-a
tot

µg L-1

0.01 0.12 0.76 0.01 1.91 1.60 0.15 19

0.67-3.10 4.82-17.0 9.45-35.8 0.27-0.60 17.8-33.8 16.7-62.3 1.93-13.7 141-796

21.00 75.3 154.5 2.79 87.2 183.2 38.9 1424

0.01 0.02 0.53 0.01 1.08 0.85 0.01 2.0

0.29-1.14 2.21-15.8 3.88-29.9 0.15-2.54 6.73-21.3 12.5-49.9 0.89-2.49 41-2004

3.32 44.0 56.8 11.1 79.0 135.8 16.0 3320

0.05 0.06 0.53 0.02 1.08 0.85 0.15 2.0

0.29-0.34 2.21-5.26 3.88-7.51 0.15-0.21 6.73-11.1 25.3-49.9 1.32-2.49 41-2004

3.32 31.9 29.4 2.58 79.0 136 16.0 3320

0.03 0.02 0.80 0.02 1.14 1.50 0.01 7.3

0.37-0.58 3.69-4.96 5.60-8.42 0.15-0.21 7.80-12.5 12.5-49.9 0.92-1.93 118-338

1.64 19.1 21.6 1.42 63.8 103.6 12.0 692

0.01 0.20 0.76 0.02 1.11 1.40 0.01 7.0

0.33-0.58 3.69-8.37 5.60-11.2 0.15-0.23 7.80-13.4 12.5-49.9 0.89-1.46 118-407

1.64 18.8 20.0 2.04 63.8 103.6 12.0 1191

0.03 0.17 0.61 0.01 1.08 0.85 0.06 15.7

0.29-1.14 4.01-15.8 3.88-29.9 0.15-2.54 10.8-21.3 14.0-25.3 0.89-1.95 291-726

1.90 44.0 56.8 11.1 79.0 135.8 12.4 1799

while the mean (annual mean values) range represent the optimal conditions for macrophyte rooting and growth.
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Colonization Values

Wate

Temp
°C

Transp
%

DO
mg L-1

pHw
units

Ehw
mV

Sal
psu

NH4
+

µM

Bare/Algae

min 3.1 28 2.15 7.30 31 4.98 0.03

mean 17.1-20.4 74-100 6.82-11.2 8.04-8.20 226-314 20.6-27.0 3.93-15.7

max 33.0 100 19.3 8.63 433 40.6 61.0

All seagrass

min 1.3 74 3.22 7.8 148 13.1 0.01

mean 15.6-18.7 98-100 7.74-11.0 8.16-9.15 240-306 28.7-32.4 1.40-13.0

max 33.7 100 21.1 10.7 465 39.8 41.1

C nodosa

min 1.3 100 3.71 7.83 187 20.5 0.01

mean 17.1-18.2 100-100 7.74-11.0 8.20-9.15 245-306 29.0-32.4 1.40-2.53

max 30.5 100 21.1 10.7 465 39.8 19.5

Z. marina

min 3.4 74 3.22 7.93 148 18.3 0.10

mean 15.6-17.7 98-100 8.42-10.3 8.17-8.36 250-295 28.7-31.2 1.51-2.88

max 30.2 100 17.2 8.63 423 37.4 9.90

Z. noltei

min 2.7 74 3.22 7.80 148 17.3 0.10

mean 15.6-18.7 98-100 8.42-10.8 8.16-8.36 240-295 28.7-31.9 1.51-2.88

max 33.7 100 17.2 8.68 423 37.4 10.7

R. cirrhosa

min 1.3 100 4.52 7.81 175 13.1 0.10

mean 17.6-18.1 100-100 10.0-10.1 8.18-8.23 240-246 29.0-31.4 1.40-13.0

max 31.0 100 11.5 8.79 465 38.9 41.1

Minimum and maximum values recorded from all stations represent the extremes for tolerance and survival of seagrasses or macroalgae,
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TABLE 3 Limits for sediment parameters and macrophyte variables in Northern Italian lagoons.

Macrophytes

Alg.
ov
%

Taxa
N°

Sens.
Taxa
N°

CCA
N°

Chlor.
%

Rhod.
%

MaQI
BQR

0 1 0 0 0 0 0

12.1-
75.8

9.1-9.5 0.0-0.1 0-0.6 33-27 67-73 0.0-
0.47

100 25 8 4 100 100 0.85

1.0 6 0 0 0 1 0.55

11.9-
92.1

19.1-23.2 0.9-4.7 0.40-
2.41

0-97 2-100 0.72-
1.00

100 86 15 5 99 100 1

2.5 6 0 0 1 1 0.75

11.9-
92.1

19.1-22.3 0.9-5.6 0.4-
1.7

38-74 26-62 0.86-
1.00

100 86 15 5 99 99 1.00

1.0 6 0 0 0 2 0.65

37.9-
77.5

19.6.23.2 2.3-4.7 0.40-
2.12

0-68 2-33 0.80-
1.00

100 73 10 5 98 100 1.00

1.0 6 1 0 0 2 0.55

37.9-
77.5

19.6.23.2 2.3-4.7 0.90-
2.41

0-38 2-62 0.72-
1.00

100 73 8 4 98 100 1.00

5.0 2 1 0 0 3 0.65

- - - 0.90-
2.41

0-97 3-100 0.85-
1.00

100 19 7 3 97 100 1.00

range represent the optimal conditions for macrophyte rooting and growth.
ganic nitrogen; DO, dissolved oxygen; Ehw/Ehs, Eh of the water column/Eh of the sediment;
tal/organic/inorganic phosphorus; Rhod, Rhodophyta, RP, reactive phosphorus; Sens, Taxa
ency; TSS, total suspended solids.
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Colonization Values Surface sediments

pHs
units

Ehs Ntot
mg
g-1

Corg
mg
g-1

Porg
µg
g-1

Fines
%

Moisture
%

Dry
Dens.
g

cm-3

Alg.
Biom
g fw
m-2

Bare/Algae

min 6.78 -255 0.19 5.84 13 5.4 25.8 0.31 0

mean 7.25-
7.49

-164 - -7 1.22-3.32 10.1-32.3 53-239 34.4-94.3 34.3-68.4 0.41-1.14 26-2422

max 8.01 153 6.98 76.4 342 97.7 77.5 1.33 4787

All seagrass

min 6.53 -267 0.20 1.4 12 1.27 19.9 0.50 7.0

mean 7.30-
7.62

-190 - +124 0.49-2.18 5.58-
23.5

41-199 2.55-
95.0

27.2-56.9 0.68-1.34 32-792

max 8.19 291 4.66 59.2 314 98.7 77.2 1.56 7500

C nodosa

min 6.94 -250 0.20 1.40 12 1.27 23.4 0.50 7.0

mean 7.30-
7.62

-190 - +124 0.49-1.77 5.58-
15.8

41-160 2.55-
74.9

27.2-56.9 0.68-1.34 32-593

max 8.10 291 4.66 38.8 314 91.4 77.2 1.56 7500

Z. marina

min 6.76 -267 0.24 3.80 15 11.4 19.9 0.59 50

mean 7.41-
7.54

-99 - -5 0.78-1.49 7.59-
15.5

70-100 16.8-
95.0

41.2-43.2 0.92-0.99 161-592

max 8.19 116 2.67 35.1 140 98.7 58.4 1.44 4324

Z. noltei

min 6.76 -215 0.48 3.39 13 11.5 19.9 0.58 50

mean 7.41-
7.59

-60- -5 0.78-1.49 8.63-
15.5

57-100 16.8-
95.0

41.2-53.3 0.74-1.02 161-792

max 8.19 109 4.26 59.2 185 98.7 82.8 1.56 4324

R. cirrhosa

min 6.53 -250 0.48 8.77 38 51.8 25.4 0.50 50

mean 7.30-
7.54

-190- -50 1.16-2.18 15.1-
23.5

77-199 74.6-
91.1

46.4-56.9 0.68-0.90 -

max 8.10 73 4.66 38.8 314 97.4 73.2 1.24 750

Minimum and maximum values recorded from all stations represent the extremes for tolerance and survival of seagrasses or macroalgae and the mean (annual mean values
Alg, algal; Biom, biomass; CCA, crustose coralline algae; Chl-a, tot total chlorophyll-a; Chlor, Chlorophyta; Cov, cover; Corg, organic carbon; Dens, density; DIN, dissolved ino
MaQI, macrophyte quality index; Moist, moisture; NH4

+, ammonium; NO2
-, nitrite; NO3

-, nitrate; Ntot, total nitrogen; pHw/pHs, ph of water/sediment; Ptot/Porg/Pinorg, t
macroalgae sensitive species; RSi, reactive silicates; SPM, settled particulate matter; Taxa, total number of macroalgae species; Temp, Temperature of water; Transp, Transpa
C
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aquatic angiosperms, especially represented by the Chlorophycea

Chaetomorpha linum (O.F. Müller) Kützing. In the past we found

that this species could reach biomasses also higher than 20 kg fw m-

2, without affecting significantly plant survival as it would happen in

the presence of high biomasses of fast growing r-strategy

thionitrophilous species, such as Ulvaceae, Gracilariaceae,

Solieriaceae and other Cladophoraceae. As appears from all the

statistical analyses, C. linum is a sensitive species and apparently

does not suffocate and kill the underlying aquatic angiosperms as it

is associated with environments characterized by good-high

ecological conditions.

Sediment bioturbation by benthic animal species were also

reported to produce substantial losses of transplants, especially in

early life stages like seeds and seedlings. Among these, the lugworm

Arenicola marina Linnaeus (Hughes et al., 2000; Suykerbuyk et al.,

2012; Cronau et al., 2023), the ragworms Nereis diversicolor Müller

(Hughes et al., 2000) and Platynereis dumerilii Audouin et Milne

Edwards (Cronau et al., 2023) and the green crab Carcinus maenas

Linnaeus (1758) were reported (Davis and Short, 1997; Cronau

et al., 2023).
4.2 What species, where and when

Given that the local availability of the seagrass species within

acceptable and practicable limits of explantation and transport is a

fundamental prerequisite, it is noted that all the articles investigated

in Figure 3 and Table S2 on transplant trials of the last decades

focused on transplant techniques, seasonality and the status of the
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prairies of the donor and recipient sites, with serious shortcomings

in consideration of the water and sediment parameters/variables of

the recipient sites, which are instead fundamental in predicting a

successful rooting of aquatic angiosperms. Frequently, the criteria

for choosing the sites are not clearly identified or the selected areas

were close to already present prairies which probably presented

similar and suitable conditions such as to guarantee the success of

transplant operations. The authors focused on the texture of the

sediments reporting how: Z. marina thrives in silty sediments; Z.

noltei is prevalent in inner areas characterized by predominantly

silty sediments, shallow waters and muddy expanses; C. nodosa

establishes itself in regions characterized by elevated salinity and

coarse sediments (Curiel et al., 2021) and R. cirrhosa thrives in very

fine sediments (Munari et al., 2023). However, our results show that

the texture of the sediments is not the only parameter to take into

consideration, given the wide tolerance ranges for Fines of aquatic

angiosperms, and that organic carbon, organic phosphorus and

total nitrogen appear to be parameters of the sediment most

significant in site selection. Similarly, seasonality is an important

parameter in ensuring a successful colonization of the species, but

up to date most of the transplant trials (Table S2) took place in late

spring/early summer without taking into account the life cycle of

the species. In this regard, it has been reported that is advisable to

refrain from transplanting Z. marina in summer. Conversely,

autumn is advisable as a transplant season for Z. marina being

less stressful for the transplants and producing higher shoot

expansion (Li and Lee, 2010; Li et al., 2014). This fact was

confirmed by Sfriso et al. (2021), who reported autumn as the

best season for Z. marina transplants, late spring and autumn for Z.
FIGURE 3

Seagrass restoration trials reported for C. nodosa, R. cirrhosa, Z. marina and Z. noltei. Additional information provided in supplementary material
Table S1. 1. Ranwell et al. (1974), 2. Zimmerman et al. (1995), 3. Davis and Short (1997), 4. Curiel et al. (2003), 5. Martins et al. (2005), 6. Bos and Van
Katwijk (2007), 7. Zarranz and Gonza (2010), 8. Balestri and Lardicci (2012), 9. Suykerbuyk et al. (2012), 10. Li and Lee (2010)/Li et al. (2014), 11. Valle
et al. (2015), 12. Suykerbuyk et al. (2016), 13. Paulo et al. (2019), 14. Da Ros et al. (2020), 15. Sfriso et al. (2021), 16. Cronau et al. (2023).
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noltei, late spring and early summer for C. nodosa and summer-

autumn for R. cirrhosa.

The literature on R. cirrhosa transplants is quite poor. This

species is different from the other investigated here; in fact, it is

associated with conditions of environmental quality on average

lower, living in choked and eutrophic areas in very fine sediments.

These conditions are well tolerated as it is also highlighted by the

limits proposed in Table 2 and Table 3. Besides, R. cirrhosa was

reported to be associated with poor levels of environmental quality

determined by means of the M-AMBI benthic quality index in the

Comacchio Ponds – Italy (Munari et al., 2023). This species

manifested an unstable presence in TWS, quickly forming

meadows in just one year, then disappearing and reappearing

after few years (Sfriso et al., 2021). These premises seem to

suggest that R. cirrhosa could be a poor choice in a transplant

strategy; however, the wide tolerance range of this species can make

it an exceptional pioneer species in choked areas that are strongly

affected by freshwater influence or are characterized by a high

trophic status, where the survival of other aquatic angiosperms is

disadvantaged. R. cirrhosa meadows displayed a positive influence

on macrofaunal abundance and diversity (Boström et al., 2011;

Munari et al., 2023) and, moreover, an area colonized by this species

is generally one step higher on an ecological quality scale than beds

of nuisance macroalgae, avoiding summer biomass collapse.

Therefore, R. cirrhosa can represent a pioneer species in an

ecological restoration project by initiating a process of ecological

succession and sediment stabilization, which can subsequently favor

the colonization by other seagrass species, such as Z. noltei or

Z. marina.
4.3 Using the limits

The limits for plant rooting, survival and growth proposed here

are not meant to be considered as insurmountable barriers, also

considering the geographical delimitation of the investigated sites

that are Mediterranean microtidal lagoons. These limits represent a

guideline for determining the suitability of a site for transplantation

of different species and to evaluate the chances of success, which are

lower the farther away are the parameters/variables from the

average/optimum reported values. Our proposal on their use in a

preliminary site evaluation is as follows. A spatial and temporal

punctiform sampling on the candidate recipient site allows to

understand whether we are within the minimum and maximum

survival limits for the various parameters/variables. However, a

single sampling is too little to provide a reliable average of the

environmental parameters/variables and to identify whether we are

within the optimum range. For this reason, a minimum average

value of 2 surveys (spring and autumn) at least is proposed, but

possibly better one per season, to mediate the environmental

conditions during the year. The most relevant parameters to

consider in this evaluation, and that should be prioritized, are:

water transparency, total Chl-a and nitrates or DIN, for the water

column; Porg, Pinorg and Fines percent, for the sediments, and the

presence/absence of sensitive macroalgae, especially CCA species.
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These calcareous species are particularly sensitive to environmental

changes, more than aquatic angiosperms. In fact, they respond to

environmental changes in a few months and are easily monitored

because they grow as epiphytes on all large macroalgae, so their

presence is easily monitored, even in the absence of angiosperms

and in the presence of a few thalli of other species. Their presence/

absence alone is the best index for evaluating an environment in

good or bad environmental conditions (Sfriso et al., 2020b).

In this study, the previous experiences and available data on the

Adriatic microtidal lagoons have been elaborated for the definition

of physico-chemical parameters, macroalgal variables and limit

values, optimal for rooting and growth, as well as survival of the

aquatic angiosperms that should be monitored on a potential

recipient site before carrying out the transplant activity in plant

restoration. The parameters/variables defined here represent a

guideline to select suitable sites for angiosperm transplants and

for the identification of critical conditions that may compromise or

optimize the success of transplant actions.
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