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The characteristics and mechanism of the southern South China Sea (SCS)

Western Boundary Current (WBC) summer-winter transition have been

investigated. The transition typically starts in early October and lasts for about

two weeks. Above the thermoclines (~100 m), the transition is simultaneous with

depth, while below the thermoclines the transition in deeper layer significant lags

that in the shallow layers. The geostrophic balance dominates the transition of

WBC. Above the thermocline, the transition is determined by the barotropic

pressure gradient component. Below the thermocline, the transition is

determined by the competition between the barotropic and baroclinic pressures

components. When the southern SCS WBC transition above the thermocline

starts, the barotropic and baroclinic pressures components offset each other

below the thermocline, resulting in the lag of the geostrophic balance. With the

depth increases, more time is needed for the barotropic pressures component to

enhance enough to dominate a geostrophic balance, which induces the transition

lag with depth. Changes in the barotropic pressure gradient component aremainly

due to the variations in SCS basin scale wind stress curl, while changes in the

baroclinic pressure gradient component below the thermocline are associated

with the warming of the deeperwater column caused by the downwelling near the

continental slope and the disappearing of upwelling off Vietnam.

KEYWORDS

Western boundary current, autumn transition, barotropic pressure, baroclinic pressure,
South China Sea
1 Introduction

The South China Sea (SCS) is a semi-enclosed marginal sea located in Southeast Asia

with a northeast-southwest orientation. It connects to neighboring seas through several

straits, including the Luzon Strait, the Karimata Strait, the Taiwan Strait, and the Mindoro

Strait (Wyrtki, 1961). The upper-layer circulation within the SCS is primarily influenced by
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the monsoon and the exchange of water between the SCS and its

neighboring seas (Qu, 2000; Jilan, 2004). During summer, the SCS

circulation exhibits a cyclonic pattern in the north and an

anticyclonic pattern in the south. In contrast, a basin-scale

cyclonic circulation appears in winter (Shaw and Chao, 1994; Liu

et al., 2001; Wang et al., 2003; Gan et al., 2016). In addition, the

monsoon plays a significant role in enhancing the West Boundary

Current (WBC) along the continental slope at the western boundary

of the SCS basin (Qu et al., 2005; Wang et al., 2013; Chen and Xue,

2014). The SCS WBC is a critical component of the SCS circulation

system, influencing the vertical water column structure and heat

flux in the SCS. Consequently, the processes and physical

mechanisms governing its changes have garnered substantial

attention (Cai et al., 2003; Liu et al., 2008; Hu et al., 2011; Wang

et al., 2019).

The WBC exhibits variations on multiple time scales and

displays a distinctive seasonal reversibility pattern (Dale, 1956;

Wyrtki, 1961; Fang et al., 2012). Seasonal variations in the SCS

WBC primarily result from the combined influences of wind stress

and intensified Luzon Strait Transport (LST) (Hu et al., 2000; Xue

et al., 2004; Gan et al., 2006). During the summer season, driven by

the synergistic effects of the southwest monsoon and the beta

effect, the WBC experiences a northward flow, giving rise to a

summer eastward jet (SEJ) along the Vietnamese coastline (Chu

et al., 1999; Cai et al., 2005; Ngo and Hsin, 2021). Consequently, a

dipole structure forms, effectively impeding further northward

WBC progression (Wang et al., 2006b; Liu et al., 2008).

Conversely, during the winter season, the SEJ and its associated

dipole structure dissipate due to the influence of the northeast

monsoon, leading to intensified transport through the LST (Chern

et al., 2010; Qiu et al., 2019). The WBC subsequently alters its

course, flowing southward along the Vietnamese coastline. Part of

this flow enters the southern SCS, forming a cyclonic circulation,

while the remaining portion moves toward the continental shelf of

the Sunda Islands (Cai et al., 2002; Zheng et al., 2006; Gan

et al., 2016).

The WBC also exhibits interannual-scale variability due to

combined influences on the heat flux and surface circulation in

the SCS (Fang et al., 2006; Chang et al., 2008; Shu et al., 2016; Xiao

et al., 2022). In the southern SCS, El Niño events and local wind

stress curl jointly regulate the interannual variability of the WBC

(Chao et al., 1996; Wang et al., 2006a; Zu et al., 2019). During El

Niño events, the WBC experiences significant weakening, as

observed during the robust El Niño event in 2015/2016,

coinciding with the historical weakest state of the SCS WBC

(Zhao and Zhu, 2016; Da et al., 2019). The SEJ indirectly impacts

the WBC (Xie et al., 2003; Li et al., 2014). The negative wind stress

curl, governed by the Sverdrup equilibrium, controls SEJ transport,

leading to interannual synchronized variations in the SEJ and the

southern SCS WBC (Chen and Wang, 2014; Sun and Lan, 2021).

Previous studies have indicated a positive correlation between

changes in LST and the interannual variability of the northern

SCS WBC. The SCS WBC strengthens as LST gradually intensifies

and vice versa (Zu et al., 2019; Wang et al., 2023). The inverse

correlation between the SEJ and the northern WBC on interannual

scales underscores the critical contribution of LST, and quantitative
Frontiers in Marine Science 02
vorticity estimates suggest that LST is as influential as the monsoon

(Zu et al., 2020).

Previous studies have primarily examined the characteristics of

the WBC in different seasons. Xie et al. (2022) analyzed the

dynamics and physical mechanisms of the winter-summer

transition of the SCS WBC using the momentum equation.

However, the transition from summer to winter remains poorly

understood, necessitating further investigations. This study

addresses this knowledge gap by analyzing the spatial and

temporal variations, depth structure, and physical mechanisms of

the southern SCS WBC to advance our understanding. This

research contributes to a better comprehension of energy and

heat fluxes within SCS waters (Qu et al., 2004; Chen et al., 2014;

Shu et al., 2018; Wang et al., 2021; Luo et al., 2022; Liu et al., 2023)

and supports improved marine resource management and

ecosystem preservation (Ning et al., 2004; Hein et al., 2013; Lu

et al., 2018; Ding et al., 2022).

Noteworthy variations revealed by HYCOM data within the

Southern WBC (Figure 1) during the transition from summer to

winter will be investigated in this study to understand the dynamic

processes and physical mechanisms of the SouthernWBC. Section 2

introduces the data and experimental methods used, Section 3

presents the transition phenomena and results of the momentum

equation analysis, while Section 4 offers a discussion and Section5

gives a conclusion regarding the transition.
2 Data and method

2.1 Data

The Hybrid Coordinate Ocean Model [HYCOM; Cummings

and Smedstad (2013)] analysis product is used for investigating the

southern SCS WBC transition from summer to winter. HYCOM

possess a horizontal grid spacing of 1/12° x 1/12° and 30 vertical

layers. For the purposes of this study, the period spanning from

1993 to 2016 has been selected due to data availability

and relevance.

Sea surface height (SSH) and associated geostrophic current

with spatial resolution of 0.25° × 0.25° from 1993 to 2016 from

Archiving, Validation and Interpretation of Satellite Oceanographic

Data (Ducet et al., 2000) are used in the study.

The area where the winter and summer flow axes overlap for the

southern WBC region was selected in this study (Figure 1), and

chose two representative stations close to the flow axis at depths

deeper than 300 m were chosen. For Station A and Station B, B fits

better than A, while the deviation is slightly larger for Station A. For

all stations the velocities of HYCOM performs smaller than that of

AVISO in November. To explain the reasons of the different

transition in the depth, the ocean has been divided into two

layers: above the thermoclines (0-100 m) and below the

thermoclines (100-300 m).

The surface meridional velocities of currents were compared

with the AVISO data and HYCOM data which taking the 0-100 m

vertical averaged (Figures 2A-C). The above summer-winter

southern SCS WBC transition process has also been present by
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FIGURE 2

Left panel: the comparison of meridional flow velocities of AVISO and HYCOM 0-100 m vertical averaged for the Box (A), Station A (B) and Station B
(C) in the southern WBC of SCS, AVISO in red and HYCOM in blue. Right panel: is the radial flow velocity profiles of HYCOM 0-300 m for the Box
(D), Station A (E) and Station B (F).
FIGURE 1

Flow field averaged between 0 and 100 m in August (A), September (B), October (C), and November (D) from HYCOM data. The color of arrows
represents the velocities of currents, and the solid lines represent the 100 m and 1000 m isobaths, respectively. The black box in the figure shows
the typical area of the southern WBC, and the black dots represent the two typical sites A and B in the area.
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both of the HYCOM and AVISO meridional velocity series at the

selectedWBC stations. The close proximity of AVISO and HYCOM

velocities from the Box verifies the availability of the HYCOM data

and the fact that the transformation process in the 0-100 m layer is

almost identical to that in the surface layer. Previous studies have

also shown that HYCOM’s data in the SCS is reliable (Gordon et al.,

2012; Xie et al., 2022; Zhu et al., 2022).

The 10-meter wind field from the European Centre for

Medium-Range Weather Forecasts Reanalysis Interim [ERA-5;

Hersbach et al. (2020)] reanalysis products from 1993 to 2016

with spatial resolution of 0.25° × 0.25° is used in the study.
2.2 Methods

To investigate the mechanism of the WBC transition from the

summer to winter, momentum balance diagnosis has been utilized

(Qiu, 2000; Wang et al., 2010; Liu et al., 2014; Xie et al., 2022):
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Term 1) on the left side of equation is the acceleration, and the

right-side terms are labeled as 2) advection, 3) Coriolis Force, 4)

pressure gradient, 5) horizontal and 6) vertical diffusion,

sequentially. The diffusion terms are ignored in the following

analysis owing to the lack of diffusion coefficient from HYCOM

and its relatively small contribution on the quasi-geostrophic scale

(Gan and Qu, 2008).

Further, the pressure gradient can be interpreted in another way

(Wang et al., 2015):
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Term 1) is the pressure gradient, 2) is the barotropic pressure

gradient, and 3) is the baroclinic pressure gradient. Where g is the

acceleration of gravity, r0 is the mean sea water density (1025kg m-

3), h is SSH. Since atmospheric pressure has a tiny effect on the total

pressure gradient, it is assumed to remain constant.

The formula (3) for wind stress and formula (4) for wind stress

curl used in the paper are as follows (Bakun and Nelson, 1991;

Enriquez and Friehe, 1995):

t = raCd Vj jV (3)

curlz =
∂ ty
∂ x

−
∂ tx
∂ y

(4)

Where t is the wind stress vector, ra=1.23kg·m–3 is the mean air

density, Cd=1.2x10
–3 is the dimensionless drag coefficient, |V| is the

wind speed and V is the wind vector, respectively.
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3 Results

3.1 Summer-winter transition of western
boundary current

During August to November, the summer-winter southern SCS

WBC transition occurs (Figure 1). In August, a strong SEJ still

dominates the southern SCS, while its northern side has been

replaced by southward WBC gradually (Figure 1A). In September,

the SEJ weakened as the northeast monsoon emerged, leading to the

rapid development of the northern WBC (Figure 1B). By October,

the SEJ fractured at its root, while the WBC extended to the south of

Vietnam (Figure 1C). In November, the WBC extended to cover the

entire SCS basin, coinciding with the complete disappearance of the

SEJ (Figure 1D). Unlike the gradual transition of the spring WBC

(Xie et al., 2022), the transition from summer to winter developed

remarkably rapid.

Its transition starts in early October. During its transition, the

start time is significantly different above and below the thermocline

(Figures 2D-F). Above the thermocline, the transition behaves

consistently in depth. Below the thermocline, the transition in the

deeper layer significantly lags that in the shallower layer.
3.2 Momentum balance

Momentum equation terms at station B have been shown in

Figure 3, which behaves similar to other regions (i.e., station A and

the box). To more effectively depict the seasonal transition process

of the southern SCS WBC, the zonal-meridional coordinates were

transformed into principal axis coordinates (Xm direction and Ym

direction) for the mean velocity variance.

The results confirm that the geostrophic equilibrium dominates

the summer-winter WBC transition. At the beginning of October,

the acceleration is negative in Xm direction, which provides a good

condition for the transition of WBC (Figure 3A), while the

acceleration in the Ym direction is also negative, illustrating that

the WBC is diminishing and finally flowing southward (Figure 3G).

From the changes in the Coriolis force and pressure gradient, it

is evident that the transition above the thermocline occurs at the

same time, and the transition below the thermocline lags behind

that above the thermocline, showing that the time of the shallow-to-

deep transition is constantly moving backward (Figures 3C, D).

The barotropic pressure gradient dominates the transition above

the thermocline, which triggers the consistent transition in depth

(Figures 3D, E, J, K). Below the thermocline, the contribution of

baroclinic component to the pressure gradient increase with depth

(Figures 3D, F, J, L). At the beginning of the barotropic pressure

gradient transition, its amplitude is equivalent to the baroclinic

component. Therefore, time is needed for the barotropic component

to grow large enough to overcome the baroclinic component and

dominate the geostrophic equilibrium balance below the thermocline,

which induces different transition in the depth.

To further investigate the distinct transitions above and below the

thermocline, we have plotted the time series of the vertical integration
frontiersin.org
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of the Coriolis force, pressure gradient, and wind stress acting above the

thermocline for both water layers (Figure 4). The Coriolis force and

pressure gradient exhibit an inverse relationship in maintaining

equilibrium, albeit with more pronounced fluctuations in the

pressure gradient. The point of intersection between these two terms

indicates the timing of the transition in the respective layer. Notably, in

both the Xm and Ym directions, the transition below the thermocline

occurs later than that above the thermocline, confirming a delay of

approximately two weeks in the below-the-thermocline transition.

Furthermore, the influence of local wind stress lags behind the

transition above the thermocline, suggesting that local wind stress

does not play a dominant role in the WBC transition (Figures 4A, C).

To solid our understanding of pressure gradient variations

above and below the thermocline, we have plotted time series

data for each component of the pressure gradients in the Xm and

Ym directions at Station B (Figure 5). Above the thermocline, where

the baroclinic pressure gradient has not yet gained sufficient

strength, the barotropic pressure gradient predominantly

influences the overall pressure gradient trend (Figures 5A, C),

resulting in nearly identical profiles. Consequently, the Coriolis

force and the pressure gradient above the thermocline both deviate

simultaneously when the barotropic pressure gradient crosses the

zero point. This signifies that the diversion of the WBC above the
Frontiers in Marine Science 05
thermocline is primarily driven by the barotropic pressure gradient

(Figures 3C, D, I, J). In contrast, below the thermocline, the

baroclinic pressure gradient significantly intensifies, leading to a

competition between the baroclinic and barotropic pressure

gradients in steering the flow (Figures 5B, D, 3F, L). Below the

thermocline, the barotropic pressure transitions from negative to

positive before the pressure gradient. This occurs because the

baroclinic pressure gradient and the barotropic pressure gradient

reach an impasse until the barotropic pressure gradient surpasses

the baroclinic pressure gradient in strength, gaining the upper hand

in the competition, and subsequently, the pressure gradient

undergoes diversion. Notably, both the pressure gradient and the

barotropic pressure gradient cross the zero point above the

thermocline almost simultaneously.
4 Discussion

4.1 Dynamic factors above the thermocline

The large scale circulation of SCS is primarily governed by

Sverdrup equilibrium, which is driven by wind stress curl (Sun and

Lan, 2021). This relationship is clearly demonstrated in Figure 6,
A

B

C

D

E

F

G

H

I

G

K

L

FIGURE 3

Momentum analysis results for Station B. The left panel is in the Xm direction and the right panel is in the Ym direction. From top to bottom are
acceleration term (A), (G), advection term (B), (H), Coriolis force term (C), (I), pressure gradient term (D), (J), barotropic pressure gradient term (E),
(K), and baroclinic pressure gradient term (F), (L), with acceleration and advection multiplied by 10.
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where a strong correlation exists between the barotropic pressure

gradient of the southern WBC and the wind stress curl in the

southern basin of the SCS (Figure 6A). During August, when the

wind stress curl is predominantly negative, the barotropic pressure

gradient also exhibits a negative trend (Figure 6B). Conversely, in
Frontiers in Marine Science 06
November, when the wind stress curl becomes predominantly

positive, the barotropic pressure gradient follows (Figure 6C). The

change in wind stress curl from negative to positive is subsequently

mirrored by a shift in the southern WBC. Notably, the transition in

wind stress curl occurring before October precedes the southern
A

B

C

D

FIGURE 5

Time series of every components of the pressure gradient at Station B. (A) above the thermocline in Xm direction (B) below the thermocline in Xm
direction (C) above the thermocline in Ym direction (D) below the thermocline in Ym direction. The green line represents the barotropic pressure
gradient, the blue line represents the baroclinic pressure gradient, and the red line represents the pressure gradient.
A

B

C

D

FIGURE 4

Time series of momentum analysis for Station B. (A) above the thermocline in Xm direction (B) below the thermocline in Xm direction (C) above the
thermocline in Ym direction (D) below the thermocline in Ym direction. The green solid line in the figure represents the Coriolis force, the red solid
line represents the pressure gradient, and the black solid line is the wind stress.
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WBC transition, providing evidence of a positive correlation between

wind stress curl and the steering of the southern WBC above the

thermocline in the southern SCS basin.
4.2 Dynamic factors below the thermocline

The baroclinic pressure gradient exhibited a strong positive

correlation with the temperature gradient but a negative correlation

with the salinity gradient (Figure 7A). This suggests that variations

in the baroclinic pressure gradient are primarily driven by

temperature changes, while salinity has a small impact.

Subsequently, we calculated the baroclinic pressure gradient with

temperature and salinity set as constants—temperature at 35°C and

salinity at 32 psu (Figure 7B). Our analysis found that both sets of

experimental results closely matched the actual baroclinic pressure

gradient trends. Notably, keeping temperature constant had little

effect on the gradient, while maintaining constant salinity resulted

in significant gradient variations. This observation highlights that

temperature fluctuations play a significant role in driving changes in

the baroclinic pressure gradient.

Prior to the transition, the temperature within the southern

WBC exhibited a consistent pattern characterized by higher

temperatures to the south and lower temperatures to the north.

This distribution was accompanied by upwelling along the coastal
Frontiers in Marine Science 07
slope near the Vietnamese offshore region. The dense isothermal

line corresponded to the location of the SEJ (Figures 8A, B).

Following the transition, the concentration of isotherms

dissipated, and a cold band extended along 110°E, spanning the

western edge of the SCS. This shift indicated that the WBC had

completed its turn around southeast Vietnam and was now heading

directly southward to 6°N (Figures 8C, D). Accompanying the SCS

WBC transition, the water along (outside) the slope warms up

(cools down) due to downwelling (upwelling) (Figures 8E, F).
5 Conclusion

Based on HYCOM and AVISO data, the characteristics and

physical mechanisms of the southern SCS WBC summer-winter

transition are analyzed. The transition begins in early October, and

lasts for about two weeks. The transition of the WBC in fall is

dominated by the balance between the Coriolis force and the pressure

gradient, and the transition process above the thermocline (0-100 m)

is rapid, whereas the transition time below the thermocline (100-300

m) lags behind with the increase of the depth.

Above the thermocline, the dominant factor influencing the

transition is the barotropic pressure. At the basin scale in the

southern SCS, the wind stress curl exhibits an increasing and

reversing pattern, and its changes correlate positively with the
A

B C

FIGURE 6

(A) The time series of the mean wind stress curl averaged within the black box marked in Figure 1 and X-direction barotropic pressure gradient of
Station B. (B, C) are the climatological wind stress and curl in August and November, respectively. Vectors represent wind stress and colors represent
its curl.
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barotropic pressure gradient. This correlation drives the transition

of the WBC from a summer state to a winter state under

geostrophic equilibrium.

Below the thermocline, as the depth increases, the baroclinic

pressure begins to gradually enhanced, which is equivalent to the

barotropic pressure gradient component deepening. The greater

the depth, the longer the barotropic needs to be stronger than the

baroclinic, which results in a delay in the transition of the WBC

below the thermocline compared to above the thermocline. This

lag time increases with greater depth. The change of the baroclinic
Frontiers in Marine Science 08
pressure below the thermocline is mainly due to the downwelling

along the continental slope east to the Vietnam.
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FIGURE 8

Comparison of vertically averaged (100-300 m) temperatures before and after transition of the southern WBC. The left panel is before the transition,
the center panel is after the transition, and the right panel is the temperature difference before and after the transition. (B, D, F) Temperature profiles
along the 10°N latitude in the (A, C, E), respectively.
A B

FIGURE 7

(A) Time series of temperature gradient, salinity gradient, and baroclinic pressure gradient. The dark (light) yellow R represents the correlation
coefficient between the baroclinic pressure gradient and the salinity gradient (temperature gradient). (B) Time series of the Baroclinic Pressure
Gradient (BPG) and the BPG when salinity (temperature) are constants. R in dark (light) yellow represents the correlation coefficient between the
BPG and the BPG when salinity (temperature) is constant.
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