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Comparative analysis of
organelle genomes provides
conflicting evidence between
morphological similarity and
phylogenetic relationship
in diatoms
YuJin Jeong1 and JunMo Lee1,2*

1Department of Oceanography, Kyungpook National University, Daegu, Republic of Korea,
2Kyungpook Institute of Oceanography, Kyungpook National University, Daegu, Republic of Korea
Diatoms (Bacillariophyta) are abundant phytoplankton groups in marine

environments, which contribute approximately 20% of global carbon

fixation through photosynthesis. Moreover, diatoms exhibit the highest

species diversity (approximately 18,000 diatom species) among marine

photosynthetic eukaryotes, which were identified by morphological

characteristics. Molecular phylogenetic analyses could shed new insights

into the evolutionary relationships of diverse diatom species. Nevertheless, a

comprehensive understanding of the phylogenetic relationships of diatom

species still remains unclear because the available molecular data are

insufficient compared with their high species diversity. Furthermore, several

novel diatom species were reported from field samples with no molecular

evidence. In particular, the phylogenies of diatom species constructed using

organelle genomes revealed that several diatom genera are paraphyletic with

high supporting values. We constructed high-resolution phylogenetic trees

of diatom species using organelle genomes (plastids and mitochondria) and

compared the morphologies in several paraphyletic diatom genera.

Especially, the clades Nitzschia and Thalassiosira include several different

diatom genera with high phylogenetic supports. Our study demonstrated

that some morphological characteristics (e.g., genus characters) of several

diatom genera could not represent current genus boundaries. Based on the

results, we highlight the necessity for taxonomic reinvestigation. To

reestablish this in diatoms, it will be essential to incorporate more genome

data from a broader range of taxon samples, along with a comparison of

morphological characteristics.
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1 Introduction

Diatoms (Bacillariophyta) are unicellular photosynthetic

eukaryotes widely distributed in marine environments (Mann

et al., 2017). A total of 18,374 diatom species have been reported

based on morphological characteristics (Hasle and Syvertsen, 1997;

Finkel and Kotrc, 2010), which indicates the highest species

diversity among photosynthetic algae (e.g., red algae: 7,538, green

algae: 7,766, and brown algae: 2,120; Algaebase; Guiry and Guiry,

2023). Nonetheless, a comprehensive understanding for molecular

phylogenies of diatom species still remains unaddressed because

available molecular data (e.g., molecular markers and organelle

genomes) is insufficient to construct a high-resolute phylogenetic

tree of diatom species despite their high species diversity (Visco

et al., 2015; Wang et al., 2022a). Furthermore, several novel diatom

species were reported with no molecular evidence because they were

observed from field samples (Kryk et al., 2021; Kulikovskiy et al.,

2021). Mann et al. (2021) mentioned about controversial molecular

data from morphologically unverified diatom species, which are

available in the public databases (e.g., NCBI). Therefore, to establish

their phylogenetic relationships, sufficient molecular data are

required from morphologically verified diatom species.

Genomic studies are increasingly in diverse taxa due to the

significantly reduced costs of genome sequencing approaches (e.g.,

next-generation sequencing technologies). As a result, huge

amounts of genomic information are currently available. The

phylogenetic analysis using single or several nuclear marker genes

generally show insufficient phylogenetic resolution with low

support values (Winchell et al., 2004; Bruder and Medlin, 2007;

Dong et al., 2010). In addition, nuclear genetic variation could result

from hybridization and introgression through sexual reproduction

(Baack and Rieseberg, 2007; Colbeck et al., 2011; Harrison and

Larson, 2016). In contrast, the organelle genomes are maternally

inherited, and as a result, they generally have conserved gene

contents, which are useful for phylogenetic studies (Timmis et al.,

2004; Lee et al., 2016; Liu et al., 2021). In addition, the organelle

genomes are relatively easier to handle in the generation and

analysis of sequencing data compared to complete nuclear

genome data (Cunha et al. , 2009; Song et al . , 2016).

Consequently, the organelle genomes have much more available

data than complete nuclear genomes. In diatoms, for example, 141

plastid and 81 mitochondrial genomes were reported in the NCBI

database, while complete nuclear genomes were reported from only

seven species (November 2023; NCBI database). Phylogenetic

analyses using concatenated genes from organelle genomes could

provide high-resolution phylogenetic relationship in diverse taxa

(Lemieux et al., 2007; Lee et al., 2016; Jeong and Lee, 2021; Liu et al.,

2021). Through these phylogenetic approaches, traditionally

established taxonomic relationships were revised in several

taxonomic groups (Wang et al., 2022b; Park et al., 2023). To

study phylogenetic relationships in diatom species, therefore,

current studies have been frequently conducted using organelle

genome (Jeong and Lee, 2021; Wang et al., 2022a). Interestingly, the

phylogeny analysis using organelle genomes shows that several

diatom genera exhibit paraphyletic relationships with high
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phylogenetic support values (Liu et al., 2021; Wang et al., 2022a).

For instance, the genus Nitzschia are paraphyletic with respect to

the genera Cylindrotheca, Pseudo-nitzschia, and Fragilariopsis

(Wang et al., 2022a). In particular, the genus Nitzschia exhibits a

high species diversity among diatom genera (878 Nitzschia species

are reported; Algaebase; Guiry and Guiry, 2023). To better

understand the phylogenetic relationships in diatoms, more

organelle genome data are required in diverse diatom taxa.

However, the number of available organelle genomes is still

insufficient to cover their high species diversity, estimated at

about 100,000 species (Mann et al., 2017). In addition, further

discussion is required to address the conflict between phylogenetic

relationships and morphology-based genus boundaries.

In this study, we newly report the complete organelle genomes

(plastids and mitochondria) from Entomoneis umbratica, Navicula

avium, Pleurosigma inscriptura, Nitzschia dissipatoides, Nit.

anomalus sp. nov., and Nit. reversa var. latus var. nov. We

constructed multigene phylogenies using available organelle

genomes of diatom species , and discussed about the

morphological similarity in several diatom genera, which exhibit

paraphyletic with high phylogenetic supports. We suggest a

potential for taxonomic revisions of the diatom taxa (or genera).
2 Materials and methods

2.1 Collection and observation of
diatom species

Target diatoms were collected from field samples in Korean

coastal waters. Entomoneis umbratica (MEG002), Navicula avium

(MEG004), Pleurosigma inscriptura (MEG005), and Nitzschia

reversa var. latus (MEG012) were isolated from Gijang (Busan,

Korea; 35°21′82.93″N, 129°22′97.99″E) on June 12, 2020. Nit.

anomalus (MEG011) and Nit. dissipatoides (MEG028) were

isolated from Homigot (Pohang, Korea; 36°02′19.1′′N 129°34′
49.4′′E; May 17, 2020) and Shinan-gun (Jeollanam-do, Korea; 34°

83′20.36″N, 126°36′64.67″E; December 5, 2020), respectively

(Figure 1). Single-cell isolation method was performed using

customized Pasteur pipettes (glass) under light microscopic

observation. The isolated strains were cultured in L1 medium at

20°C (Marine Ecological Genomics Lab. at Kyungpook

National University).

The morphological characteristics of the target diatoms were

observed using a light microscope (LM; Nikon ECLIPSE Ni-U,

Nikon, Tokyo, Japan), scanning electron microscope (SEM; Hitachi

SU8220; Hitachi Ltd., Tokyo, Japan), and transmission electron

microscope (TEM; Hitachi HT7700, Hitachi Ltd., Tokyo, Japan). The

diatom cultures were fixed with 2.5% glutaraldehyde, and the organic

matters of diatom cells were removed using sodium hypochlorite

(NaClO; Vilhena et al., 2021). The type specimens (permanent

slides) of diatom cells (Nit. anomalus sp. nov. MABIK DI00043462

and Nit. reversa var. latus var. nov. MABIK DI00043463) prepared in

this study were deposited to the National Marine Biodiversity Institute

of Korea (MABIK; http://www.mabik.re.kr).
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2.2 DNA sequencing, genome assembly,
and organelle genome analysis

Genomic DNA was extracted using the DNeasy Plant Mini kit

(Qiagen, Hilden, Germany) according to the manufacturer’s

protocol. Genome sequencing was performed using Illumina

Novaseq 6000 (Illumina, San Diego, CA; 150 bp paired-end

library), and the sequencing raw reads were assembled using

SPAdes assembler (v3.14.2; Bankevich et al., 2012). To predict

18S rDNA regions from the assembled genomes, local BLASTn

searches (e-value cutoff = 1.e-05) were performed with 18S rDNA

sequences of Phaeodactylum tricornutum (JF489968.1).

Organelle (plastid and mitochondrion) contigs were selected by

local BLASTn search (e-value cutoff = 1.e-05) using their

comparable organelle genomes (MF997419.1, NC056793.1,

MT383639.1, NC038001.1, NC056794.1, and MW971520.1), and

reassembled as circular organelle genomes using Geneious Prime

(v2023.0.4). Protein-coding regions in the organelle genomes were

manually predicted by BLASTx search (NCBI nr database; e-value

cutoff = 1.e-05) with codon table 11 (plastid) and 4 (mitochondria),

and annotated using Geneious Prime (v2023.0.4.). Transfer RNAs

(tRNAs) and ribosomal RNAs (rRNAs) were analyzed using tRNA

scan-SE 2.0 (Lowe and Chan, 2016; Chan and Lowe, 2019) and

barrnap 0.9 (https://github.com/tseemann/barrnap), respectively.
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2.3 Phylogenetic analysis

The 18S rDNA phylogenies were constructed using the BLASTn

top 1,000 hits (e-value cutoff = 1.e-05; NT database in NCBI) of 18s

rDNA sequences from the target diatoms, excluding unclassified

strains (Supplementary Figures S1–S4).

A total of 147 plastid and 86 mitochondrial genomes were used in

this study (Supplementary Tables S1, S2). Homologous groups of

organelle genes were identified by local BLASTp search (e-value

cutoff = 1.e-05). Each homologous gene set was aligned using

MAFFT (v7.313; Katoh and Toh, 2008) with the default options.

Concatenated alignments were constructed using 123 plastid and 34

mitochondrial genes, respectively. Maximum-likelihood (ML) trees

constructed using each concatenated alignment were analyzed using

the IQ-tree program (v1.6.12; Nguyen et al., 2015) with the following

options: gene partition information (-q), model test (-m TEST), and

ultrafast bootstrapping with 1,000 replications (-bb 1,000).
2.4 Comparisons of morphological
characteristics of diverse diatom genera

To clearly distinguish morphological features, we compared six

target diatoms with their morphologically similar counterparts as
FIGURE 1

Sampling locations (South Korea) in this study.
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follows: E. umbraticaMEG002 was compared with E. umbratica, E.

infula, E. adriatica, E. punctulate, E. tenera, E. gracilis, E. pusilla, and

E. vilicicii (Osada and Kobayasi, 1990; Mejdandžić et al., 2017;

Mejdandžić et al., 2018). Navicula avium MEG004 was compared

with N. avium, N. babeiensis, N. pseudokuseliana, N. coraliana, N.

nielsfogedii, N. bergstromiana, N. kuseliana, N. serotina, and N.

zanonii (Hustedt, 1949; Metzeltin and Lange-Bertalot, 1998;

Rumrich et al., 2000; Kulikovskiy et al., 2012; Taylor et al., 2016;

Li et al., 2017a; Sabbe et al., 2019; Chudaev et al., 2020; Kulikovskiy

et al., 2021). P. inscriptura MEG005 was compared with P.

inscriptura, P. obtusum, P. strigosum, P. rigidum, and P. williamsii

(Sterrenburg, 2001; Reid, 2002; Stidolph, 2002; Sterrenburg, 2003;

Harper et al., 2009). Nit. reversa var. latus MEG012 was compared

with Nit. reversa, Nit. droebakensis, Nit. gobbii, Nit. acicularis, Nit.

decipiens, Nit. draveillensis, Nit. kavirondoensis, Nit. longissima, and

Nit. ventricosa (Cleve and Grunow, 1880; Smith, 1853; Hasle, 1964;

Coste and Ricard, 1980; Hasle and Syvertsen, 1997; Sitoki et al.,

2013; Giulietti et al., 2021). Nit. dissipatoides MEG028 was

compared with Nit. dissipatoides, Nit. erosa, Nit. thienemanni, Nit.

fragilariiformis, Nit. hybridaeformis, Nit. pseudoamphioxys, Nit.

serrata, Nit. yunchengensis, and Nit. albicostalis (Hustedt, 1938;

Hustedt, 1942; Bourrelly and Manguin, 1952; Hustedt, 1955; Giffen,

1966; Archibald, 1982; Compère, 1986; Li and Volcani, 1987; Shu-qi

and Ting, 1994). Nit. anomalus MEG011 was compared with Nit.

nanodissipata, Nit. volvendirostrata, Nit. aestatis (Giffen, 1973;

Witkowski et al., 2016).

To visualize and compare the morphological characteristics of

paraphyletic diatom genera, we redrew the illustrations of several

representative diatom species based on their previously reported

morphological descriptions and images as follows: Pseudo-nitzschia

simulans (Li et al., 2017b; Ajani et al., 2020), Pseudo-nitzschia

micropora (Priisholm et al., 2002; Rivera-Vilarelle et al., 2013),

Pseudo-nitzschia multiseries (Hasle, 1995; Evans et al., 2004), Pseudo-

nitzschia pungens (Lim et al., 2012; Kim et al., 2015), Pseudo-nitzschia

americana (Lundholm et al., 2002a; Rivera-Vilarelle et al., 2013),

Fragilariopsis cylindrus (Von Quillfeldt, 2001; Cefarelli et al., 2010),

Nitzschia inconspicua (Sonneman et al., 2000; Trobajo et al., 2013),

Nitzschia alba (Lewin and Lewin, 1967), Nitzschia palea (Crowell et al.,

2019; Wang et al., 2020), Cylindrotheca closterium (Reimann and

Lewin, 1964; Ryabushko et al., 2019), Tryblionella apiculata

(Gregory, 1857; Yamamoto et al., 2017), Psammodictyon constrictum

(Yamamoto et al., 2017), Nitzschia traheaformis (Witkowski et al.,

2016), Nitzschia dissipatoides (Archibald, 1982; this study), Bacillaria

paxillifer (B. paxillifera; Jahn and Schmid, 2007), Skeletonema marinoi

(Jung et al., 2009), Thalassiosira nordenskioeldii (Cleve, 1873;

Shevchenko et al., 2020), Discostella pseudostelligera (Houk and Klee,

2004; Guerrero and Echenique, 2006), Minidiscus spinulatus (Li et al.,

2020), Cyclotella tecta (Prasad and Nienow, 2006), Thalassiosira

pseudonana (Horvát et al., 2021), and Conticribra weissflogii

(Cavalcante et al., 2013).
3 Results and discussion

We classified and described the morphological characteristics of

six diatom species (E. umbratica, N. avium, P. inscriptura, Nit.
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reversa var. latus, Nit. dissipatoides, and Nit. anomalus), which are

observed using LM, SEM, and TEM (See Methods). We also

conducted phylogenetic analyses of 18S rDNA sequences from

the target diatoms to discuss the molecular taxonomy of the

target species.
3.1 Morphological descriptions of six
diatom species

3.1.1 Entomoneis umbratica Mejdandzic &
Bosak 2018

One multilobed plate plastid was observed in the central region

of living cells (Figure 2A). Frustules are panduriform, with a

markedly constricted bilobate keel in the middle part of the valve

(Figure 2B). Cells are torsional around the apical axis and have

numerous girdle bands (Figure 2C). The valve shape is linear-

lanceolate, with a length (apical axis) of 18–32 mm (avg. 24 mm,

n = 100) and a width (transapical axis) of 8–15 mm (avg. 11 mm,

n = 100; Figure 2C). Striae density in the valve and keel was

observed 45 in 10 mm (Figure 2D). Striae are closed by hymens

with parallel-located roundish-to-elliptical perforations (Figure 2E).

The copula and valve copula have similar ultrastructure, showing 47

striae in 10 mm (Figure 2F; Mejdandžić et al., 2018).

Entomoneis umbratica (MEG002) demonstrated similar valve

outlines with those of E. infula and E. adriatica, but its cell length

(apical axis) and valve width (transapical axis) were larger than

those of others (Supplementary Table S3). Moreover, the striae in E.

infula and E. adriatica were denser than those E. umbratica

(Supplementary Table S3). The BLASTn search of E. umbratica

(MEG002; OR398973) revealed 99.88% identity with the 18S rDNA

sequences of E. umbratica (MF000604.1), and their phylogenetic

analysis with homologous sequences (top 500 matches of BLASTn

search, e-value cutoff = 1.e-05) revealed a monophyletic clade of

Entomoneis species (Supplementary Figure S1).

3.1.2 Navicula avium (M.A.Tiffany, Herwig &
Sterrenburg) Yuhang Li & Kuidong Xu 2017

The valve shape is narrowly lanceolate with acute apices, and

the valve has a straight raphe (Figures 3A–C). Cells are 20–27 mm
(avg. 24 mm, n = 100) in length and 7–11 mm (avg. 11 mm, n = 100)

in width (Figures 3C, D). The external valve face exhibits

continuous longitudinal strips and two pore-like extensions at the

external central raphe endings (Figures 3D, E). In the internal valve

view, the accessory rib is parallel to the raphe slit (Figure 3F). Small

helictoglossae are found at the tip of the terminal raphe slits, and the

region around helictoglossa is thickened with three pores

(Figure 3G). The transverse striae are arranged parallel or radiate,

and their density is 12 in 10 mmwith apically elongated linear areola

(Sterrenburg et al., 2015; Li et al., 2017a).

Navicula avium (MEG004) displays a smaller cell size (20–27 mm)

than previously reported N. avium (Li et al., 2017a; 32.4–62.5 mm), but

their 18S rDNA sequences are identical (Supplementary Table S4);

hence, the difference is considered cell size variation in N. avium. The

valve outlines of N. avium and N. babeiensis are similar (narrowly

lanceolate with broadly rounded), but the shape of the valve apices in
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N. babeiensis is slightly subrostrate (Supplementary Table S4).

Moreover, the striae density in 10 mm of N. avium (7–11) was lower

than that of N. babeiensis (17–19; Supplementary Table S4). The

phylogenetic analysis conducted using the 18S rDNA sequnces of N.

avium (MEG004; OR398987) with homologous sequences (top 500

matches of BLASTn search, e-value cutoff = 1.e-05) revealed a

monophyletic clade of N. avium (Supplementary Figure S2).

3.1.3 Pleurosigma inscriptura M.A.Harper 2009
Cells have lanceolate valves with rounded apices and sigmoid

raphe with a 3.6° raphe angle (Figures 4A–C). Cells measure 104–

115 mm (avg. 111 mm, n = 100) in length and 15–25 mm (avg. 4 mm,

n = 100) in width. Each cell has a small oval central nodule with no

hyaline (Figure 4D). Transverse striae are 20 in 10 mm. The internal

polar raphe ends appear as small triangles (Figure 4E; Harper et al.,

2009; Jeong and Lee, 2021).

Pleurosigma inscriptura (MEG005) shows a similar size as that

of P. obtusum, but P. obtusum exhibits a rhombic value shape

(Supplementary Table S5). The BLASTn search of 18S rDNA

sequences of P. inscriptura (MEG005; OR398989) revealed

97.90% identity with the 18S rDNA sequences of Pleurosigma sp.

(KX981840.1), and their phylogenetic analysis with homologous
Frontiers in Marine Science 05
sequences (top 500 matches of BLASTn search, e-value cutoff = 1.e-

05) revealed a monophyletic clade of P . intermedium

(Supplementary Figure S3).

3.1.4 Nitzschia reversa var. latus Jeong & Lee
var. nov.

Cells are 38–50 mm (avg. 46 mm, n = 100) in length and 2–5 mm
(avg. 4 mm, n = 100) in width (Figures 5A, B). The valve outline is

lanceolate-fusiform with a slightly sigmoid and subrostrate shape

(Figures 5C, D). The raphe ends are slightly curved at the poles, and

the raphe canal is eccentric (Figures 5C, D). The striae of cells are 54

in 10 mm, and square poroids with rounded corners are 7 in 1 mm
with finely perforated areolae (Figures 5D–F). Fibulae are randomly

arranged as 9–15 in 10 mm, and the interval in the middle part is

particularly wide (Figure 5G). Helictoglossae were observed at the

tip of the terminal raphe slits (Figure 5H). The central nodule is

visualized in the internal view (Figure 5I).

Etymology: The name refers to a distinctly wider interval

between fibulae than that in Nitzschia reversa.

Comparison with similar species: The morphology with a

lanceolate central portion and fine protrusions is commonly

found in the genus Nitzschia (Hasle, 1964; Giulietti et al., 2021).
FIGURE 2

Light and electron microscopic images of Entomoneis umbratica (MEG002). (A) Panduriform frustule containing one multilobed plate plastid.
(B) Cleaned frustules. (C) Numerous girdle bands in the external valve view. (D) Keel structures. (E) Striae with parallel-located roundish-to-elliptical
perforations (F) Valvocopula structures. Scale bars: (A, B) = 5 mm, (C) = 10 mm, (D) = 2 mm, and (E) = 0.5 mm.
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Nitzschia reversa var. latus (MEG012) displays similar

morphological characteristics as those of Nit. reversa such as the

cell size, raphe canal, and central nodule (Supplementary Table S6;

Smith, 1853). However, the fibulae density of Nitzschia reversa var.

latus (MEG012) is larger than that of Nit. reversa; thus, this species

(MEG012) is considered a variety of Nit. reversa (Supplementary

Table S6). Most morphological characteristics of Nit. reversa var.

latus were also similar to those of Nit. droebakensis without fibulae

density (Supplementary Table S6; Hasle, 1964; Giulietti et al., 2021).

Nonetheless, all the described morphological characteristics (cell

size, valve outline, raphe canal, central nodule, and fibulae density)

of Nit. droebakensis were almost identical to those of Nit. reversa

(Supplementary Table S6). Therefore, Nit. droebakensis Hasle

(1964) is considered a synonym of Nit. reversa Smith (1853)

because of priority in nomenclature. Nit. reversa var. latus

displays a sigmoid valve outline, whereas other comparable

Nitzschia species exhibit a linear valve outline (e.g., Nit. gobbii;

Supplementary Table S6). Furthermore, the valve length of Nit.

reversa var. latus (38–50 mm) is smaller than that of Nit.

draveillensis (55–110 mm), Nit. longissima (ca. 200 mm), and Nit.

ventricose (100–650 mm; Supplementary Table S6).

3.1.5 Nitzschia dissipatoides Archibald 1983
Cells are 20–30 mm (avg. 25 mm, n = 100) in length and 3–6 mm

(avg. 4 mm, n = 100) in width (Figures 6A, B) and have numerous
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girdle bands (Figure 6C). The valve shape is lanceolate constricted

in the middle part of the keel (Figure 6D). The rostrate apices are

slightly curved (Figure 6D). The raphe canal is eccentric

(Figure 6D). Fibulae are 10 in 10 mm but are irregularly arranged

in interval (Figure 6E). A central nodule was observed in the

internal valve view (Figure 6F). Striae density is 35 in 10 mm on

the elevated virgae (Figure 6G).

Nitzschia dissipatoides (MEG028) exhibited similar

morphological characteristics as those of the previously reported

Nit. dissipatoides (Archibald, 1982; Supplementary Table S7). The

valve outline of Nit. dissipatoides (lanceolate) is different from those

(linear) of Nit. erosa, Nit. fragilariiformis, Nit. hybridaeformis, Nit.

pseudoamphioxys, and Nit. yunchengensis (Supplementary Table S7).

The valve length of Nit. dissipatoides (21.21–30.35 mm) is smaller

than that of Nit. thienemanni (47–90 mm) and Nit. hybridaeformis

(60–93 mm; Supplementary Table S7). The striae density of Nit.

dissipatoides (35 in 10 mm) is larger than that of Nit. serrata (25 in 10

mm) andNit. pseudoamphioxys (24 in 10 mm) but smaller than that of

Nit. yunchengensis (60 in 10 mm; Supplementary Table S7).

3.1.6 Nitzschia anomalus Jeong & Lee sp. nov.
The valve is lanceolate with a slightly rounded apices

(Figures 7A, B). Numerous girdle bands are present (Figures 7C,

D). Cells are 18–33 mm (avg. 26 mm, n = 100) in length and 4–7 mm
(avg. 11 mm, n = 100) in width (Figure 7D). The external valve has a
FIGURE 3

Light and electron microscopic images of Navicula avium (MEG004). (A) Narrowly lanceolate cell containing two plastids. (B) Cleaned frustule.
(C) Straight raphe in the internal valve view. (D) Acute apex in the external valve view. (E) External central raphe endings with two pore-like
extensions (arrow). (F) Accessory rib (arrow) in the internal valve view. (G) Internal terminal raphe slits with helictoglossa (arrow) around three pores
(arrowhead). Scale bars: (A–D) = 5 mm, (E, F) = 1 mm, and (G) = 0.5 mm.
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slightly curved central raphe canal (Figure 7E). The internal valve

reveals a central raphe canal (slightly curved) with 8 fibulae in 10

mm (Figures 7F, G). The striae density is 37 in 10 µm, and they are

arranged on elevated virgae parallel to the transapical axis

(Figure 7H). Helictoglossae were detected in the internal terminal

raphe slits (Figure 7I). The areolae with silicified rings are randomly

arranged on the striae (Figure 7J). The central nodule is

absent (Figure 7K).

Etymology: The name refers to randomly distributed areolae on

the striae.

Comparison with similar species: Nitzschia anomalus (MEG011)

displays a similar lanceolate valve outline to that ofNit. nanodissipata

(Witkowski et al., 2016), but their valve apices, cell size, and striae

density are different (Supplementary Table S8). Nit. anomalus

exhibits a larger valve in length (17.69–32.97 mm) than Nit.

volvendirostrata (7–11.5 mm). Furthermore, the striae density of

Nit. volvendirostrata (80–90 in 10 mm) is larger than that of Nit.

anomalus (37 in 10 mm; Supplementary Table S8). Nit. anomalus

exhibits a lanceolate valve outline and a central raphe canal, whileNit.

aestatis displays a rectangular-linear valve outline and an eccentric

raphe canal. Moreover,Nit. anomalus shows a smaller valve in length

(18–33 mm) than Nit. aestatis (44–50 mm; Supplementary Table S8).

The phylogenetic analysis of 18S rDNA sequences from the

Nitzschia species (OR418054, OR418055, and OR418056) with their

homologous sequences (top 500 matches of BLASTn search, e-value

cutoff = 1.e-05) revealed a monophyletic relationship with other

Nitzschia species (Supplymentary Figure S4). However, the
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phylogenetic clade includes other diatom genera (e.g.,

Cylindrotheca, Tryblionella, and Bacillaria) with morphologically

unverified diatom species; hence, further studies without

controversial molecular data are required (Mann et al., 2021).
3.2 Phylogenetic analysis using 18S
rDNA sequences

The 18S rDNA phylogeny reveals that Enotomoneis species

exhibit a paraphyletic relationship with respect to the genera

Amphiprora, Auricula, and Epithemia (Supplementary Figure 1). In

the phylogenetic analysis using 18S rDNA sequences, the genus

Navicula shows a paraphyletic relationship with respect to the

genera Haslea, Minutocellus, and Seminavis (Supplementary

Figure 2). The genus Pleurosigma shows a monophyletic clade

based on the 18S rDNA phylogeny (Supplementary Figure 3). The

genus Nitzschia shows paraphyletic relationship with respect to the

genera Phaeodactylum, Pseudo-nitzschia, Fragilariopsis, Cymbella,

Conticribra, Durinskia, Peridinium, Amphora, Hantzschia,

Achnanthidium, Achnanthes, Bacillaria, Navicula, Tryblionella, and

Cylindrotheca in the 18S rDNA phylogeny (Supplementary Figure 4).

We postulate that several types of nuclear genetic variation

(Baack and Rieseberg, 2007; Colbeck et al., 2011; Harrison and

Larson, 2016) could introduce confusion in phylogenetic signals.

Consequently, the paraphyletic relationships in several diatom

genera may be attributed to use of single or several nuclear
FIGURE 4

Light and electron microscopic images of Pleurosigma inscriptura (MEG005). (A) Lanceolate cell. (B) Cleaned frustule. (C) Sigmoid raphe in the external valve
view. (D) Small oval central nodule in the external valve view. (E) Internal polar raphe ends with small triangles. Scale bars: (A–C) = 20 mm, (E) = 3 mm, and
(D) = 2 mm.
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marker genes (e.g., 18S rDNA). Another potential cause of the

paraphyletic relationships could arise from misidentified or

morphologically unverified species (Kooistra et al., 2008; Nguyen

et al., 2011; Cimarelli et al., 2015; Mann et al., 2021). Although more

taxon samples from morphologically verified species with their

complete nuclear genome data can help resolve this issue,

available nuclear genomes in diatoms are still insufficient.

Therefore, we attempted to address this using diatom organelle

genomes in this study.
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3.3 Multigene phylogenies using conserved
plastid and mitochondrial genes of
diatom species

We completely constructed the circular organelle (plastid and

mitochondrial) genomes of the six diatom species (Supplementary

Table S9). The plastid genomes of these diatoms range from 121 to

177 kbp in length and contain 127 to 140 protein-coding sequences

(CDS), 30 to 31 tRNAs, and 6 ribosomal RNAs (rRNAs). The
FIGURE 5

Light and electron microscopic images of Nitzschia reversa var. latus Jeong & Lee var. nov. (MEG012). (A) Lanceolate-fusiform cell. (B) Cleaned frustule.
(C) Eccentric raphe canal in the external valve view. (D) Frustule (TEM). (E) Perforate hymenate areolae (TEM). (F) Round to square poroids in the external
valve view. (G) Randomly arranged fibulae in the internal valve view, and particularly wide interval of fibulae (arrow) in the central area. (H) Internal
terminal raphe slits with helictoglossae (arrow). (I) Central nodule (arrow) in the internal valve view. Scale bars: (A–D) = 10 mm, (G) = 5 mm, (I) = 2 mm,
(F) = 1 mm, (H) = 500 nm, and (E) = 100 nm.
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mitochondria genomes of six diatoms range from 36 to 61 kbp in

length and contain 33 to 36 CDS, 19 to 25 tRNAs, and 2 rRNAs

(Supplementary Table S9).

Several diatom genera showed paraphyletic relationships in the

plastid phylogeny with high bootstrap support values (BS). For

example, the genus Navicula showed a paraphyletic relationship

with respect to Seminavis robusta (MH356727), and this clade

showed a 100% BS (Figure 8). The genus Seminavis has two plate-

like plastids that typically lie along each side of the girdle, with valves

exhibiting a strong dorsiventral orientation, distinguishing it from the

genus Navicula (Bruder and Medlin, 2008; Li et al., 2022). Seminavis
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robusta also possesses distinct morphological characteristics

compared with those of the closely related Navicula species (e.g., N.

veneta and N. arenaria) in the phylogenetic clade (Figure 8; Donkin,

1858; Kützing, 1844; Danielidis and Mann, 2002; Chudaev et al.,

2022). However, to clarify the phylogenetic and taxonomic position

of the genus Seminavis, more taxon samples from this genus are

required. In the plastid phylogeny, Pleurosigma inscriptura

(MEG005) and Entomoneis umbratica (MEG002) are clustered

with their sister species, respectively (BS: 100%; Figure 8).

Interestingly, the Nitzschia species (yellow blocks in Figure 8)

exhibit a paraphyletic relationship with respect to the genera
FIGURE 6

Light and electron microscopic images of Nitzschia dissipatoides (MEG028). (A) Lanceolate cell. (B) Cleaned frustule. (C) Lanceolate valve constricted
in the middle part of the keel (external valve view). (D) Rostrate apices in the external valve view. (E) Fibulae structures in the internal valve view.
(F) Central nodule (arrow) in the internal valve view. (G) Elevated virgae (arrow) in external valve view. Scale bars: (A, B, D), and (F) = 5 mm,
(C, E) = 10 mm, and (G) = 2 mm.
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Pseudo-nitzschia, Fragilariopsis, Cylindrotheca, Tryblionella,

Psammodictyon, and Bacillaria (BS: 95%; Figure 8), even though

taxon samples to compare inter-genera relationship are adequate

only from the genera Nitzschia and Pseudo-nitzschia. In particular,

Nit. anomalus (MEG011) and Bacillaria paxillifer (NC_061049)

present an early diverged subclade within the Nitzschia clade

(Figure 8). Although the mitochondrial phylogeny constructed

using diatom species is slightly different in the topologies of

Nitzschia species compared with the plastid phylogeny, the

Nitzschia clade (BS: 100%) exhibits paraphyletic relationship with

respect to the genera Tryblionella, Cylindrotheca, and Pseudo-

nitzschia (Figure 9). Diatom species in the Nitzschia clade have

relatively conserved gene contents in plastid and mitochondrial

genomes (Supplementary Tables S10, S11). However, several plastid

genes such as psaE, psaI, serC, syfB, and ycf35 were not found in most

Pseudo-nitzschia species (Supplementary Table S10). In addition,
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only Nitzschia palea (MH113811) and Tryblionella apiculata

(NC_056791) possessed ycf91 and tyrC, respect ive ly

(Supplementary Table S10). The non-photosynthetic diatom

Nitzschia alba has lost most plastid genes (Supplementary Table

S10). Therefore, the molecular and evolutionary histories of several

different diatom genera are closely related to each other despite the

distinctly different morphological characteristics, such as genus

boundaries. The development of morphological features could be

influenced by various types of interactive nuclear-encoded genes. For

example, in plants, the transcription factor MADS-box genes are

involved in flower morphogenesis (Coen and Meyerowitz, 1991;

Saedler et al., 2001). Therefore, morphological characteristics and

their related genes in diatoms may not accurately represent their

phylogenetic and evolutionary relationships.

In the plastid phylogeny, Thalassiosira species (blue blocks in

Figure 8) are also clustered with other genera such as Discostella,
FIGURE 7

Light and electron microscopic images of Nitzschia anomalus Jeong & Lee sp. nov. (MEG011). (A) Lanceolate cell. (B) Cleaned frustule. (C) Numerous girdle
bands in cleaned frustule. (D) Slightly rounded apices in the external valve view. (E) Slightly curved central raphe canal in the external valve view. (F) Fibulae
structures in the internal valve view. (G) Frustule (TEM). (H) Randomly arranged areolae in the external valve view. (I) Internal terminal raphe slits with
helictoglossae (arrow). (J) Elevated virgae in the external valve view. (K) Valve areolae (TEM). Scale bars: (A–C, G, H) = 5 mm, (D–F) = 10 mm, (J) = 3 mm,
(I) = 1 mm, and (K) = 200 nm.
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Minidiscus, Skeletonema, and Cyclotella (BS: 100%; Figure 8). The

mitochondrial phylogeny also revealed that Thalassiosira species

shows paraphyletic relationship with respect to Skeletonema species

(BS: 100%; Figure 9). These diatom species in the Thalassiosira

clade exhibit conserved gene contents in plastid and mitochondrial

genomes (Supplementary Tables S12, S13). Based on our results, we

postulate that the morphological characteristics of several different

diatom genera, which are currently established, were independently

diverged within the genetically close diatom groups.
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The family Thalassiosiraceae exhibits paraphyletic relationship

with respect to the fami l ies Stephanodiscaceae and

Skeletonemataceae in the plastid phylogeny (Supplementary

Figure S5). The family Chaetoceroaceae exhibits paraphyletic

relationship with respect to the family Hemiaulaceae in the

plastid phylogeny (Supplementary Figure S5). In the

mitochondrial phylogeny, these families (Thalassiosiraceae-

Skeletonemataceae and Chaetoceroaceae-Hemiaulaceae) are also

paraphyletic (Supplementary Figure S5). The order Naviculales
frontiersin.or
FIGURE 8

Multigene phylogeny constructed using a concatenated alignment of 123 plastid genes from diatom species (only ≥ 50 bootstrap supporting values
are shown).
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exhibits paraphyletic relationship with respect to the orders

Surirellales and Cymbellales in both plastid and mitochondrial

phy logen ie s (Supp lementary F igure S6) . The order

Thalassiosirales exhibits paraphyletic relationship with respect to

the order Stephanodiscale in the plastid phylogeny (Supplementary

Figure S6). The order Chaetocerotales displays a paraphyletic

relationship with respect to the order Hemiaulales in both plastid

and mitochondrial phylogenies (Supplementary Figure S6).

Paraphyletic relationships at the family- and order-level in

diatoms are completely supported by both plastid and

mitochondria l phylogenies (BS 100% as red dots in

Supplementary Figures S5, S6).
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3.4 Phylogenetic relationships of
morphologically similar diatom genera

Approximately 800 Nitzschia species are currently reported (Guiry

and Guiry, 2023) based on their morphological characteristics as

follows: symmetric nitzschoid cell shape, position of the raphe,

transverse extension of the fibula, and the number of striae and

aleolae (Mann, 1981; Morales et al., 2020). Interestingly, several

species from the genera Pseudo-nitzschia, Fragilariopsis,

Cylindrotheca, Tryblionella, and Bacillaria had been reported as

Nitzschia species, but these were reclassified by morphological

characteristics such as colony formations and raphe structures
FIGURE 9

Multigene phylogeny constructed using a concatenated alignment of 34 mitochondrial genes from diatom species (only ≥ 50 bootstrap supporting
values are shown).
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(Reimann and Lewin, 1964; Hasle, 1994; Li et al., 2007; Schmid, 2007;

Cefarelli et al., 2010; Cavalcante et al., 2013). These diatom genera were

also clustered as the Nitzschia clade in this study (Figures 8, 9).

Moreover, as one of the early diverged taxa in the Nitzschia clade of

the plastid phylogeny, Nit. anomalus displays typical morphological

characteristics of the genus Nitzschia, but this is clustered with

Bacillaria paxillifer (Figure 10). Individual cells of B. paxillifer exhibit

similar morphological features as those of Nitzschia species, but B.

paxillifer colonies exhibit a gliding motion (Schmid, 2007; image no. 1

and 2 in Figure 10). Moreover, in the mitochondrial phylogeny, Nit.

dissipata (NC_063456) is an earlier diverged taxon (this study) than

Nit. anomalus in the Nitzschia clade (Figure 10). Therefore, we

postulate that the typical genus characters of Nitzschia species could

be considered phylogenetically early diverged features. Psammodictyon

constrictum and Tryblionella apiculata are similar to the Nitzschia

species in possessing symmetry of the raphe on a frustule, wide valves,

and eccentric raphe (Round et al., 1990; Yang et al., 2020). However,

the genera Psammodictyon and Tryblionella are distinguished from

Nitzschia by the differences in valve shape and plastid position (Round

et al., 1990; Yang et al., 2020). Moreover, these genera exhibit different

characteristics in valve outline and arrangement and structure of

areolae (e.g., Psammodictyon: panduriform valve with distinctively

centrally constricted; Tryblionella: linear-lanceolate or elliptic in

shape, with only slightly centrally constricted; Round et al., 1990;

Yang et al., 2020). Although the morphological characteristics of

Cylindrotheca closterium, such as valve shape, are similar to those of
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sigmoid Nitzschia species (e.g., Nitzschia longissima and Nitzschia

reversa var. latus) under light microscopic observation, Cylindrotheca

closterium has twisted frustules in the apical axis and slightly silicified

raphe in the valves, which are different from those of Nitzschia species

(Reimann and Lewin, 1964; Li et al., 2007). Pseudo-nitzschia and

Fragilariopsis species exhibit a paraphyletic relationship with respect to

the Nitzschia species (BS 100%; Figure 10). The genera Pseudo-

nitzschia and Fragilariopsis demonstrate morphological differences in

colony formation (Pseudo-nitzschia species: stepped colonies;

Fragilariopsis species: ribbon-shape colonies; Hasle, 1994; Lundholm

et al., 2002b) compared with Nitzschia. However, Pseudo-nitzschia

americana exhibits a unicellular formation (Figure 10; Lundholm

et al., 2002a).

Thalassiosira species display paraphyletic relationship with respect

to the genera Cyclotella, Minidiscus, Discostella, and Skeletonema

(Figure 11). In the Thalassiosira clade, the early diverged taxa are T.

pseudonana and Cyclotella species. Although T. pseudonana was

previously reported as Cyclotella nana, these two genera present

morphological differences in the central area of the valve surface

(Figure 11; Lowe and Busch, 1975). T. nordenskioeldii is the type

(i.e., representative) species of the genus Thalassiosira, which clustered

with Thalassiosira sp., T. gravida, T. profunda, and T. tenera, but their

sister clade includes Discostella pseudostelligera and Minidiscus

spinulatus, which exhibit different morphological characteristics in

marginal fultoportulae, location of rimoportula, and central area

(Figure 11; Houk and Klee, 2004). Nevertheless, several
FIGURE 10

Comparison of representative morphological characteristics based on the phylogenetic relationship of the Nitzschia clade (Figures 8, 9). The
illustrations of diatom species were re-drawn based on previous studies including original descriptions (See Supplementary Table S14).
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morphological features (e.g., cell size and marginal fultoportulae) to

distinguish genus boundaries are still controversial (Park et al., 2017).

Furthermore, the Thalassiosira and Skeletonema species exhibit

completely different morphological characteristics. For instances,

Skeletonema has cylindrical cells with a ring of long processes

emerging from the edge of the valve face, and the colony is linked by

elongate tubular processes (Jung et al., 2009; Spaulding et al., 2021).

However, Thalassiosira has disk-shaped valves, and the colony is linked

by chitin fibrils (Johansen and Fryxell, 1985).

Paraphyletic relationships are recognized in diverse taxonomic

levels of diatoms based on the highly supported organelle

phylogenies (Figures 8, 9). As a result, we believe that taxonomic

reinvestigation in diatoms is required. However, almost all genome

data have no morphological descriptions and images of the target

diatoms, which is a critical limitation for further discussion.
4 Conclusion

We isolated six diatom species from field samples, and each

extracted DNA sample was sequenced and assembled to make

organelle (plastid and mitochondrial) genomes. Based on the

highly supported plastid and mitochondrial phylogenies, we

demonstrate that several morphologically similar diatom genera

show paraphyletic relationships, thus suggesting that the

morphology-based genus boundaries and phylogeny relationships
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frequently conflict in diatoms. To reestablish the conflict

relationship in diatoms, there is a need for more organelle and

nuclear genomes from broader taxon samples of diatom species

with a comparison of morphological characteristics. In particular,

photographic materials (especially SEM images) of target diatoms

are necessary, along with morphological descriptions, when new

genomic references are generated. This ensures that many

researchers can avoid the confusion caused by several pieces of

genome information generated from misidentified or

morphologically unverified species. Finally, highly supported

phylogenetic trees (e.g., organelle phylogenies) and their

accompanying photographic materials in diatoms can lead to

active discussion for taxonomic reinvestigation.
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