
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Abed El Rahman Hassoun,
Helmholtz Association of German Research
Centers (HZ), Germany

REVIEWED BY

Kouakou Urbain Koffi,
Ecole Normale Supérieure Abidjan, Cote
d’Ivoire
Subrata Sarker,
Shahjalal University of Science and
Technology, Bangladesh

*CORRESPONDENCE

Rushingisha George

georgerushingisha@tafiri.go.tz

RECEIVED 31 August 2023

ACCEPTED 12 December 2023
PUBLISHED 08 January 2024

CITATION

George R, Job S, Semba M, Monga E,
Lugendo B, Tuda A and Kimirei I (2024)
High-frequency dynamics of pH, dissolved
oxygen, and temperature in the coastal
ecosystems of the Tanga-Pemba Seascape:
implications for upwelling-enhanced
ocean acidification and deoxygenation.
Front. Mar. Sci. 10:1286870.
doi: 10.3389/fmars.2023.1286870

COPYRIGHT

© 2024 George, Job, Semba, Monga, Lugendo,
Tuda and Kimirei. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 January 2024

DOI 10.3389/fmars.2023.1286870
High-frequency dynamics of
pH, dissolved oxygen, and
temperature in the coastal
ecosystems of the Tanga-
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Ocean acidification, deoxygenation, and warming are three interconnected

global change challenges caused by increased anthropogenic carbon

emissions. These issues present substantial threats to marine organisms,

ecosystems, and the survival of coastal communities depending on these

ecosystems. Coastal upwelling areas may experience significant declines in

pH, dissolved oxygen (DO), and temperature levels during upwelling events,

makingmarine organisms and ecosystems in these areas more susceptible to

ocean acidification and deoxygenation. Understanding the dynamics of pH,

DO, and temperature in coastal upwelling areas is essential for evaluating the

susceptibility of resident organisms and ecosystems to lower pH and DO

conditions occurring during upwelling events. To accomplish this, we used

the pH and the DO loggers to measure high-frequency data for pH and DO,

respectively, over six months in the open ocean and for a 24-hour cycle

within the mangrove, seagrass, and coral reef ecosystems of the Tanga-

Pemba Seascape (T-PS) during the northeast monsoon season. Our findings

revealed the occurrence of multiple upwelling events, with varying durations,

that result in significant declines in pH, DO, and temperature within the

seascape. This is the first study to confirm the occurrence of multiple

upwelling events in the T-PS. Moreover, the study has revealed a pH

threshold value of 7.43 for ocean acidification in the T-PS. This is the first

study to report a threshold value for ocean acidification in coastal upwelling

areas of the Western Indian Ocean (WIO). Furthermore, it revealed that the

extremely low levels of pH that occurred during upwelling events were above

the pH threshold value of 7.43 for ocean acidification, while the extremely

low levels of DO fell below the oxygen threshold value of 4.6 mg/L for

deoxygenation. During upwelling events, seagrass and coral reef ecosystems,
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but not mangrove ecosystems, demonstrated elevatedmean hourly values of

pH and DO compared to those of the open ocean. These findings show that

marine organisms and ecosystems in the T-PS are frequently exposed to

lower pH and DO conditions due multiple upwelling events. However, their

susceptibility to these conditions is reduced to some extent by the presence

of seagrass meadows within these interconnected systems.
KEYWORDS

Western Indian Ocean, Tanga-Pemba Seascape, mangrove, seagrass and coral reef
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1 Introduction

Ocean acidification, deoxygenation, and warming are three

interconnected global change challenges primarily caused by

increased anthropogenic carbon emissions (Keeling et al., 2010;

Orr, 2011; Laffoley and Baxter, 2016; Yoro and Daramola, 2020).

These challenges, either alone or in combination, pose great threats

to marine organisms and coastal ecosystems, jeopardizing the

survival of coastal communities depending on these ecosystems

(Doney et al., 2020; Talukder et al., 2022; Vinayachandran et al.,

2022). Ocean acidification occurs when the ocean absorbs excess

carbon dioxide (CO2) from the atmosphere, leading to an increase

in the acidity (or reduced pH) of the seawater and changes in

seawater carbonate chemistry (Doney et al., 2009; Feely et al., 2009).

The increased acidity lowers the availability of carbonate mineral

saturation states in seawater, a condition that reduces the ability of

marine calcifying organisms to form and maintain their shells and

skeletons made of calcium carbonate (CaCO3), leading to fatalities

or reduced reproduction rates (Doney et al., 2020; Figuerola et al.,

2021). Ocean warming, characterized by rising sea surface

temperatures due to the absorption of atmospheric heat by the

oceans, causes disruptions in marine life, including changes in

migration patterns, spawning times, and food availability (Keeling

et al., 2010; Kroeker et al., 2013; Laffoley and Baxter, 2016).

Deoxygenation, the decline in seawater oxygen levels, is caused by

ocean warming, which reduces the ocean’s capacity to hold DO

(Keeling et al., 2010; Limburg et al., 2020). Furthermore, high

nutrients in seawater, mostly from agriculture, sewage, and

upwelling, lead to excessive growth of phytoplankton that results

to algal blooms (Kyewalyanga et al., 2020). When algal blooms die

and disintegrate, they absorb oxygen, resulting in deoxygenation in

coastal and shelf areas, as well as semi-enclosed seas (Limburg et al.,

2020). When DO levels fall below 4.6 ml/L in seawater, it causes

stress in most marine organisms (Kroeker et al., 2023).

Coastal upwelling areas are regions where deep, cold, nutrient-

and carbon-rich water from the ocean’s depths rises to the surface

during upwelling events (Smith, 1992). As a result, they are highly

productive and experience significant decreases in pH, DO, and

temperature levels during upwelling events (Rixen et al., 2012;
02
Schulz et al., 2019; Kroeker et al., 2023). Furthermore, the declines

in pH and DO during upwelling events can exceed thresholds for

pH and oxygen assumed to be detrimental to marine organisms

(Lutier et al., 2022; Cornwall et al., 2023; Kroeker et al., 2023).

These conditions place resident marine organisms and coastal

ecosystems at a high risk of future ocean acidification and

deoxygenation (Cornwall et al., 2023; Kroeker et al., 2023).

Although the extensive impacts of upwelling events on pH, DO,

and temperature dynamics are well-documented globally (Rixen

et al., 2012; Schulz et al., 2019; Kroeker et al., 2023), this

information is largely unknown in coastal upwelling areas of the

Western Indian Ocean (WIO), particularly in the Tanga-Pemba

Seascape (T-PS), known to experience upwelling during the

northeast monsoon season (Halo et al., 2020; Kyewalyanga

et al., 2020). This information is crucial for informing the future

of global change biology in the WIO. Moreover, the frequency and

duration (the number of days of the given upwelling event) of

upwelling events remain unknown in the T-PS. This knowledge

gap poses a challenge in assessing the seascape’s susceptibility to

upwelling-enhanced ocean acidification and deoxygenation, as

well as its implications for current mariculture practices within

the seascape.

Coastal ecosystems such as mangroves, seagrass meadows, and

coral reefs, prevalent in the T-PS, experience significant variations

of seawater pH, DO, and temperature over a 24-hour cycle, a result

of the interplay of various factors beyond upwelling (Saderne et al.,

2015; George et al., 2018; George and Lugendo, 2022).

Photosynthesis and respiration represent fundamental metabolic

processes that govern the productivity of a particular coastal

ecosystem (Rasmusson et al., 2019; Rasmusson et al., 2020).

Photosynthesis involves the uptake of CO2 and the production of

oxygen (O2), leading to increases in pH and DO in seawater (Semesi

et al., 2009b). Conversely, respiration involves the consumption of

O2 and the production of CO2, resulting in reductions in pH and

DO in seawater (Pedersen et al., 2013; Pedersen et al., 2016). The

balance between these metabolic processes can affect the levels of

pH and DO in the seawater of mangroves, seagrass meadows, and

coral reefs (Semesi et al., 2009a). Inorganic metabolism, like the

calcification of marine calcifiers, also has an influence on pH levels
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in mangroves, seagrass meadows, and coral reefs (Hendriks et al.,

2014; Morrell, 2018; Van Dam et al., 2021). The inflow of freshwater

during low tides affects seawater pH in mangroves by increasing

CO2, subsequently affecting pH in seagrass meadows and coral

reefs. Tides have also been demonstrated to influence the impacts of

key physiological processes and calcification on the pH and DO

levels of coastal ecosystems (George and Lugendo, 2022). However,

it remains unclear whether coastal ecosystems, especially those

situated in coastal upwelling areas, are susceptible to lower pH

and DO conditions brought by upwelling events or if their habitats

offer some degree of mitigation under such events (Rixen et al.,

2012; Lachkar, 2014; Schulz et al., 2019; Kroeker et al., 2023). The

lack of this knowledge prevents the implementation of suitable

measures to address the impact of upwelling-enhanced ocean

acidification and deoxygenation on resident organisms and the

existing mariculture practices in the seascape (WIOMSA, 2022).

The application of high-frequency data allows for the capture of

upwelling-driven dynamics in pH, DO, and temperature within the

open ocean over a sampling period and within a 24-hour cycle

(Kroeker et al., 2023). It also facilitates the comparison of the 24-

hour cycle mean hourly values of these variables in mangrove,

seagrass meadow, and coral reef ecosystems to those of the open

ocean (Hofmann et al., 2011), providing a more intricate evaluation

of the susceptibility and potential for mitigation of these ecosystems

to the lower pH and DO conditions induced by upwelling events.

Previous studies into the temporal dynamics of pH, DO, and

temperature in the WIO relied on discrete measurements

(Boodhoo et al., 2022; Edworthy et al., 2022; George and

Lugendo, 2022), which failed to capture declines in these variables

driven by upwelling. As a result, it was impossible to understand the

susceptibility of mangrove, seagrass and coral reef ecosystems to

lower pH and DO levels during upwelling events or determine if

some of them provide any degree of mitigation under such events.

The objective of this study was twofold. Firstly, to understand

high-frequency dynamics in pH, DO, and temperature in the open

ocean of the T-PS during the northeast monsoon, when upwelling

events are thought to occur (Halo et al., 2020; Kyewalyanga et al.,

2020), as well as the 24-hour high-frequency dynamics of these

variables in mangrove, seagrass, and coral reef ecosystems within

the seascape. Secondly, to understand the susceptibility of

mangrove, seagrass, and coral reef ecosystems to lower pH and

DO conditions induced by upwelling events and whether some of

these ecosystems offer any degree of mitigation under such events.

We tested three hypotheses. First, the T-PS experiences multiple

upwelling events, each with varying durations, that result in

significant declines in pH, DO, and temperature within the

seascape, thereby subjecting resident organisms and coastal

ecosystems to multiple exposures of lower pH and DO

conditions. Second, the reduced levels of pH and DO common

during upwelling events are lower than thresholds for these

variables assumed to be detrimental to marine organisms

(Cornwall et al., 2023), rendering resident marine organisms in

mangrove, seagrass, and coral reef ecosystems susceptible to

upwelling-enhanced ocean acidification and deoxygenation.

Third, mangrove, seagrass, and coral reef ecosystems would

demonstrate higher mean hourly values of pH, DO, and
Frontiers in Marine Science 03
temperature than those in the open ocean during upwelling

events, thereby providing some degree of mitigation to lower pH

and DO conditions in interconnected coastal ecosystems under

these events.
2 Materials and methods

2.1 Study area

The study was conducted in both the coastal waters of Moa and

Wete and the open ocean within the Tanga-Pemba Seascape (T-PS)

(Figure 1). Moa and Wete sites are marked by the presence of

mangrove, seagrass, and coral reef ecosystems. This connectivity of

coastal ecosystems enables the comparison of environmental

variables between these ecosystems and those in the open ocean

for understanding the susceptibility of these ecosystems to lower pH

and DO levels during upwelling events or assessing if some of these

ecosystems provide any degree of mitigation under such events. The

climate in the T-PS is tropical, with two distinct monsoon seasons:

the northeast monsoon season and the southeast monsoon season,

characterized by the reversal of trade winds (Semba et al., 2019).

The northeast monsoon season often occurs from October to

March and is characterized by prevailing northeasterly trade

winds (Mahongo et al., 2011). During this season, the T-PS

experiences warm water, gentle wind speeds, and relatively low

surface current speeds (Semba et al., 2019). The southeast monsoon

season, on the other hand, often occurs from March to September.

During this season, the direction of trade winds in the T-PS is

reversed from northeasterly to southeasterly, with strong winds

blowing from the southeast. This makes the T-PS to experiences

cooler water and relatively high surface current speeds (Semba et al.,

2019). Furthermore, the study areas undergo tidal movement,

following a semidiurnal pattern characterized by two high and

two low tides, each approximately six hours apart within a 24-hour

cycle (Mahongo, 2014). This pattern influences the variation of

environmental variables, including pH, DO, and temperature,

within mangrove, seagrass, and coral reef ecosystems (George

et al., 2018; George and Lugendo, 2022).
2.2 Sampling design and instruments

Loggers designed for measuring high-frequency data for pH

(HOBO pH and Temperature Data Logger MX2501), and DO

(HOBO Dissolved Oxygen Logger (U26-001)) were configured to

measure these variables at 5-minute intervals in coastal ecosystems

(mangroves, seagrass meadows, and coral reefs) over a 24-hour

cycle and at 30-minute intervals in the open ocean for six

consecutive months. The 30-minute measurement frequency for

the open ocean was thoughtfully chosen to optimize the lifespan of

the loggers’ batteries while guaranteeing a reliable representation of

data throughout the day. Both pH and DO loggers also

measured temperature.

In coastal ecosystems, these loggers were inserted into

protective pipes, affixed to a wooden stick, and anchored to the
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seafloor within a specific coastal ecosystem during a low spring tide.

The loggers were placed 40 cm above the seafloor on a wooden stick

to measure the pH and DO of the water column. The wooden stick

with loggers was finally tagged with a buoy that was attached to it

using rope for quick identification during device retrieval. After 24

hours, the loggers were collected, and the data was retrieved before

being dispersed in the following ecosystem. Due to the limited

number of loggers available, measurements were conducted

sequentially in different ecosystems during the same spring tide

by relocating loggers every 24 hours until the data collection activity

was completed. The weather conditions remained consistent across

the experimental spring tide, devoid of any extreme weather events.

This consistency allows for comparability between the

measurements conducted independently across different

ecosystems while still encompassing the inherent variability in

factors like light and temperature (George et al., 2018).

Within the open ocean of the waters off Moa, data collection was

facilitated using an oceanographic buoy (Figure 1). Similar to the

loggers utilized in coastal ecosystems, pH andDO loggers were securely

affixed to the buoy, positioned at a depth of 10meters below the surface
Frontiers in Marine Science 04
to maintain continuous monitoring of surface water pH, DO, and

temperature. The loggers recorded pH, DO, and temperature data

throughout the northeast monsoon season, spanning from October

2022 to March 2023, when upwelling is thought to occur in the T-PS

(Halo et al., 2020; Kyewalyanga et al., 2020).
2.3 Measurement of pH, DO,
and temperature

The HOBO pH and Temperature Data Logger MX2501 and

HOBO Dissolved Oxygen Logger (U26-001) were used to measure

pH, temperature, and DO for the open ocean and within mangrove,

seagrass, and coral reef ecosystems. The pH device was calibrated with

a HANNA buffer before configuration and deployment to a specific

coastal ecosystem. Following the retrieval of the device, the pH and

temperature data from the HOBO pH and Temperature Data Logger

MX2501 were downloaded into an Android phone utilizing the HOBO

Connect a mobile-phone application available on the Google Play store

and App Store that supports Bluetooth connectivity for seamless data
FIGURE 1

Map of the Tanga-Pemba Seascape, with white dots overlaid with black dots representing sampling sites. The solid red line is the transect for the
topographic nature of the seascape shown in the inset plot.
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transfer. Moreover, DO data from the HOBO Dissolved Oxygen

Logger (U26-001) was retrieved by using HOBO Optic USB Base

Station connected to HOBOware, a computer software.
2.4 Determination of pH and DO
threshold values

To determine the ocean acidification threshold, which signifies

the point of pH reduction where average saturation states reach one

and dissolution initiates, multiple simulations were carried out

utilizing the seacarb package in R. Conservative values for salinity

(35), temperature (25 °C), and total alkalinity (2000-2300 mol/kg)

obtained from the Western Indian Ocean (WIO) were utilized

(Madkaiker et al., 2023). The seacarb package’s carb function was

employed to calculate the solubility product of aragonite in units of

mol/kg at various pH levels. Furthermore, the pH function within

the seacarb package was employed to calculate the potentiometric

pH on the total scale (in mol/kg). Through these calculations, the

pH value closest to the aragonite saturation state value of one was

determined as the threshold value for ocean acidification. Based on

the available literature, a specific DO threshold value of 4.6 mg/L

was selected for deoxygenation, as this is the level at which the first

noticeable biological effects become apparent (Vaquer-Sunyer and

Duarte, 2008; Cornwall et al., 2023; Kroeker et al., 2023).
2.5 Data processing and analysis

To assess the high-frequency dynamics of pH, DO, and

temperature in the open ocean, we derived hourly information for

the measured pH, DO, and temperature at 30-minute intervals from

the date variable. The time variable was then used to average pH,

DO, and temperature into hourly interval for the period of data

collection. The time series data was used to plot a Hovmöller

diagram, which visually showed the dynamics of pH, DO, and

temperature over the sampling period and within a 24-hour cycle.

The presentation of time series data in a time-series diagram

allowed the identification of specific periods characterized by

noticeable sharp declines in pH, DO, and temperature—which

were used as proxy for upwelling events—and ascertaining their

duration in the T-PS (Tapia et al., 2009; Schulz et al., 2019; Kroeker

et al., 2023). To compare the dynamics of pH, DO, and temperature

in mangrove, seagrass, and coral reef ecosystems over a 24-hour

cycle, 5-minute data records were normalized to hourly interval,

which was then used to compute the mean hourly values of pH, DO,

and temperature and a non-parametric Wilcoxon signed-rank test

was used to examine whether the levels of pH, DO, and temperature

in mangrove, seagrass, and coral reef ecosystems were higher than

in the open ocean, where upwelling events were identified. This test

is employed when the data lacks a normal distribution or when the

sample size is insufficient for reliance on parametric tests such as the

t-test (Woolson, 2007). To minimize the influence of environmental

variations, the pH, DO, and temperature records of third upwelling

events that match the sampling dates in mangrove, seagrass, and

coral reefs were used. The R programming language, version R
Frontiers in Marine Science 05
4.3.1, was used for processing, analyzing, visualizing the high-

frequency data, and plotting (Mount and Zumel, 2019).
3 Results

3.1 Dynamics of pH, DO, and temperature
in the open ocean and the occurrence and
duration of upwelling events

Hovmöller diagrams (Figure 2) indicate the high-frequency

dynamics of pH, DO, and temperature over the sampling time

and a 24-hour cycle in the open ocean of the T-PS. These diagrams

cover a six-month period, from October 2022 to March 2023. It is

worth noting that these diagrams also feature clear signals that

correspond to the occurrence of upwelling events with varying

durations in the seascape that were confirmed in time series

diagrams (Figure 3). The first upwelling event occurred in

December, and it lasted for 12 days, followed by a second event

in February, which lasted for 12 days, and finally, a third event in

March, which lasted for 7 days. The time interval between the first

and second events was 40 days, while the interval between the

second and third events was 24 days. The period of upwelling events

was characterized by significant declines in pH, DO, and

temperature (Figure 3). Following the first upwelling event, there

was a noticeable decline in DO levels in the non-upwelling days that

occurred a few days later (Figure 3).
3.2 Critical thresholds for ocean
acidification and deoxygenation

The simulation results revealed a pH threshold value of 7.43 ±

0.15 for ocean acidification in the T-PS, which corresponds to an

average aragonite saturation state of 1.0 ± 0.02. This threshold value

represents a critical point under future ocean acidification conditions

below which dissolution of the saturation state for coral reefs can

begin in the seascape (Cornwall et al., 2023). A DO threshold of

4.6mg/L was also selected, which was based on the findings of a

meta-analysis that identified biological effects becoming evident at

this level (Vaquer-Sunyer and Duarte, 2008; Cornwall et al., 2023).

The mean hourly values of pH during upwelling events were above a

pH threshold value of 7.43 for ocean acidification, but DO mean

values exhibited variability both above and below a threshold value of

4.6 mg/L for deoxygenation (Figure 4). The correlation between pH

and DO was more pronounced during non-upwelling events

compared to upwelling events (Figure 4).
3.3 Dynamics of pH in mangrove, seagrass
and coral reef ecosystems

The patterns of pH dynamics were consistent across mangrove,

seagrass, and coral reef ecosystems in the Moa site (Figure 5A) but not

in the Wete site (Figure 5B). pH patterns consistently demonstrated

higher mean hourly values in the seagrass and coral reef ecosystems at
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A

B

C

FIGURE 3

Time series diagrams of (A) pH, temperature (B, C) dissolved oxygen (DO) in the Tanga-Pemba Seascape. The color-coded blocks denote the
upwelling occurrence period.
A

B

C

FIGURE 2

Hovmöller diagrams of the 24-hour cycle from October to March of (A) pH, (B) temperature, and (C) dissolved oxygen (DO) in the Tanga-Pemba
Seascape. The black solid line indicates the duration (days) of upwelling events.
Frontiers in Marine Science frontiersin.org06

https://doi.org/10.3389/fmars.2023.1286870
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


George et al. 10.3389/fmars.2023.1286870
the Moa site, as well as in the mangrove, seagrass, and coral reef

ecosystems at the Wete site, compared to those of the open ocean

recorded during the third upwelling event (Figures 5A, B). However,

most of the time, during a 24-hour cycle, the pH pattern within the

mangrove ecosystems of the Moa site displayed mean hourly values

below those of the open ocean recorded third upwelling event

(Figure 5A). The highest mean pH values in Moa were observed

within the coral reef ecosystems (8.234), while in Wete, the highest

mean values were observed in seagrass ecosystems (8.315) (Table 1).

The highest pH ranges were detected within the mangrove ecosystems

of Moa (1.272) and the seagrass ecosystems of Wete (0.275) (Table 1).
3.4 Dynamics of temperature in mangrove,
seagrass and coral reef ecosystems

Consistent temperature patterns were observed across the

mangrove, seagrass, and coral reef ecosystems of both Moa
Frontiers in Marine Science 07
(Figure 6A), and Wete (Figure 6B). The temperature patterns

consistently showed elevated mean hourly values within the

mangrove, seagrass, and coral reef ecosystems at both the Moa and

Wete sites compared to those observed in the open ocean during the

third upwelling event (Figures 6A, B). The highest temperature

recorded in Moa was 32.042°C, and the lowest was 28.495°C, with

a range of 3.547°C (Table 1). The mean hourly values for water

temperature patterns in Moa were often greater than those in Wete.
3.5 Dynamics of DO in mangrove, seagrass
and coral reef ecosystems

The pattern of DO dynamics varied between mangrove,

seagrass, and coral reef ecosystems (Figure 7). The DO patterns

throughout displayed higher mean hourly values within the

mangrove, seagrass, and coral reef ecosystems compared to those

recorded in the open ocean during the third upwelling event. The
A B

FIGURE 5

The patterns of pH dynamics in mangrove, seagrass, and coral reef ecosystems of (A) Moa and (B) Wete in comparison to those in the open ocean
recorded during the third upwelling event.
FIGURE 4

The correlation between pH and DO during upwelling events and non-upwelling days in the Tanga-Pemba Seascape. The blue dotted line denotes
the computed pH threshold of 7.43 for ocean acidification, and the red dotted red line is the dissolved oxygen (DO) threshold of 4.6 mg/L.
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presentation of only DO results for Wete was due to the

unavailability of the DO logger during sampling in Moa, as it was

still recording data for the open ocean. Consistent DO patterns were

observed in the seagrass and coral reef ecosystems, while the

mangrove ecosystem exhibited a distinct pattern differing from

that observed in the seagrass and coral reef ecosystems. The highest

DO concentration was found in seagrass meadows, which was 10

mg/L (Table 1).
Frontiers in Marine Science 08
3.6 Comparisons of pH, DO, and
temperature between coastal ecosystems
and the open ocean during the third
upwelling event

Statistically rich boxplot of pH, DO, and temperature in

mangrove, coral reef, and seagrass ecosystems and in the open

ocean, which are represented by the red dotted line (Figure 8).
A B

FIGURE 6

The patterns temperature dynamics in mangrove, seagrass, and coral reef ecosystems in (A) Moa and (B) Wete in comparison to those in the open
ocean recorded during the third upwelling event.
TABLE 1 Descriptive statistics for pH, DO, and temperature in the coastal ecosystems of Moa and Wete sites and those of the open ocean recorded
during the third upwelling event.

Site Variable Ecosystem n Min Mean SD Max Range

Moa pH Coral reef 24 7.958 8.157 0.068 8.234 0.276

Mangrove 24 6.793 7.545 0.36 8.065 1.272

Seagrass 25 7.751 7.976 0.111 8.089 0.338

Wete pH Coral reef 24 8.055 8.083 0.02 8.139 0.084

Mangrove 23 7.997 8.08 0.059 8.172 0.175

Seagrass 23 8.04 8.155 0.069 8.315 0.275

Moa Temperature Coral reef 24 29.265 29.824 0.37 30.947 1.682

Mangrove 24 28.495 30.605 0.944 32.042 3.547

Seagrass 25 29.587 30.189 0.452 31.042 1.455

Wete Temperature Coral reef 24 27.08 27.66 0.312 28.49 1.41

Mangrove 23 27.688 27.923 0.11 28.058 0.37

Seagrass 23 27.3 27.633 0.231 27.947 0.647

Wete DO Coral reef 24 6.818 7.264 0.207 7.651 0.833

Mangrove 23 5.802 6.745 0.447 7.235 1.433

Seagrass 23 5.097 6.938 1.216 10.095 4.998

Open ocean pH 24 7.87 7.937 0.035 7.988 0.118

Open ocean Temperature 24 26.75 27.048 0.14 27.347 0.597

Open ocean DO 24 0.396 0.574 0.097 0.736 0.34
fron
Min, Minimum; Max, Maximum; SD, Standard deviation; DO, Dissolved oxygen.
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Specifically, the mean hourly pH values were significantly higher in

the coral reef ecosystems and the seagrass ecosystems than those of

the open ocean during the third upwelling event (Table 2).

However, there was no significant difference in mean hourly pH

values between the mangrove ecosystem and the open ocean.

Similarly, the mean hourly values for temperatures in the

mangrove, seagrass, and coral reef ecosystems were significantly

higher than those of the open ocean environment (Table 1).

Moreover, the mean hourly DO values in the mangrove, seagrass,

and coral reef ecosystems were significantly higher than those in the

open ocean.
4 Discussion

The study revealed the high-frequency dynamics of pH, DO,

and temperature in the T-PS for both the open ocean during the

northeast monsoon season and within mangrove, seagrass, and

coral reef ecosystems throughout the 24-hour cycle within that

particular season. Moreover, it has revealed the occurrence of

multiple upwelling events, with varying durations, that resulted in

significant declines in pH, DO, and temperature within the

seascape. Additionally, it revealed that the extremely low levels of

pH during upwelling events in the T-PS are above the threshold

value of 7.43 for ocean acidification, while the extremely low levels

of DO fall below a threshold value of 4.6 mg/L for deoxygenation.

During upwelling events, seagrass and coral reef ecosystems

demonstrated higher mean hourly values of pH and DO than

those in the open ocean. Frequent exposure to lower conditions

in pH and DO during upwelling events may pose threats to the

survival of both resident marine organisms and ecosystems, as well

as the current mariculture practices within the T-PS seascape

(Rixen et al., 2012; Schulz et al., 2019; Kroeker et al., 2023).

However, the presence of seagrass meadows within these

interconnected systems offers a degree of mitigation to their

susceptibility to lower pH and DO conditions. These findings

highlight the importance of conserving and managing seagrass

meadows, not only for their well-being but also for their
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capability to alleviate the notably low levels of both pH and DO

frequently experienced during upwelling events, thereby providing

potential benefits to nearby mangrove and coral reef ecosystems.

Significant declines in pH, DO, and temperature were observed

in upwelling events in the T-PS, potentially attributed to the

upwelling of water with diminished pH, DO, and temperature to

the surface (Lachkar, 2014; Schulz et al., 2019; Kroeker et al., 2023).

The multiple upwelling events observed during the northeast

monsoon season, with varying durations, may suggest that

resident organisms and ecosystems endure multiple exposures to

reduced pH and DO conditions. This is the first study to confirm

the occurrence of upwelling in the T-PS reported by Kyewalyanga

et al. (2020) and Halo et al. (2020) and detect multiple upwelling

events during the northeast monsoon season. Upwelling in T-PS is

driven by the convergence of the northward-flowing East Africa

Coastal Current and the southward-flowing Somali Current (Semba

et al., 2019). Significant declines in pH, DO, and temperature during

upwelling events have also been reported in other parts of the world,

along with the occurrence of multiple events in their respective

study areas (Lachkar, 2014; Schulz et al., 2019; Kroeker et al., 2023).

A pH threshold value of 7.43 for ocean acidification in the T-PS

was established in this study, representing an aragonite saturation

state of one, below which dissolution of the aragonite saturation

state may begin in the seascape (Cornwall et al., 2023). This is the

first study to report a pH threshold value for ocean acidification in

coastal upwelling areas of the WIO. The mean hourly values for pH

observed during upwelling events in the T-PS were above the

threshold value of 7.43 for ocean acidification, suggesting that the

dissolution of the aragonite saturation state is unlikely to occur

under the current upwelling events in the seascape. However, it is

anticipated that the intensity and severity of upwelling events may

increase in future climate change scenarios, thereby posing a risk

the seascape to dissolution of the aragonite saturation state (Tapia

et al., 2009; Schulz et al., 2019; Kroeker et al., 2023). Our pH

threshold value of 7.43 for ocean acidification differs from the 7.6

reported by Kroeker et al. (2023) in the California current system.

This disparity highlights the geographic variability of threshold

values for ocean acidification, influenced by the frequency and
FIGURE 7

The patterns of dissolved oxygen (DO) dynamics in mangrove, seagrass, and coral reef ecosystems of Wete in comparison to those in the open
ocean recorded during the third upwelling event.
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intensity of upwelling (Chan et al., 2008). It also cautions against

generalizing these threshold values in experiments designed to

understand the impacts of ocean acidification in coastal upwelling

areas. On the other hand, the DO values fluctuated both above and

below a threshold of 4.6 mg/L for oxygen, signaling a high
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susceptibility of resident organisms in the seascape to

deoxygenation during upwelling events (Cornwall et al., 2023;

Kroeker et al., 2023).

The observed higher mean hourly values of pH and DO in

seagrass meadows and coral reefs than the means for these variables
TABLE 2 Statistical comparisons of pH, dissolved oxygen (DO) and temperature between coastal ecosystems and the open ocean during the third
upwelling event.

Ecosystem comparison Variable Statistic p-value Status

Coral reef vs open ocean pH 1176 3.55E-15 Significant

Mangrove vs open ocean 481 0.809847 Insignificant

Seagrass vs open ocean 1065 4.40E-08 Significant

Coral reef vs open ocean Temperature 300 9.70E-06 Significant

Mangrove vs open ocean 276 1.19E-07 Significant

Seagrass vs open ocean 276 1.19E-07 Significant

Coral reef vs open ocean Dissolved oxygen 1176 8.40E-10 Significant

Mangrove vs open ocean 1128 1.24E-09 Significant

Seagrass vs open ocean 1176 8.42E-10 Significant
fr
A B

C

FIGURE 8

Statistically rich boxplot for (A) pH, (B) dissolved oxygen (DO), and (C) temperature in coral, mangrove, and seagrass coastal ecosystems. The red
dotted line represents the mean values for pH, DO, and temperature for the open ocean during the third upwelling event.
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during upwelling events could suggest a degree of mitigation to low

pH and DO levels within these interconnected ecosystems facilitated

by the presence of seagrass meadows during such events. Supporting

these findings, a study by George and Lugendo (2022) using discrete

measurements reported the highest pH and DO levels in seagrass

meadows in Chwaka and Mnazi bays during the daytime. Seagrass

meadows consume CO2 from the seawater through photosynthesis,

leading to the production of O2 and an increase in the pH and DO

levels in seawater of these ecosystems (Hendriks et al., 2014; Saderne

et al., 2015). On the other hand, the mean hourly pH levels in the

mangrove ecosystem were comparatively lower than those in the

open ocean, suggesting that the mangrove ecosystem and the

organisms it hosts may be susceptible to the lower pH and DO

conditions in the seascape associated with upwelling events. Seagrass

meadows have the potential to increase pH and DO levels in adjacent

mangrove and coral reef ecosystems during the daytime through tidal

movement, thereby contributing to the mitigation of the impacts of

upwelling-enhanced ocean acidification and deoxygenation (George

and Lugendo, 2022). The tidal-driven water movement among

mangrove, seagrass, and coral reef ecosystems facilitates the

transfer of water with higher pH and DO values from seagrass

ecosystems to mangrove ecosystems during high tides. Similarly, it

prevents water with a lower pH from mangroves from reaching coral

reefs during low tides. When mangrove, seagrass, and coral reef

ecosystems are situated at considerable distances from each other or

when water circulation through them is limited, as seen at the Wete

site, they tend to have fewer mutual impacts, and mangrove

ecosystems may be more susceptible to the lower pH and DO

levels during upwelling events (Schulz et al., 2019; Kroeker

et al., 2023).

The degradation or disappearance of seagrass meadows,

primarily attributed to human-induced factors and the impacts of

climate change (Crabbe, 2008; Waycott et al., 2009), poses a

significant threat to the regulatory capacity of these ecosystems in

mitigating lower pH and DO levels associated with upwelling

events. As these critical coastal ecosystems deteriorate, their

effectiveness in buffering the effects of upwelling-enhanced

declines in pH and DO is compromised (Job et al., 2023). This, in

turn, will expose organisms and adjacent coastal ecosystems to an

increased susceptibility to the adverse effects of upwelling-enhanced

ocean acidification and deoxygenation.
5 Conclusion and recommendation

It is concluded that multiple upwelling events occur during the

northeast monsoon season, with decreasing duration over time,

leading to significant declines in pH, DO, and temperature within

the T-PS. A pH value of 7.43 is a threshold for ocean acidification in

the T-PS, representing an aragonite saturation state of one, below

which dissolution of the aragonite saturation state may begin in the

seascape. The existing extremely low pH levels observed in the T-PS

during upwelling events are above the threshold value of 7.43 for

ocean acidification, and consequently, the dissolution of aragonite

saturation state is unlikely to occur under the current upwelling

events in the seascape. The extreme DO values below 4.6 mg/L are
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occurring in the T-PS during upwelling events, indicating a high

vulnerability of resident organisms and coastal organisms in the

seascape to deoxygenation. During upwelling events, the seagrass

and coral reef ecosystems exhibit higher mean hourly values of pH

and DO compared to those of the open ocean, attributed to the

presence of seagrass meadows within these interconnected systems.

The study recommends proactive conservation and management

strategies for seagrass meadows that will minimize ongoing threats

and enhance the resilience of these ecosystems against changing

environmental conditions (George, 2019; Unsworth et al., 2019).

These efforts will enable seagrass meadows to continue playing a

vital role in mitigating the impacts of upwelling-enhanced ocean

acidification and deoxygenation in the T-PS.
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