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Oceanic dissolved oxygen (DO) decline in the Indian Ocean has profound

implications for Earth’s climate and human habitation in Eurasia and Africa.

Owing to sparse observations, there is little research on DO variations, regional

comparisons, and its relationship with marine environmental changes in the entire

Indian Ocean. In this study, we applied different machine learning algorithms to fit

regressionmodels betweenmeasured DO, ocean reanalysis physical variables, and

spatiotemporal variables. We utilized the Extremely Randomized Trees (ERT)

model with the best performance, inputting complete reanalysis data and

spatiotemporal information to reconstruct a four-dimensional DO dataset of the

Indian Ocean during 1980–2019. The evaluation results showed that the ERT-

based DO dataset was superior to the DO simulations in Earth System Models

across different time and space. Furthermore, we assessed the spatiotemporal

variations in reconstructed DO dataset. DO decline and oxygen-minimum zone

(OMZ) expansion were prominent in the Arabian Sea, Bay of Bengal, and Equatorial

Indian Ocean. Through correlation analysis, we found that temperature and salinity

changes related to solubility primarily control the oxygen decrease in the middle

and deep sea. However, the complicated factors with solubility change, vertical

mixing, and circulation govern the oxygen increase in the upper and middle sea.

Finally, we conducted a volume integral to estimate the oxygen content in the

Indian Ocean. Overall, a deoxygenation trend of −141.5 ± 15.1 Tmol dec−1 was

estimated over four decades, with a slowdown trend of −68.9 ± 31.3 Tmol dec−1

after 2000. Under global warming and climate change, OMZ expanding and

deoxygenation in the Indian Ocean are gradually mitigating. This study enhances

our understanding of DO dynamics of the Indian Ocean in response

to deoxygenation.

KEYWORDS

measured dissolved oxygen, Indian Ocean, ocean reanalysis data, machine learning,
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1 Introduction

The overall decline in dissolved oxygen (DO) is a critical

oceanic environmental problem in marine ecosystems, primarily

driven by climate change (Keeling et al., 2010; Deutsch et al., 2011).

Extensive monitoring has revealed widespread deoxygenation in

oceans worldwide, highlighting the alarming scale of this

environmental issue (Helm et al., 2011; Ito et al., 2017; Schmidtko

et al., 2017). The reduction in oceanic oxygen levels has severe

implications for marine life and biogeochemical processes,

disrupting marine productivity, biodiversity, and nutrient cycling

(Gruber, 2011; Stramma et al., 2012).

The Indian Ocean is the third largest ocean in the world and

plays an important role in modulating the global climate. The

unique geographical conditions, monsoon climate, and ocean

circulation influence the existence of numerous hypoxic and

anoxic waters in the Indian Ocean, forming the second largest

oxygen-minimum zones (OMZs) in the world (Stramma et al.,

2008; Stramma et al., 2010). Long-term observations of ocean

temperature in the Indian Ocean reveal a rapid and sustained

warming trend (Roxy et al., 2014). As ocean temperature here

continues to rise, hypoxic areas may continue to expand and

deoxygenation will become more severe (Breitburg et al., 2018;

Levin, 2018; Oschlies et al., 2018; Zhou et al., 2022).

The Indian Ocean has a smaller and more varied deoxygenation

pattern compared to the Pacific and Atlantic Oceans due to distinct

physical characteristics, especially with the influence of the

monsoon (Naqvi, 2021). However, the Arabian Sea (AS) and Bay

of Bengal (BB) contain large volumes of naturally oxygen-depleted

waters, which means that even minor changes in oxygen levels can

have significant impacts on the marine ecosystem and its associated

resources (Rixen et al., 2020).

At present, DO observations in the Indian Ocean are sparse in

spatiotemporal distribution, making it challenging to estimate the

long-term DO trend. For instance, Schmidtko et al. (2017) mapped

the global spatial DO trend distribution based on multiple

measured databases, but their study lacked continuous DO time

series in the AS and BB and avoided estimating trends in those

regions due to low data coverage. Furthermore, although many

Earth System Models (ESMs) attempt to simulate global oceanic

DO, these models do not incorporate data assimilation with actual

observations. Consequently, numerical models consistently

underestimate the actual DO decline trends (Bopp et al., 2013;

Cocco et al., 2013; Long et al., 2016; Kwiatkowski et al., 2020).

Additionally, existing research in the Indian Ocean often focuses on

the small parts of OMZs, while comprehensive analyses and

regional comparisons of DO and its relationship with marine

environmental changes are still relatively limited.

Meanwhile, data-driven methods have become popular and

made many advances in theoretical understanding of the ESMs

(Reichstein et al., 2019; Irrgang et al., 2021). Compared with

traditional empirical methods, machine learning algorithms have

higher computational speed and fewer assumptions on the data and

are effective in modeling highly non-linear relationships. Therefore,

machine learning has found widespread application in marine

biogeochemistry (BGC), and it also has made significant progress
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in oceanic DO modeling (Sadaiappan et al., 2023). Giglio et al.

(2018) employed a random forests (RF) regression algorithm to

estimate DO fields at the depth of 150 m in the Southern Ocean

based on temperature, salinity, and DO Argo profiles collected

during 2008–2012. Zhou et al. (2022) applied geostatistical

regression combined with Monte Carlo methods to estimate

global spatiotemporal OMZ variations during 1960–2019,

utilizing DO minimum values from the ESMs and multiple

measured DO databases. Sharp et al. (2023) successfully

reconstructed a global four-dimensional (4D) DO dataset in the

upper 2000 m ocean during 2004–2022 using a combination of a

feed-forward neural network and RF models, based on temperature,

salinity, and DO data from Argo floats and hydrographic cruise

measurements (GLODAP version 2).

The issue of DO 4D modeling using machine learning methods

has been addressed, but the spatiotemporal range of previous

reconstructions using Argo grid products has been strictly

constrained due to the relatively late implementation of the Argo

project and the limited depth range measured by BGC float sensors.

To overcome this challenge, we contemplate the incorporation of

reanalysis data to model historical marine environmental changes at

larger spatiotemporal scales. Although ocean reanalysis data may

exhibit limited precision in comparison to Argo products, they

extend to earlier time periods (before the 2000s) and cover a

broader depth range (below 2,000 m to the bottom). Hence, we

consider using machine learning algorithms to estimate a larger

spatiotemporal-scale DO field based on ocean reanalysis data in the

Indian Ocean. This approach has the potential to investigate the

full-depth DO structure in the Indian Ocean and its spatiotemporal

variations over the past several decades.

In this study, we applied a machine learning model with the best

performance to reconstruct a 4D DO dataset of the Indian Ocean

from 1980 to 2019 combining DO observations, ocean reanalysis

data, and spatiotemporal information. We analyzed spatiotemporal

DO distribution and trends, investigated driving factors, and

assessed long-term oxygen environment changes under global

warming. Our approach provided a comprehensive and

continuous perspective to better understand the dynamics and

impact of deoxygenation in the Indian Ocean. These findings

hold significant relevance for the ecological management of

oxygen levels in the Indian Ocean and can provide decision-

making guidance for biological resource management and marine

environmental protection under climate change.
2 Data collection and processing

2.1 Data sources

2.1.1 Field data
The study utilizes DO measurement data obtained from the

Ocean Station Data (OSD) and Conductivity–Temperature–Depth

(CTD) datasets in the World Ocean Database 2018 (WOD18)

(Boyer et al., 2018), which were downloaded from https://

www.ncei.noaa.gov/products/world-ocean-database. The DO data

in the OSD span from 1878 to 2020, and the DO data in the CTD
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span from 1971 to 2020. We only considered the data up to 2019

because the Indian Ocean has no observational records in 2020. DO

records in the OSD and CTD datasets have the temporal resolution

accurate to the day and hour. Schmidtko et al. (2017) have

suggested a high degree of consistency between these two

databases, allowing us to assume their congruence.

The selected data records include time, spatial coordinates,

depth, temperature, salinity, and oxygen concentration marked

with a quality pass score of 0. The measured data from different

types were integrated and subjected to quality control measures for

further processing.

2.1.2 Reanalysis data
Previous research has demonstrated the strong consistency in

long-term variations of oxygen content and ocean heat content

calculated using ocean reanalysis data (Ito et al., 2017). Therefore, it

is worth attempting to reconstruct the whole oxygen field using

reanalysis products. Also, there is a crucial upward shift in ocean

heat content variations after 1980 (Cheng et al., 2017; Ito et al.,

2017), and DO variations have become particularly sensitive during

the ocean warming period (Keeling et al., 2010).

Therefore, we focused on oxygen change after this key turning

point, utilized abundant DO profile data as much as possible, and

determined the reconstruction task to encompass the period from

1980 to 2019. For this time span, we selected a representative

reanalysis dataset product, Simple Ocean Data Assimilation version

3.4.2 (SODA v3.4.2) (Carton et al., 2018), as the physical

background field for DO reconstruction. SODA v3.4.2 was

downloaded from https://dsrs.atmos.umd.edu/DATA/soda3.4.2/

REGRIDED/ocean/, and it has a monthly average temporal

resolution and a spatial resolution of 0.5°×0.5°×50 depths ranging

from 0 to 5,395 m. This dataset is widely employed in historical

oceanic research and effectively mitigates systematic biases in ocean

environmental variables compared to the previous generation

SODA version 2.x.

The drivers of DO fluctuation have complicated mechanisms

(Oschlies et al., 2018; Garcia-Soto et al., 2021). DO is influenced not

only by saturation but also by various factors such as apparent

oxygen consumption (AOU), circulation transport, and monsoons

(Sarma et al., 2013; Lachkar et al., 2018). Considering that multiple

factors can affect DO, we selected various oceanic factors to

characterize the ocean warming, circulation, ocean stratification,

and wind forcing within ocean dynamics. In feature selection, this
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study extracted 4D variables, including seawater temperature

(temp), salinity (salt), potential density (prho), and ocean current

fields (u, v, and w), as well as three-dimensional (3D) variables

encompassing wind stress fields (taux and tauy) and sea surface

height (ssh) for DO modeling. Owing to concerns about feature

redundancy, we did not use other remaining 3D variables in

SODA v.3.4.2.

2.1.3 Auxiliary data
In this study, additional auxiliary data were also employed.

ETOPO-1 data (Amante and Eakins, 2009) were applied to

characterize the distribution of seabed bathymetry, and they were

downloaded from https://www.ncei.noaa.gov/products/etopo-

global-relief-model. To evaluate the performance of ocean model

data, this study selected six types of DO datasets from the Coupled

Model Intercomparison Project Phase 6 (CMIP6), including

ACCESS-ESM1-5 (Ziehn et al., 2020), CanESM5 (Swart et al.,

2019), CMCC-ESM2 (Lovato et al., 2022), CNRM-ESM2-1

(Séférian et al., 2019), GFDL-ESM4 (Dunne et al., 2020), and

MPI-ESM1-2-HR (Mauritsen et al., 2019). The detailed

information about those CMIP6 datasets is presented in Table 1.

CMIP6 datasets use the newest ocean model for oxygen forecasting,

and these data were downloaded from https://esgf-node.llnl.gov/

projects/cmip6/. We used historical data to represent the simulation

from 1980 to 2014. Existing studies suggest that there is not a

significant divergence in short-term DO trend prediction under

different scenarios (Kwiatkowski et al., 2020). Therefore, we selected

Socioeconomic Pathway 5-8.5 (SSP5-8.5) data to represent the

simulation from 2015 to 2019. Because of varying resolutions of

the selected CMIP6 data, we utilized Climate Data Operators

(CDO) software to uniformly resample these CMIP6 data into the

grid of 0.5°×0.5° with 50 vertical depths in SODA v3.4.2 shape

dimensions, which is named DOCMIP6 in the following context. For

the purpose of further comparative analysis, we employed

ensemble-averaged data (DOCMIP6-Mean) to represent CMIP6

estimation from 1980 to 2019.
2.2 Data processing and matching

Considering the accuracy and reliability of measured DO data,

it was important to perform data cleaning. WOD18 contained some

erroneous data such as incorrect units and instrument failures,
TABLE 1 List of CMIP6 models used in this study.

Model Reference Variant Oxygen shape dimensions Resolution Time span

ACCESS-ESM1-5 Ziehn et al. (2020) r1i1p1f1 lev=50, lat=300, lon=360 0.60°×1°, monthly Historical: 1980–2014; SSP5-8.5:
2015–2019.

CanESM5 Swart et al. (2019) r1i1p1f1 lev=45, lat=291, lon=360 0.62°×1°, monthly

CMCC-ESM2 Lovato et al. (2022) r1i1p1f1 lev=50, lat=292, lon=362 0.62°×1°, monthly

CNRM-ESM2-1 Séférian et al. (2019) r1i1p1f2 lev=75, lat=294, lon=362 0.61°×1°, monthly

GFDL-ESM4 Dunne et al. (2020) r1i1p1f1 lev=35, lat=180, lon=360 1°×1°, monthly

MPI-ESM1-2-HR Mauritsen et al. (2019) r1i1p1f1 lev=40, lat=404, lon=802 0.45°×0.45°, monthly
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which needed to be removed. Therefore, we applied additional

quality control rules as suggested by Schmidtko et al. (2017). These

rules include the following: (1) removing profiles with a difference

of less than 5 mmol kg−1 between the maximum and minimum

observed oxygen, (2) removing profiles with oxygen differences of

less than 0.5 mmol kg−1 within 18 depth levels, (3) removing profiles

with less than 100 mmol kg−1 oxygen at the surface, and (4)

removing profiles with supersaturation at depths deeper than

200 m as well as supersaturation above 115%. We calculated DO

saturated solubility using sea temperature and salinity, following the

method proposed by Garcia et al. (1992). The DO profiles after data

correction had millions of data records. However, the raw DO data

records were unevenly distributed in space and time, thus directly

modeling with these profile data could lead to spatiotemporal

autocorrelation and overfitting due to excessive use of near-

neighbor values. Therefore, we mapped the DO profile data into a

0.5°×0.5° grid at monthly average scales, and utilized a vertical

interpolation method proposed by Reiniger and Ross (1968) to

standardize the data into 50 depth levels (same as SODA v3.4.2

shape dimensions). Ultimately, we performed a point-to-point

matching method to combine gridded in situ DO (DOin situ),

environmental variables from reanalysis data and DO from

CMIP6 models (including DOCMIP6-Mean and DOCMIP6 from each

sub-model) and generated multiple data samples with 285,729

records that could be used for model development and DO

estimation comparison.
2.3 Spatiotemporal statistics of DO dataset

The spatial range of the Indian Ocean in this study covered 21°

E–151°E and 50°S–27°N. To explore regional differences, the Indian

Ocean was divided into four regions based on the WOD18 sea basin

rules: the AS and BB in 10°N–27°N, the Equatorial Indian Ocean

(EIO) in 10°N–10°S, and the Southern Indian Ocean (SIO) in 10°

N–50°S.

The spatial distribution of DOin situ established in section 2.2 is

shown in Figure 1. Each grid had an average of 55 ± 52 observation

points, and spatial mean DO concentration was 180.2 ± 59.9 mmol

kg−1. The AS, EIO, and SIO regions contained relatively dense DO

records, with over 27,000, 71,000, and 184,000 observations,

respectively, whereas the BB region had sparse DO records with

only approximately 3,000 observations. By analyzing box plots

(Figure 1D), it was observed that DOin situ were not normally

distributed. Therefore, we conducted a statistical analysis of DOin

situ distribution using the median and interquartile range (IQR).

Median DO concentrations in the AS, BB, EIO, SIO, and total

Indian Ocean were 49.4 mmol kg−1 (IQR = 153.7 mmol kg−1), 41.2

mmol kg−1 (IQR = 129.1 mmol kg−1), 121.0 mmol kg−1 (IQR = 104.0

mmol kg−1), 215.9 mmol kg−1 (IQR = 51.5 mmol kg−1), and 196.3

mmol kg−1 (IQR = 92.3 mmol kg−1), respectively.

In terms of the temporal sampling, the number of DO records

in 1995 exceeded 60,000 due to the large-scale scientific research

program organized in that year, while the number of observations

in other years was less than 10,000. In terms of the vertical

sampling, the number of DO observations decreased with
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increasing depth. DO observations in the upper 1,000 m

accounted for 80% of the total amount. DO concentration

exhibited significant gradient change with two minimum values

appearing at 100–300 m and 1,200–1,400 m, accompanied by a

large IQR with 100–160 mmol kg−1.

We further investigated the spatiotemporal correlations

between DOin situ and oceanic environmental factors (Table 2).

DO had low-level spatiotemporal correlations with most variable

factors, reflecting the extremely complicated non-linear relationship

between DO and the marine environment in the Indian Ocean.

However, DO had great correlations with temperature (r = –0.70,

p < 0.01) and salinity (r = –0.85, p < 0.01) at depths of 1000-2000 m,

and had a great negative correlation with temperature (r = −0.63, p

<0.01) below 2000 m. These results show that, despite the fact that

the distribution of measured oxygen is quite sparse in the mid-deep

sea, it is possible to reconstruct the complete vertical DO structure

using temperature and salinity. In addition, although the

correlations between DO and the variables reflecting ocean

circulation (u, v, and w) and sea–air interaction (ssh, taux, and

tauy) were weak, the relevance between DO and these factors is

relatively modest; thus, these composite variables also contribute to

establish a more stable oxygen field.

In summary, the correlations between DO and environmental

variables were not very high. In the following text, we consider

choosing high-performance machine learning techniques to fit

multiple marine variables with DOin situ, in an attempt to use

machine learning algorithms to demonstrate their strong ability

to complete the DO modeling task.
3 Methods

3.1 Machine learning algorithms

To thoroughly compare the performance of machine learning

models, we selected ordinary least squares linear regression (OLR),

multiple-layer perceptron (MLP) (LeCun et al., 2015), AdaBoost

(ADB) (Freund and Schapire, 1997), gradient boosting (GB)

(Friedman, 2001), RF (Breiman, 2001), and extremely

randomized trees (ERT) (Geurts et al., 2006) for DO modeling in

this study.

We utilized OLR as the baseline model. OLR is a simple but

classical multivariate regression algorithm. It finds the best-fitting

linear relationship between the input features and the target

variable. MLP is a standard type of artificial neural network

characterized by its composition of multiple layers of

interconnected nodes, enabling it to effectively model intricate

non-linear relationships. The training process of an MLP involves

techniques like activation function, backpropagation, and gradient

descent, which are essential for adjusting the network’s weights to

minimize prediction errors.

ADB and GB are two well-known “Boosting” algorithms that

involve sequential construction of decision trees. “Boosting” is an

ensemble learning technique that combines multiple weak

regressors to create a strong and high-accuracy regression model.

It works by sequentially training regressors and giving more
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emphasis to data points with larger prediction errors, and the final

regression prediction is typically a weighted combination of

individual regressor predictions. The key distinction in those two

algorithms is in the way they adapt to errors and construct their

ensemble. ADB iteratively focuses on challenging data points, while

GB constructs a sequence of trees with each one reducing the

residual errors of the previous models. This leads to nuanced

differences in their predictive performance.

RF and ERT are two well-known algorithms that employ

parallel construction of decision trees, and they give the results by

averaging the predictions of multiple trees. RF builds an ensemble

of decision trees by bootstrap aggregating (named as “Bagging”) the

data and uses an optimal splitting strategy for each node using a

random subset of features. The “Bagging” technique creates

multiple subsets (bootstrap samples) of the training data by

randomly selecting data points with replacement. It aims to
Frontiers in Marine Science 05
reduce overfitting and variance and enhance model stability. ERT

is similar to RF but with a higher degree of randomness. It

randomly uses selecting features for node splitting and constructs

subtrees using entire samples, making it computationally efficient

while maintaining good predictive performance.
3.2 Model development and
DO construction

In the model development, we randomly divided the matched-

up DO dataset mentioned in section 2.2 into training and validation

subsets in the ratio of 8:2, and established multiple machine

learning models using spatiotemporal information, environmental

factors, and DOin situ from the training set, which can be

represented as follows:
B

C D

E F

G H

A

FIGURE 1

Spatiotemporal statistics of measured DO (DOin situ) in the Indian Ocean. Spatial distribution of (A) observation numbers and (B) mean DOin situ.
(C) Observation numbers and (D) boxplots of DOin situ in the Arabian Sea (AS), the Bay of Bengal (BB), the Equatorial Indian Ocean (EIO), the Southern
Indian Ocean (SIO), and total Indian Ocean. In (D), the orange line represents the median values of DOin situ, and the green triangle represents the
mean values of DOin situ. (E) Annual observation numbers of DOin situ and (F) vertical observation numbers of DOin situ. (G) Annual median DOin situ in
1980–2019 and (H) vertical median DOin situ at depths of 0–5,395 m (50 depths). The light blue area enveloping the curve in (G) represents the
annual interquartile ranges (IQR) of DOin situ, and the light orange area enveloping the curve in (H) represents the vertical IQR of mean DOin situ.
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XST = ½year,  month, depth, longitude, latitude, bathymetry� (1)

Xenv = ½temp, salt, prho, u, v,w, ssh, taux, tauy� (2)

dDO = f (XST ,Xenv ;DOin   situ) (3)

where f ( · ) represents the machine learning model, XST

represents spatiotemporal information, Xenv represents

environmental factors in reanalysis data, and DOin   situ represents

the actual DO values fitted by the model.

This study utilizes the coefficient of determination (R2), root-

mean-square error (RMSE), mean absolute error (MAE), and mean

bias (MB) as accuracy evaluation metrics when comparing
Frontiers in Marine Science 06
DOModeled and DOCMIP6 with DOin situ. R
2 reflects the closeness

of the linear relationship of the model values and the field

measurement data, RMSE reflects the deviation of the model

values from the field measurement data, MAE reflects the

absolute differences between the model values, and the field DOin

situ approximates the target true values. The evaluation indices are

calculated as follows:

R2 = 1 −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − �y)2

(4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − ŷ i)
2

N

s
(5)
TABLE 2 Correlation coefficients (r) and coefficients of determination (R2) between DOin situ and ocean environmental factors.

Variable
Coefficient 1980–

1989
1990–
1999

2000–
2009

2010–
2019

0–
200 m

200–
1,000 m

1,000–
2,000 m

2,000
m–bottom

temp

R −0.11 −0.03 0.08 0.10 −0.35 −0.20 −0.70 −0.63

R2 0.01 0.00 0.01 0.01 0.12 0.04 0.49 0.40

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

salt

R −0.29 −0.33 0.06 −0.02 −0.31 −0.45 −0.85 −0.43

R2 0.08 0.11 0.00 0.00 0.10 0.20 0.71 0.18

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

prho

R 0.02 −0.10 −0.05 −0.10 0.21 −0.09 −0.26 0.37

R2 0.00 0.01 0.00 0.01 0.05 0.01 0.07 0.14

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

u

R 0.10 0.08 0.08 0.08 0.08 0.08 0.08 0.05

R2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

v

R 0.02 0.01 0.02 −0.06 0.02 0.00 0.02 0.01

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p = 0.21 p< 0.01 p< 0.05

w

R −0.03 −0.01 0.02 −0.06 −0.02 −0.01 −0.01 −0.04

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p = 0.07 p< 0.01

ssh

R −0.39 −0.33 −0.36 −0.44 −0.41 −0.33 −0.32 −0.27

R2 0.15 0.11 0.13 0.19 0.17 0.11 0.10 0.07

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

taux R 0.42 0.15 0.32 0.20 0.34 0.18 0.19 0.14

R2 0.18 0.02 0.10 0.04 0.12 0.03 0.04 0.02

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01

tauy R −0.19 −0.22 −0.11 −0.15 −0.20 −0.22 −0.32 −0.26

R2 0.03 0.05 0.01 0.02 0.04 0.05 0.10 0.07

P p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01 p< 0.01
The p-value (p) is used to assess the significance of r and R2. In environmental factors, the results strongly correlated with DO (|r| > 0.5) are marked as bold type.
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MAE =  o
N
i=1 yi − ŷ ij j

N
(6)

MB =  o
N
i=1(yi − ŷ i)

N
(7)

where yi represents the true value, ŷ i represents the predicted

value, �y represents the mean true value, and N represents the

number of samples.

We utilized the scikit-learn package in Python 3.8.13 to perform

DOmodeling using six algorithms. The model performance metrics

and hyper-parameter information are shown in Table 3. The results

show that the ERT model has the highest performance, and the

parallel ensemble trees methods (RF and ERT) perform better than

the sequential ensemble trees methods (ADB and GB).

We further used feature importance (FI) to compare the

predictive differences between the RF and ERT models. The FI of

the ensemble trees serves as an indicator of the importance of

modeling factors. Here, we display the FI for both the ERT and RF

models (Table 4). In the FI results of the ERT model, we selected the

top 1/3 of the total 15 prediction factors as the most important

factors. By removing spatial variables (latitude and depth), the

remaining three variables—temperature, salinity, and seawater

density—were the most important marine environmental factors

that have a significant impact on DO. In addition, the FI ranking of

the RF model was different, but similar opinions were expressed.

Therefore, we confidently accepted the FI results and focused

subsequent driven factor analysis mainly on temperature, salinity,

and seawater density.

We conducted data reconstruction experiments using both the

RF and ERTmodels (distinguished by DORF and DOERT). As shown

in the results in Figure S1, we found that DORF spatial distribution

has some local anomalies (characterized by longitudinal stripes),

and DORF significantly underestimates the extent of the OMZs in

the AS and BB. However, DOERT is less affected by local
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disturbances and exhibits similar OMZs distributions as the

previous study (Zhou et al., 2022).

Therefore, we utilized the developed ERT model as the best

model to input the entire dataset of DO samples, generating

prediction results labeled as DOModeled. Furthermore, we inputted

complete reanalysis data along with spatiotemporal information

into the ERT model, obtaining a reconstructed DO dataset (DO4D-

Modeled) with the following shape dimensions: time=480, lev=50,

lat=154, and lon=260. DO4D-Modeled serves as the foundation for

discussing the spatiotemporal distribution and variations of oxygen

in the Indian Ocean in 1980–2019.
3.3 Calculation of DO content, trend, and
change rate

Based on DO4D-Modeled, we further estimated DO content,

trend, and change rate to reveal the entire DO variations in the

Indian Ocean. To assist with these calculations, we created grid area

files and water column height files and calculated ocean volume,

DO content, and trend using CDO. The method used for these

calculations will be described in detail below.

To obtain spatial distribution of DO content (ISDO) and total DO

content (IDO), we use single integrals and double integrals of total

water-column volume for DO grid at time t, respectively. These

calculation formulas are as follows:

ISDO(t) =
Z 

DO(t)r(t)dH (8)

IDO(t) =
ðð

DO(t)r(t)dAdH (9)

where DO(t) represents the DO concentration of the cell grid at

the depth of each layer at time t, and r(t) represents the seawater
TABLE 3 The performances of machine learning models evaluated with the training set and validation set.

Dataset Metrics OLR MLP ADB GB RF ERT

Training
set (n

= 228,592)

R2 0.737 0.938 0.821 0.936 0.972 0.973

RMSE 37.246 18.043 30.747 18.372 12.142 11.952

MAE 30.167 11.814 23.260 12.551 7.287 6.975

MB 0.000 −0.828 1.029 0.000 −0.005 0.000

Validation
set (n

= 57,137)

R2 0.740 0.939 0.823 0.937 0.968 0.969

RMSE 37.198 18.043 30.706 18.363 13.126 12.769

MAE 30.135 11.781 23.239 12.509 7.910 7.472

MB 0.054 −0.760 1.033 0.081 0.044 0.040

Hyper-parameter / hidden_layers=(10,10),
max_iter=1000,

learning_rate_init=0.001,
solver=‘adam’,activation=‘relu’

n_estimators=200,
learning_rate=0.01

n_estimators=200,
min_samples_leaf=20

n_estimators=200,
min_samples_leaf=20

n_estimators=200,
min_samples_leaf=20
The machine learning algorithms included ordinary least squares linear regression (OLR), multi-layer perceptron (MLP), AdaBoost (ADB), gradient boosting (GB), random forests (RF), and
extremely randomized trees (ERT). The specific hyper-parameters used by different algorithms in the modeling process are also provided. The best model performance results are marked as
bold type.
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potential density of the cell grid at the depth of each layer at time t.

dH represents the water column height corresponding to the depth

of each layer. dA represents the cell area corresponding to DO grid

at sea level. We assume that the grid area at different depths remains

unchanged, and the grid area at each depth is consistent with

surface grid area; thus, grid area error caused by depth is ignored.

To obtain the spatial trend of DO content (TS
DO) and trend of

total DO content (TDO), we use the linear regression method to

estimate the linear trend of ISDO and IDO.

TS
DO = o

n
t=1(t −�t)(I

S
DO(t) − ISDO)

on
t=1(t −�t)

2 (10)

TDO = o
n
t=1(t −�t)(IDO(t) − IDO)

on
t=1(t −�t)

2 (11)

where �t =   1non
i=1t, I

S
DO =   1non

i=1I
S
DO(t), and IDO =   1non

i=1IDO
(t).

We perform a significance test on DO content trend using the

method introduced by Santer et al. (2000). Firstly, we calculate the

standard deviation of the linear regression residuals e(t), denoted as

Se, along with the standard deviation of the regression coefficient a1,

denoted as Sa. These calculation formulas are as follows:

Î DO(t) = a1t + a0 (12)

e(t) = IDO(t) − Î DO(t) = IDO(t) − (a1t + a0) (13)
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Se =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

t=1e(t)
2

n − 2

s
(14)

Sa =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2e

on
t=1(t −�t)

2

s
(15)

Secondly, we obtain the statistical value Ta, calculated as Ta =
a1
Sa

. Ta follows a Student’s t-distribution with n − 2 degrees of freedom

(n represents total time counts). To determine the significance of

the slope a1, we conduct a t-test on the statistical value Ta (Santer

et al., 2000). This process takes into account the probability on both

sides of the distribution and calculates a two-tailed p-value for Ta.

We set the significance level to 0.05, and if the p-value is less than

0.05, we can conclude that DO content trend is statistically

significant at the 95% confidence level; otherwise, it is

not significant.

Finally, the uncertainty of DO content trend (sDO) is defined as

twice the standard deviation of the regression coefficient Sa:

sDO = 2 · Sa = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2e

on
t=1(t −�t)

2

s
(16)

To obtain the change rate of the DO content in grid cell (RDO),

we use the ratio of DO trend to ocean volume to estimate RDO, and

its calculation formula is as follows:

RDO =
TDO ± sDO

V
(17)

where ocean volume V = ∫ dV =  ∬   dAdH.
TABLE 4 The feature importance of DO models developed by extremely randomized trees (ERT) and random forests (RF) algorithms.

Rank ERT RF

Variable Feature Importance Variable Feature Importance

1 lat (°) 0.60188 lat (°) 0.43689

2 temp (°C) 0.12140 depth (m) 0.10442

3 prho (kg m−3) 0.10106 prho (kg m−3) 0.08610

4 depth (m) 0.07838 temp (°C) 0.08609

5 salt (psu) 0.02824 ssh (m) 0.07654

6 lon (°) 0.02281 salt (psu) 0.07252

7 ssh (m) 0.01660 lon (°) 0.04624

8 taux (N m−2) 0.00853 taux (N m−2) 0.02576

9 year 0.00597 tauy (N m−2) 0.02003

10 month 0.00503 year 0.01562

11 bathymetry (m) 0.00406 bathymetry (m) 0.01103

12 tauy (N m−2) 0.00368 month 0.00789

13 u (m s−1) 0.00110 u (m s−1) 0.00519

14 v (m s−1) 0.00086 v (m s−1) 0.00384

15 w (m s−1) 0.00042 w (m s−1) 0.00185
Three important variables are marked as bold type.
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4 Results

4.1 Model assessment and data evaluation

4.1.1 Model performance assessment
To analyze the disparity between DOModeled and DOCMIP6-Mean

relative to DOin situ, we examined their spatial distribution of RMSE

and MB, and compared the data using scatter plots. The overall

model performance results are shown in Figure 2. DOModeled on the

training set closely approximated DOin situ, with an R2 of 0.973, an

RMSE of 12.0 mmol kg−1, and an MAE of 7.0 mmol kg−1. DOModeled

on the validation set also simulated DOin situ well, with an R2 of

0.969, an RMSE of 12.8 mmol kg−1, and anMAE of 7.5 mmol kg−1. In

contrast, DOCMIP6-Mean was relatively not close to DOin situ, with an

R2 of 0.838, an RMSE of 29.3 mmol kg−1, and an MAE of 18.9

mmol kg−1.

In terms of spatial precision: the mean RMSE results of

DOModeled on the training set, DOModeled on the validation set,

and DOCMIP6-Mean were 10.4 mmol kg−1, 10.5 mmol kg−1, and 23.4

mmol kg−1, respectively. The mean MB results of DOModeled on the

training set, DOModeled on the validation set, and DOCMIP6-Mean

were 0.02 mmol kg−1, 0.05 mmol kg−1, and −10.07 mmol kg−1,

respectively. From the spatial results of RMSE, it can be seen that

simulating DO in the AS and the BB is quite difficult due to their

complex ocean dynamics (McCreary et al., 2013). From the spatial

results of MB, the prediction residuals of DOModeled were relatively

uniform, indicating that the ERT model performance is quite stable.

However, the mean CMIP6 model did not perform well in

simulating spatial DO distribution. There were many differences
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between ensemble CMIP6 model predictions and observations,

such as most models overestimating DO in the AS and BB, and

the CNRM-ESM2-1 and MPI-ESM1-2-HR model underestimating

DO in several areas (Figure S2).

To further compare the spatiotemporal precisions of DOModeled

and DOCMIP6-Mean, we analyzed RMSE and MB of DOModeled and

DOCMIP6-Mean in subregions by decades and depths (Figure 3). Our

ERT model predictions exhibited great simulation performance on

the training set and validation set, outperforming the mean CMIP6

model. Despite the unbalanced spatiotemporal DOin situ

distribution, the DOModeled simulation quality remained

unaffected by variations in sample weighting across space and

time, demonstrating the robustness of the ERT-based DO model.

4.1.2 Accuracy evaluation of derived DO data
The results in section 4.1.1 provide an assessment of the data-

driven model and CMIP6 models, but these statistical metrics have

limitations in quantifying decadal oxygen change across various

regions and depth layers. To investigate the spatiotemporal

variations of the simulations, we used the validation set to

perform independent evaluations in the ERT model and

CMIP6 models.

Here, we display the time series of annual mean DO (including

DOin situ, DOModeled, and DOCMIP6) for different regions and depth

layers (Figure 4). It should be noted that this section considers the

independent evaluation on the validation set, and the DO value at

each measured point results from unevenly sparse sampling. From a

geostatistical perspective, the sampling records contain unbalanced

observations. Although DOin situ on the validation set exhibited
B C

D E F

G H I

A

FIGURE 2

Spatial precision results of DO data established by the machine learning model (DOModeled) and mean CMIP6 DO data (DOCMIP6-Mean) and their
comparison results with measured DO data (DOin situ). The precision evaluations of (A–C) DOModeled on the training set, (D–F) DOModeled on the
validation set, and (G–I) DOCMIP6-Mean include the spatial distribution of root-mean-square error (RMSE) and mean bias (MB), and scatter plots for
comparison with DOin situ. In the scatter plots, red lines represent the 1:1 line and green lines represent the actual fitting lines.
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decadal variations, they cannot directly represent the mean

spatiotemporal DO variations in each region.

The DO predictions from different CMIP6 models were not

consistent with DOin situ. CMIP6 models exhibited systematic

overestimation or underestimation of oxygen variations, and their

mismatches were evident in several regions, limiting the

effectiveness of DOCMIP6-Mean simulations, as well as resulting in

different trend variations compared to DOin situ. In contrast,

DOModeled closely approximated DOin situ in time series. Despite

not being trained on the validation set, our model successfully

predicted trends that align with DO observations. This suggests that

the ERT model can proficiently capture spatiotemporal DO
Frontiers in Marine Science 10
variations. Consequently, we applied this model to reconstruct the

DO4D-Modeled dataset, facilitating further discussions and analyses of

the spatiotemporal DO patterns in the Indian Ocean.
4.2 Distributions and variations of DO

4.2.1 Spatiotemporal distributions of DO
Here, we analyzed spatial mean DO distributions at different

depths (Figure 5) and mean DO time–depth profiles in each

subregion (Figure 6). According to these results, spatial and vertical

DO distributions in the Indian Ocean exhibit strong heterogeneity.
B C D
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FIGURE 3

Root-mean-square errors (RMSEs) and mean bias (MB) of DO data established by the machine learning model (DOModeled) on the training set,
DOModeled on the validation set, and mean CMIP6 DO data (DOCMIP6-Mean) in the Arabian Sea (AS), Bay of Bengal (BB), Equatorial Indian Ocean (EIO),
and Southern Indian Ocean (SIO) regions by different years and depth layers. (A–D) RMSE and (E–H) MB comparison in different years. (I–L) RMSE
and (M–P) MB comparison in different depth layers. Blue, red, and orange bars represent the RMSE of the DOModeled in the training set, DOModeled in
the validation set, and DOCMIP6-Mean, respectively. 1980s, 1990s, 2000s, and 2010s represent 1980–1989, 1990–1999, 2000–2009, and 2010–2019,
respectively. L1, L2, L3, and L4 represent 0–200 m, 200–1,000 m, 1,000–2,000 m, and 2,000 m–bottom, respectively.
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At 0–200 m, the DO ranges in the AS, BB, EIO, and SIO are 14–

196 mmol kg−1, 10–198 mmol kg−1, 77–198 mmol kg−1, and 210–233

mmol kg−1, respectively. Although sea surface DO is in the state of

supersaturation due to the rapid air–sea gas exchange, DO levels in

the AS, BB, and EIO are lower than SIO. This discrepancy may be

attributed to the oxygen loss caused by anthropogenic emissions

and land-based nutrient inputs (Rixen et al., 2020; Naqvi, 2021).

DO gradually decreases at depths of 200–2,000 m, and

extremely low DO regions are found in the AS and BB with the

DO range of 9–102 mmol kg−1 and 9–115 mmol kg−1, respectively.

Insufficient DO regions are also found in the EIO and SIO with the

DO range of 56–133 mmol kg−1 and 155–216 mmol kg−1,

respectively. The DO loss in the ocean interior may be attributed

to weakened ventilation caused by stratification, leading to the large

amount of oxygen consumption by remineralization and biological

processes, and sufficient oxygen supply cannot be maintained due to

the weakening of ocean subduction and vertical mixing (Portela

et al., 2020; Buchanan and Tagliabue, 2021).
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In the mid-deep sea below 2,000 m, DO levels exhibit an

increase with depth. In these regions, DO ranges in the AS, BB,

EIO, and SIO are 76–165 mmol kg−1, 99–164 mmol kg−1, 121–197

mmol kg−1, and 165–205 mmol kg−1, respectively. The DO rising in

the mid-deep sea is caused by oxygen consumption weakening and

oxygen supply by circulation (Levin, 2018; Oschlies et al., 2018).

4.2.2 Oxygen-minimum zones expansions
According to the time–depth profile of DO in the Indian Ocean

(Figure 6), low-oxygen zones with DO less than 70 mmol kg−1 are

located in the AS, BB, and EIO at depths of 100–2,000 m. A

previous study has indicated that ocean zones with DO levels

below 60 mmol kg−1 (OMZ60) will cause damage to marine

biodiversity, and ocean zones with DO levels below 20 mmol kg−1

(OMZ20) will be fatal to marine organisms (Vaquer-Sunyer and

Duarte, 2008). Therefore, it is crucial to monitor the changes in

both OMZ20 and OMZ60 to assess the state of marine

hypoxia conditions.
FIGURE 4

Annual mean variations of measured DO (DOin situ), DO predicted by the machine learning model (DOModeled), and CMIP6 DO (including mean
values, ACCESS-ESM1-5, CanESM5, CMCC-ESM2, CNRM-ESM2-1, GFDL-ESM4, and MPI-ESM1-2-HR) on the validation set in the Arabian Sea (AS),
Bay of Bengal (BB), Equatorial Indian Ocean (EIO), and Southern Indian Ocean (SIO) regions at depths of 0–200 m, 200–1,000 m, 1,000–2,000 m,
and 2,000 m–bottom.
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To compare the vertical variation of two OMZs, we outlined the

upper and lower boundaries of OMZ20 and OMZ60 in the time–

depth profile. Vertical variation results demonstrate that OMZ20

and OMZ60 in the AS are located at depths of 150–1,100 m and

110–1,700 m, respectively, while those in the BB are located at

depths of 130–700 m and 100–1,300 m, respectively. The OMZs in

the AS exhibit greater thickness than those in the BB, with their

upper and lower boundaries found at deeper depths than those of

the BB. These findings suggest that hypoxia is more severe in the

AS, possibly due to the combination effects of weaker downwelling,
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stronger biological consumption, and remineralization (Lachkar

et al., 2019; Sarma et al., 2020).

In terms of temporal variation, OMZs in the AS and BB slowly

expanded towards shallow waters, with their upper boundaries

constantly moving towards the upper ocean. After the 1990s, the

expansion of OMZ20 in the AS and BB became more rapid, with the

upper boundary in the AS and BB expanding from 210 m to 160 m

and 150 m to 130 m, respectively. During the same period, OMZ60

in the EIO began to expand significantly at 700–1,000 m, indicating

that the low-oxygen waters had expanded from the AS and BB to
FIGURE 5

Spatial distribution of mean dissolved oxygen (DO) concentration at different depths in the Indian Ocean during 1980–2019. The solid line envelope
and dotted line envelope in magenta represent the oxygen-minimum zones of DO ≤ 60 mmol kg−1 and DO ≤ 20 mmol kg−1, respectively.
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the EIO. However, the expansion of OMZs in the AS, BB, and EIO

has started to decelerate since the 2000s, and OMZs have formed

relat ive ly stable upper and lower boundaries in the

vertical direction.

4.2.3 Spatiotemporal variations of DO
We calculated the spatial and vertical DO concentration trends

based on DO spatiotemporal distribution (Figures 7, S3) and further

analyzed the spatiotemporal DO variations in different parts of the

Indian Ocean during the past 40 years.

At 0–200 m, DO levels in all regions exhibit large downward

trends. The maximum DO decline trends in the mixed layer of the

AS, BB, and EIO are −2.2 mmol kg−1 dec−1, −2.5 mmol kg−1 dec−1,

and −3.3 mmol kg−1 dec−1, respectively. The vertical DO decrease is

relatively small in the SIO, with the maximum DO decline trend up

to −0.8 mmol kg−1 dec−1. The DO decline trend slows at depths of

50–100 m, possibly due to vertical mixing transporting surface DO-

rich water to this depth range, offsetting some of the DO loss.

However, there is a special case where DO increases in the BB at

depths of 40–80 m, up to 0.9 mmol kg−1 dec−1.

Owing to the complex effect at 200–1,000 m, seawaters have

different DO changes. It was observed that DO levels not only

decrease at these depths but also increase in the BB and SIO. In the

AS, DO remains in a consistently high decreasing state, with the

trend ranging from −2.2 to −1.0 mmol kg−1 dec−1. DO decline trends

in the BB and EIO began to moderate, with the trend up to −1.4

mmol kg−1 dec−1 and −1.9 mmol kg−1 dec−1, respectively. DO levels

increased in the BB at 800–1,000 m and the SIO at 400–800 m, with

the trend up to 0.2 mmol kg−1 dec−1.
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At 1,000–2,000 m, DO trend variations are exactly opposite to

those at the upper 200–1,000 m, which may be attributed to

stronger stratification below 1,000 m, leading to DO differences in

the upper and deeper ocean. DO increases in the northern and

equatorial parts of the Indian Ocean, with the trend up to 0.8 mmol

kg−1 dec−1 in the AS, 0.7 mmol kg−1 dec−1 in the BB, and 0.2 mmol

kg−1 dec−1 in the EIO, but decreases in the SIO with the trend of

−0.9 mmol kg−1 dec−1 to −0.3 mmol kg−1 dec−1.

At 2,000 m–bottom, DO decline in the AS is unusually

strengthened with the trend up to −3.5 mmol kg−1 dec−1, which

has reached the maximum oxygen loss trend in the whole water

column. The DO in the BB changes from an increasing to a

decreasing trend, and the DO decreasing trend in the EIO and

SIO is also enhanced gradually. Overall, DO decline in the BB, EIO,

and SIO is relatively low compared to the subsurface ocean, with the

trend up to −1 mmol kg−1 dec−1 in the BB and SIO and −1.8 mmol

kg−1 dec−1 in the EIO.

Through analysis results of the DO trend at full depth of the

Indian Ocean, DO decreasing regions appear in subsurface and

high-depth waters with the DO decline trend up to −1.5 mmol kg−1

dec−1, and DO increasing regions appear in thermocline and mid-

depth waters. DO change trends are exactly the opposite between

the upper and the deeper ocean at the boundary of 1,000 m, which

may be due to the strong stratification under the thermocline (Li

et al., 2020; Sallée et al., 2021). In addition, we found that the areas

with relatively high DO loss mainly existing in the AS at 0–1,000 m

and 2,000 m–bottom, BB at 0–200 m, and EIO at 0–1,000 m and

2,000 m–bottom, and the areas with DO increasing mainly existing

in the AS at 1,000–2,000 m, BB at 40–80 m and 800–2500 m, EIO at
FIGURE 6

Time–depth profiles of annual mean dissolved oxygen (DO) in the Arabian Sea (AS), Bay of Bengal (BB), Equatorial Indian Ocean (EIO), and Southern
Indian Ocean (SIO) during 1980–2019. For each depth, mean DO is obtained from the grid weighted average of DO concentrations in each
subregion. The solid line enveloped and dotted line enveloped areas represent the oxygen-minimum zones of DO ≤ 60 mmol kg−1 and DO ≤ 20
mmol kg−1, respectively.
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1,000–2,000 m, and SIO at 400–800 m. By comparing the DO

trends in different areas, the maximum DO decrease trend ranking

is AS > EIO > BB > SIO, and the maximum DO increase trend

ranking is BB > AS > EIO = SIO.
5 Discussion

5.1 Driver analysis of DO variations

5.1.1 Drivers of DO decrease
Previous studies have indicated that DO variations are caused

by changes in two components: oxygen solubility and AOU, and

deoxygenation is dominated by AOU (Schmidtko et al., 2017;

Oschlies et al., 2018). However, AOU involves multiple

interactions that are challenging to assess, and solubility-induced

oxygen loss is more readily evaluated. This section mainly analyzes

the AS and EIO regions with the most severe DO declines, and

predominantly addresses parameters related to DO solubility,

including temperature and salinity governing solubility, and

density closely associated with stratification effects (Figures 8, 9,

S4, S6).

In the upper 1,000 m of the AS, seawater temperature (trend = 0

to 0.1°C dec−1) and salinity (trend = 0 to 0.05 psu dec−1) have

relatively small variations, but they still have complicated and

heterogeneous correlations with DO concentration. At 0–200 m,

DO has a mainly positive correlation with temperature (r = −0.27 to

0.93) but has different correlations with salinity (r = −0.53 to 0.46)

and ocean currents (r = −0.60 to 0.40). DO variations may not be
Frontiers in Marine Science 14
mainly caused by thermal factors, because temperature and salinity

are not negatively correlated with DO as the oxygen solubility

equation. At these regions, deoxygenation could be attributed to

other factors such as biological consumption and remineralization. At

200–1,000 m, DO is mainly negatively correlated with temperature (r

= −0.59 to 0.07) and salinity (r = −0.78 to 0.16), indicating that

oxygen loss is controlled by the decreased solubility induced by

warming. At 2,000 m–bottom, there are large increases in

temperature (trend = 0.03 to 0.43°C dec−1), salinity (trend = 0 to

0.12 psu dec−1), and density (trend = 0 to 0.06 kg m−3 dec−1). At these

mid-depths, DO is highly negatively correlated with temperature (r =

−0.99 to −0.87), salinity (r = −0.97 to −0.81), and density (r = −0.97 to

−0.64). As a result, a rapid reduction in DO levels is strongly

influenced by the combined effects of temperature and salinity

variations, as well as enhanced stratification.

The deoxygenation situation in the EIO is similar to that of the

AS, but DO variations in the EIO are relatively small compared to

the AS. In the EIO at 0–200 m, DO has complex correlations with

seawater temperature (r = −0.58 to 0.73), salinity (r = −0.44 to 0.25),

and density (r = −0.71 to 0.22), indicating that this region has

complex mechanisms of DO variations. Notably, the temperature

trend is from increasing to decreasing at depths of 50–150 m, from

which can be inferred that the EIO is not as strongly affected by

ocean warming as the AS. At 200–1,000 m, DO has negative

correlations with temperature (r = −0.62 to −0.24) and salinity

(r = −0.76 to 0.31), and oxygen loss begins to be controlled by the

increase of temperature (trend = 0.02 to 0.05°C dec−1) and salinity

(trend = 0 to 0.01 psu dec−1). At 2,000 m–bottom, the variations of

sea temperature (trend = 0 to 0.1°C dec−1) and salinity (trend = 0 to
B C DA

FIGURE 7

Vertical dissolved oxygen (DO) trend (red lines) and mean DO (black lines) in the (A) Arabian Sea (AS), (B) Bay of Bengal (BB), (C) Equatorial Indian
Ocean (EIO), and (D) Southern Indian Ocean (SIO). The red scatter points represent that DO trends within these depth layers are statistically
significant at a 95% confidence level (p < 0.05).
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0.02 psu dec−1) are still small, with coefficients ranging from −0.99

to −0.78 and −0.93 to 0.18, respectively. DO decline in these regions

is strongly controlled by solubility, and other biological effects are

weakened, leading to a significant decrease in solubility and

DO loss.

5.1.2 Drivers of DO increase
The DO increasing regions are mainly located in the AS at

1,000–2,000 m, the BB at 40–80 m and 800–2500 m, the EIO at

1,000–2,000 m, and the SIO of 400–800 m. This section mainly

analyzes the AS, BB, EIO, and SIO regions with increasing DO

(Figures 8, 9, S4–S7).

Ocean conditions have similarities in the AS and EIO at depths

of 1,000–2,000 m. At these water depths of sea regions, seawater

temperature (AS trend = −0.05 to −0.02°C dec−1, EIO trend = −0.02

to −0.01°C dec−1) and salinity (AS trend = −0.02 to −0.01 psu dec−1,

EIO trend = 0 to −0.01 psu dec−1) have decreased, and DO has

strongly negative correlations with temperature (AS r = −0.97 to

−0.70, EIO r = −0.96 to −0.25) and salinity (AS r = −0.92 to −0.42,

EIO r = −0.92 to 0.08). In these regions, DO increase is mainly

controlled by oxygen solubility, and a decrease in temperature and

salinity causes an increase in DO solubility.

In the BB at 40–80 m and 800–2500 m, seawater temperature

(upper trend = 0.05 to 0.15°C dec−1, deeper trend = −0.02 to 0.05°C

dec−1) and salinity (upper trend = 0.02 psu dec−1, deeper trend = 0

to −0.01 psu dec−1) have increasing variations, and DO has different

correlations with temperature (upper r = 0.65 to 0.95, deeper r =

−0.98 to −0.54) and salinity (upper r = −0.35 to −0.15, deeper r =

−0.85 to −0.40). In the SIO at 400–800 m, seawater temperature

(trend = 0.04 to 0.05°C dec−1) and salinity (trend = 0 to −0.01 psu
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dec−1) have more slight variations, and DO has stable correlations

with temperature (r = 0.11 to 0.58) and salinity (r = −0.75 to −0.55).

It can be seen that the negative correlations between DO and sea

temperature and salinity in those regions are weaker than the AS

and EIO. Therefore, DO increases at these mid-depths are not only

caused by solubility changes but also influenced by other DO supply

mechanisms, such as vertical mixing and ocean circulation.
5.2 Change patterns of DO content

5.2.1 Spatiotemporal variations of DO content
In this section, we will mainly discuss the spatiotemporal

variations of DO content in the Indian Ocean. We calculated the

spatial distribution and trends of DO content (Figure 10) to analyze

the spatial patterns of DO content. The spatial distribution of DO

content in the Indian Ocean has the characteristics of being low in

the north and high in the south, and changes transitionally along

latitude, which is determined by ocean bathymetry and seawater

volume. DO content in the AS and BB regions is relatively small,

generally lower than 400 mol m−2. However, DO content in the SIO

is relatively large, and DO content in the southeast sea of Africa and

the southwest sea of Australia can reach more than 1,000 mol m−2.

The greatest oxygen loss occurs in the AS, the western part of the

EIO adjacent to the AS, and the southern African sea area, with DO

loss up to 10 mol m−2 dec−1.

Furthermore, we calculated the entire DO content using volume

integral, obtained the time series of DO content, and performed

least square linear regression to estimate the trend of DO content in

the Indian Ocean (Figure 10G) (the total trend and all the piecewise
B C DA

FIGURE 8

Vertical temperature trend (blue lines) and salinity trend (orange lines) in the (A) Arabian Sea (AS), (B) Bay of Bengal (BB), (C) Equatorial Indian Ocean
(EIO), and (D) Southern Indian Ocean (SIO). The blue scatter points and the orange scatter points represent that temperature trends and salinity
trends within these depths are statistically significant at a 95% confidence level (p < 0.05), respectively.
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trends are statistically significant at a 95% confidence level). The

result shows that the trend of total DO content is −141.5 ± 15.1

Tmol dec−1, indicating that the Indian Ocean has lost −1.38 ± 0.15%

oxygen from 1980 to 2019. We further used piecewise linear

regression analysis on the time series of DO content and found

that the change time of the DO trend appears around 2000 due to

the DO content increasing from 2000 to 2010. Before 2000, DO

content has a relatively large trend of −208.8 ± 25.9 Tmol dec−1,

while the trend decreases to −68.9 ± 31.3 Tmol dec−1 after 2000.

To find out the cause of total DO content increasing, we

compared the time series of DO content in subregions

(Figures 10C–F) (the total trend and all the piecewise trends are

statistically significant at a 95% confidence level). According to

piecewise linear regression, DO content in the AS and EIO shows

no significant trend change around 2000, and has a downward trend

overall, which is −12.3 ± 2.5 Tmol dec−1 and −45.1 ± 4.3 Tmol

dec−1, respectively. In contrast, DO content in the BB and SIO

shows a time turning point around 2000, which is consistent with

the change time of total DO. DO content in the BB decreased by

−3.8 ± 1.2 Tmol dec−1 in 1980–2000, and increased by 2.1 ± 1.3

Tmol dec−1 in 2000–2019. DO content in the SIO decreased by

−121.7 ± 21.7 Tmol dec−1 in 1980–2000, and decreased by −41.4 ±

26.7 Tmol dec−1 in 2000–2019. From the perspective of the order of

magnitude, the expansion of DO content of the SIO from 2000 to

2010 resulted in the overall rise of the total DO content in the

Indian Ocean, which can be attributed to the expansion of water

bodies with high DO concentration at 200–1,000 m (Figure 6). The

DO supply in the SIO has offset part of the oxygen loss in the Indian
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Ocean in the past 20 years, resulting in the DO decline trend

slowing down.

Overall, the decline of oxygen in the Indian Ocean slowed down

after the 2000s, with some sea areas experiencing oxygen increase.

The upper 1,000-m circulation transports a substantial amount of

oxygen-rich water, effectively mitigating the deterioration of the

oxygen environment in the Indian Ocean. This suggests that the

Indian Ocean may have a potential self-regulating mechanism

against global warming.

5.2.2 Patterns of DO change rate
From the perspective of DO content, this section considers the

trends of DO content at different depths in each sea region, and

evaluates the oxygen change rates in different regions of the Indian

Ocean. The mean oxygen change rate of the Indian Ocean is −0.59 ±

0.06 mmol m−3 dec−1. We analyzed DO content anomalies in

different layers (Figure 10H; Table 5) and found that the DO

decline rate at depths of 0–200 m and 2,000 m–bottom is rapid,

which is −1.10 ± 0.24 mmol m−3 dec−1 and −0.69 ± 0.07 mmol m−3

dec−1, respectively. Notably, DO content in the upper 200 m of the

Indian Ocean is quite low due to the small ocean volumes, but

oxygen decline rate in this region is extremely high.

Considering the full depth of the water column, the oxygen

decline rate ranking is AS > EIO > SIO > BB and the oxygen loss

rates of the AS, BB, EIO, and SIO are −1.18 ± 0.24 mmol m−3 dec−1,

−0.22 ± 0.14 mmol m−3 dec−1, −0.78 ± 0.07 mmol m−3 dec−1, and

−0.50 ± 0.06 mmol m−3 dec−1, respectively. To compare

spatiotemporal variations of DO in different regions, we
B C DA

FIGURE 9

Correlation analysis between seawater temperature (blue lines), salinity (orange lines), potential density (green lines), and dissolved oxygen (DO) in
the (A) Arabian Sea (AS), (B) Bay of Bengal (BB), (C) Equatorial Indian Ocean (EIO), and (D) Southern Indian Ocean (SIO). The blue, orange, and green
scatter points represent that the correlations between seawater temperature, salinity, density, and DO within these depth layers are statistically
significant at a 95% confidence level (p< 0.05), respectively.
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calculated the DO change rates in different layers (Table 5).

According to analysis of the results, the main deoxygenation

regions are found in the AS at 0–1,000 m and 2,000 m–bottom,

the BB at 0–200 m, and the EIO at 0–1,000 m with oxygen decline

rates exceeding 1 mmol m−3 dec−1, and oxygen-fixed regions are

found at depths of 1,000–2,000 m in the AS, BB, and EIO.

We further compared our study with a previous study and

found that our estimation for DO change in the Indian Ocean is

consistent with the previous results (Schmidtko et al., 2017) in

which the DO decline change rate of the EIO is greater than that of

the SIO at full depth, and less than that of the SIO at depths of 1,000

m–bottom (Figure 11). Our study also found that the DO supply

mechanism of the SIO at depths of 0–1,000 m was weakened, which
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resulted in a DO decline trend rather than an increasing trend like

that during 1960–2010 in the SIO.
6 Conclusion

In this study, we applied the ERT model to reconstruct DO in

the Indian Ocean from 1980 to 2019 using a combination of

measured DO observations, reanalysis data, and spatiotemporal

information. Our evaluation shows that the reconstructed DO data

have a high level of accuracy and are consistent with in situ

obse rva t i ons , w i thou t abnorma l ove r e s t ima t ion or

underestimation. Additionally, our results demonstrate that the
B

C D

E F

G H

A

FIGURE 10

Spatial distribution, spatial trend, and time series of DO content at full depth of the Indian Ocean. (A) Spatial distribution and (B) spatial trend of DO
content at full depth. Time series of DO content in the (C) Arabian Sea (AS), (D) Bay of Bengal (BB), (E) Equatorial Indian Ocean (EIO), (F) Southern
Indian Ocean (SIO), and (G) total Indian Ocean regions. In (C–G), all DO content trends are statistically significant at a 95% confidence level
(p < 0.01). The blue area surrounding the curve represents the uncertainty of oxygen, which is equal to twice the annual standard deviation of DO
content, and the red dashed line represents the linear trend of DO content. In the BB, SIO, and total region, we used piecewise linear regression at a
turning point of 2,000. (H) Time series of mean DO concentrations at 0–200 m, 200–1,000 m, 1,000–2,000 m, and 2,000 m–bottom. In (H), the
solid curve represents the vertical mean DO concentration time series in different depth layers, and the bold dashed curve represents the full-depth
mean DO concentration time series.
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TABLE 5 The DO trend, DO change rate, and ocean volume in the Arabian Sea (AS), Bay of Bengal (BB), Equatorial Indian Ocean (EIO), Southern Indian
Ocean (SIO), and total Indian Ocean at depths of 0–200 m, 200–1,000 m, 1,000–2,000 m, 2,000 m–bottom, and full depth during 1980–2019.

Region 0–
200 m

200–
1,000 m

1,000–
2,000 m

2,000
m–bottom

Full depth
(0–bottom)

DO trend (Tmol dec−1) AS −1.18 ± 0.70
(p< 0.01)

−5.16 ± 1.09
(p< 0.01)

0.43 ± 1.54
(p = 0.575)

−6.42 ± 1.43
(p< 0.01)

−12.33 ± 2.48
(p< 0.01)

BB −0.41 ± 0.20
(p< 0.01)

−0.81 ± 0.14
(p< 0.01)

0.51 ± 0.29
(p< 0.01)

−0.26 ± 0.25
(p< 0.05)

−0.97 ± 0.64
(p< 0.01)

EIO −6.38 ± 1.29
(p< 0.01)

−17.52 ± 2.61
(p< 0.01)

0.16 ± 2.05
(p = 0.876)

−21.38 ± 2.93
(p< 0.01)

−45.11 ± 4.29
(p< 0.01)

SIO −5.83 ± 1.27
(p< 0.01)

−2.17 ± 5.19
(p = 0.408)

−23.70 ± 3.61
(p< 0.01)

−51.37 ± 5.83
(p< 0.01)

−83.07 ± 10.57
(p< 0.01)

Total −13.80 ±
3.05

(p< 0.01)

−25.66 ± 6.82
(p< 0.01)

−22.59 ± 5.12
(p< 0.01)

−79.43 ± 8.45
(p< 0.01)

−141.48 ± 15.05
(p< 0.01)

DO change rate (mmol
m−3 dec−1)

AS −1.66 ± 0.99 −1.90 ± 0.40 0.14 ± 0.49 −1.68 ± 0.37 −1.18 ± 0.24

BB −1.08 ± 0.53 −0.59 ± 0.10 0.32 ± 0.18 −0.23 ± 0.22 −0.22 ± 0.14

EIO −2.11 ± 0.43 −1.44 ± 0.21 0.01 ± 0.14 −0.76 ± 0.10 −0.78 ± 0.07

SIO −0.69 ± 0.15 −0.06 ± 0.15 −0.56 ± 0.08 −0.63 ± 0.07 −0.50 ± 0.06

Total −1.10 ± 0.24 −0.51 ± 0.14 −0.36 ± 0.08 −0.69 ± 0.07 −0.59 ± 0.06

Volume (106 km3) AS 0.71 2.72 3.17 3.82 10.42

BB 0.38 1.38 1.57 1.12 4.45

EIO 3.02 12.15 14.81 27.96 57.94

SIO 8.45 34.17 42.6 82.01 167.23

Total 12.56 50.42 62.15 114.91 240.04
F
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The p-value (p) is used to assess the significance of DO trends.
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FIGURE 11

The DO change rates in the Indian Ocean. DO change rates of the Arabian Sea (AS), the Bay of Bengal (BB), the Equatorial Indian Ocean (EIO),
Southern Indian Ocean (SIO), and the total regions (total) at depths of (A) 0–1,000 m, (B) 1,000 m–bottom, and (C) full depth. Comparison of DO
change rates in 1980–2019 and 1960–2010 (Schmidtko et al., 2017) at depths of (D) 0–1,000 m, (E) 1,000 m–bottom, and (F) full depth.
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spatiotemporal variation of our reconstructed DO data is more

consistent with observations than the mean CMIP6 dataset.

We analyzed the spatiotemporal distribution of DO in the Indian

Ocean using reconstructed data. DO concentration is higher in the SIO

and lower in the AS and BB, with relatively high concentrations in the

surface, subsurface, and deep waters and low concentrations in the

thermocline. The OMZs in the Indian Ocean deteriorated, with the

expansion of OMZ20 in the AS and BB and the emergence of OMZ60

in the EIO since the 1990s. DO decline regions are mainly located in

the AS at 0–1,000 m and 2,000 m–bottom, the BB at 0–200 m, and the

EIO at 0–1,000 m and 2,000 m–bottom. The deoxygenation is

controlled by solubility reduction at mid-depths, and caused by other

mechanisms at subsurface depths. DO increasing regions are located in

the AS at 1,000–2,000 m, the BB at 40–80 m and 800–2500 m, the EIO

at 1,000–2,000 m, and the SIO at 400–800 m. The rising DO is

attributed to solubility increase (in the AS and EIO) and vertical mixing

and circulation (in the BB and SIO). The complete time series of DO

shows a trend of −141.5 ± 15.1 Tmol dec−1 in 1980–2019, with a larger

trend before 2000 and a lower trend after 2000. Since the beginning of

the 21st century, the hypoxic areas and deoxygenation in the Indian

Ocean have shown a slowdown trend, indicating that the Indian Ocean

possesses a certain capacity to resist the deterioration of oxygen-

depleted environments in the face of climate change.

Our findings of the long-term DO variations in the Indian Ocean

could be beneficial for stakeholders and decision-makers working

toward the conservation of marine organisms in this region.

However, the contribution of remineralization, biological respiration,

and ocean ventilation to DO changes is not fully investigated. Further

efforts should focus on comprehensive research that examines the

complex interactions among geographical factors, climate patterns, and

oceanic processes to gain a deeper understanding of the drivers of DO

changes. This knowledge with data-driven methods can then inform

effective strategies for environmental management and conservation in

the Indian Ocean, ensuring the preservation of this vital marine

ecosystem for future generations.
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