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DeepLOKI- a deep learning
based approach to identify
zooplankton taxa on high-
resolution images from the
optical plankton recorder LOKI
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Zooplankton play a crucial role in the ocean’s ecology, as they form a

foundational component in the food chain by consuming phytoplankton or

other zooplankton, supporting various marine species and influencing nutrient

cycling. The vertical distribution of zooplankton in the ocean is patchy, and its

relation to hydrographical conditions cannot be fully deciphered using traditional

net casts due to the large depth intervals sampled. The Lightframe On-sight

Keyspecies Investigation (LOKI) concentrates zooplankton with a net that leads

to a flow-through chamber with a camera taking images. These high-resolution

images allow for the determination of zooplankton taxa, often even to genus or

species level, and, in the case of copepods, developmental stages. Each cruise

produces a substantial volume of images, ideally requiring onboard analysis,

which presently consumes a significant amount of time and necessitates internet

connectivity to access the EcoTaxa Web service. To enhance the analyses, we

developed an AI-based software framework named DeepLOKI, utilizing Deep

Transfer Learning with a Convolution Neural Network Backbone. Our DeepLOKI

can be applied directly on board. We trained and validated the model on pre-

labeled images from four cruises, while images from a fifth cruise were used for

testing. The best-performing model, utilizing the self-supervised pre-trained

ResNet18 Backbone, achieved a notable average classification accuracy of

83.9%, surpassing the regularly and frequently used method EcoTaxa (default)

in this field by a factor of two. In summary, we developed a tool for pre-sorting

high-resolution black and white zooplankton images with high accuracy, which

will simplify and quicken the final annotation process. In addition, we provide a

user-friendly graphical interface for the DeepLOKI framework for efficient and

concise processes leading up to the classification stage. Moreover, performing

latent space analysis on the self-supervised pre-trained ResNet18 Backbone

could prove advantageous in identifying anomalies such as deviations in image
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parameter settings. This, in turn, enhances the quality control of the data. Our

methodology remains agnostic to the specific imaging end system used, such as

Loki, UVP, or ZooScan, as long as there is a sufficient amount of appropriately

labeled data available to enable effective task performance by our algorithms.
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1 Introduction

Imaging has become an important tool in marine zooplankton

studies, in both the laboratory and the field, in the last decades

(Gorsky et al., 1989; Schulz et al., 2010; Hauss et al., 2016; Kiko et al.,

2020; Rubbens et al., 2023). To digitize and analyze preserved

samples that have been collected by traditional net tows, the lab-

based ZooScan system (Grosjean et al., 2004) has been developed.

Also, several in-situ systems that continuously take images during

deployment have been developed, allowing the study of the patchy

distribution of particles and zooplankton organisms (Cowen and

Guigand, 2008; Lertvilai, 2020). Among these, the underwater

vision profiler (UVP, Hydroptic, France) is one of the most

frequently used, being deployed worldwide (Picheral et al., 2010;

Kiko et al., 2020; Picheral et al., 2022). The UVP takes images

directly in the water column; therefore often the resolution is

limited. However, it excels at capturing fragile organisms such as

gelatinous zooplankton and particles that are typically destroyed by

zooplankton nets. The LOKI (Lightframe-Onsight Key species

Investigation; Isitec, Germany) system, in contrast, has been

designed to collect high-resolution images by concentrating the

zooplankton with a net that leads to a flow-through chamber with a

digital camera (Schulz et al., 2010). LOKI captures images of genera

or species and sometimes even developmental stages of rather hard-

bodied organisms such as copepods, which often dominate

zooplankton communities (Hirche et al., 2014; Orenstein et al.,

2022). The device captures images continuously during vertical

drops and records hydrographic parameters, including salinity,

temperature, oxygen concentration and fluorescence. This enables

a thorough analysis of the species distribution. For general in-situ

zooplankton images, various approaches for digital classification

have been employed (Rubbens et al., 2023). Initially, ensemble

models were used (Schmid et al., 2016). With advancements in

computing power, Deep Learning approaches emerged (LeCun

et al., 2015), leveraging convolutional neural networks to process

entire images and extract intricate patterns (Luo et al., 2018).

Additionally, Transfer Learning, which involves the transfer of

knowledge from large datasets to smaller ones (Yosinski et al.,

2014), has been employed in Deep Learning algorithms to enhance

their performance (Orenstein and Beijbom, 2017; Orenstein et al.,

2022). For UVP and ZooScan images, the analysis software

ZooProcess, a macro of ImageJ, and the web-based annotation

tool EcoTaxa (Picheral et al., 2017) have been developed. In
02
addition, there are numerous other methods (Bi et al., 2015; Bi

et al., 2022; Yue et al., 2023). ZooProcess extracts numerical

parameters from each image and automatically measures the size

of each object (Grosjean et al., 2004; Picheral et al., 2017). EcoTaxa

is then used to annotate the images, i.e., to sort the objects on the

images into categories and label each image accordingly. EcoTaxa

also allows to manually drag and drop images into the respective

category; however, the application also provides automated

annotation functionality through a Random Forest algorithm to

predict the categories based on numerical image parameters. The

algorithmmust be trained with annotated images, and the better the

training set, the more accurate the prediction is. For example,

depending on the taxonomic resolution, over 80% of zooplankton

images from the Fram Strait that were taken with ZooScan were

correctly annotated (B. Niehoff, pers. obs.).

For the analysis of LOKI images, a software tool - the LOKI

browser - was developed and provided together with LOKI

hardware (Schulz et al., 2010). Similar to ZooProcess, this

application generates numeric image descriptors and, similar to

EcoTaxa, allows to sort the objects into categories. Unfortunately,

the LOKI browser is outdated and lacks user-friendliness. For

instance, the process of uploading more than 150,000 images

from a single cruise requires manual handling of small batches of

2,000-5,000 images. Furthermore, the annotation procedure is

inconvenient as it does not provide direct access to specific

categories but requires traversing the entire taxonomic tree, which

results in multiple clicks per image, especially in the case of species

categorization. It also has to be noted that working on the EcoTaxa

server requires a stable internet connection, which is not always a

given during cruises to remote areas such as the Arctic. Therefore,

the image data can typically only be processed after the cruise. In

summary, the current workflow for LOKI images faces several

issues: the time-consuming and upload-limited image pre-

processing, the low prediction accuracy, and the dependence on

internet access. Addressing these issues, we present an alternative

workflow. (1) We developed two deep learning methods using the

images as input instead of image descriptors and thus omitted the

tedious upload to the LOKI browser, saving time and personnel.

Aiming at a better prediction of the categories, we implemented a

deep transfer learning (DTL) and a two-step self-supervised

learning approach based on first pre-train self-supervised and

then fine-tuning supervised, called self-distillation with no labels

(DINO), which currently is one of the state of the art methods
frontiersin.org
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(Chen et al., 2020; He et al., 2020; Caron et al., 2021). To ensure that

only images with a high level of confidence in their label

assignments are sorted into their respective categories, we

implemented a confidence threshold, which is only used within

the GUI as a parameter and not for training or evaluation. A similar

approach for threshold implementation on CNNs was previously

shown by (Kraft et al., 2022). By implementing this threshold, we

can effectively exclude images for which the algorithm exhibits

lower confidence in label assignments, thereby enabling a more

precise categorization relying on confident predictions (on

inference). As provided in EcoTaxa, we’ve included categories for

artifacts such as bubbles, detritus, and unknown objects to allow for

the categorization of these as well. (2) To allow for immediate

analyses onboard, we adopted a small backbone model that is

suitable for deployment on mobile laptops for both our methods,

eliminating the need for constant internet connectivity. The

objectives of this study thus were to enhance the classification

accuracy in comparison to the existing workflow for zooplankton

image analyses and to provide a user-friendly approach that can be

readily applied on board. We utilized a dataset of 215,000 images

from five cruises, which had been fully annotated at Alfred-

Wegener-Institut (AWI) in advance, to perform a comprehensive

evaluation of a reference dataset to assess and compare the

efficiency of three distinct methods: the EcoTaxa workflow, as

well as two innovative deep learning approaches, i.e., DTL

and DINO.
2 Methods

2.1 Data

Please note: In this paper, we use category for the technical term

class to avoid confusion with the biological term (taxa) classes. The

technical term class, which we call category, refers to a collection of

pictures containing similar motifs that are building a group after the

classification procedure. In contrast, the taxonomical term class (for

example, Ostracoda or Copepoda) refers to the rank of the

organisms in an ancestral or hereditary hierarchy.

For the present study, we used images that were taken with the

optical plankton recorder Lightframe On-Sight Keyspecies

Investigation (LOKI) in Fram Strait during five expeditions of RV

Polarstern (Table 1). Each of the 33 categories used in this study
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corresponds to a group of zooplankton fauna at several taxonomic

levels (Supplementary Material DeepLOKI Section 2). LOKI

consists of a net (150µm mesh size) that concentrates the

plankton during a vertical tow from a maximum of 1000m depth

to the surface. The net leads to a flow-through chamber with a 6.1

MP camera (Prosilica GT 2750 with Sony ICX694 runs 19.8 frames

per second at 6.1 MP resolution.) that takes images at a frame rate of

max. 20sec−1. At the same time, sensors record depth, temperature,

salinity, fluorescence, and oxygen concentration. The LOKI

underwater computer extracts objects and stores the resulting

images as well as sensor data on a hard drive (Schulz et al., 2010).
2.2 Workflow

Once the LOKI images are captured, they are stored on a hard

drive. Depending on the classification tool being used, there are two

distinct data pre-processing pipelines Figure 1. The current

approach involves preparing the data for classification using

EcoTaxa by importing the images into a specialized “LOKI

browser” software, which calculates numeric features (Schulz

et al., 2010). However, due to computational limitations and the

need for internet access, the subsequent steps must be carried out

after the cruise. This involves applying ZOOMIE software (Schmid

et al., 2015) to exclude multiple images of the same organism,

followed by loading the data into EcoTaxa for classification and

storage Figure 1. In contrast, our proposed pipeline involves only

one step. The DeepLOKI tool can directly classify raw images

without any preparation steps like, for example, feature extraction

by the LOKI browser. As a final stage at the end of both pipelines, a

human carries out a final assessment of the pre-sorted images.

During this process, any necessary label corrections and duplicate

removals are made Figure 1. We display the current and the

proposed workflow (Figures 1, 2).
2.3 Data acquisition and ground truth

For the classification procedure, we used the images from all five

cruises after applying ZOOMIE to reduce the number of duplicates.

To develop the new pipeline, we used a data set of 194,479

(train/val) images (Supplementary Material DeepLOKI Table S3)

that, in addition, underwent parameterization using the LOKI
TABLE 1 Overview of LOKI images from five RV Polarstern cruises.

cruise #n images #n categories collection usage study area #LOKI deploys*

PS99.2 20683 31 June/July 2016 test Fram Strait 4

PS106.2 42462 33 July 2017 train/val Fram Strait 20

PS107 121628 32 July/Aug. 2017 train/val Fram Strait 17

PS114 7199 25 July 2018 train/val Fram Strait 1

PS122 23190 30 Nov.2019-Sept.2020 train/val Fram Strait 19
The table presents the number of images used for this study (#n), the number of categories into which the images were sorted, the months of image collection (obtained from object cruise), and the usage for
either training and validation (train/val) or testing the application. The study area is always Fram strait and the number of LOKI deploys* is based on the meta data file (technical counting).
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browser. All objects on these LOKI images were previously

identified by zooplankton scientists, often through manual efforts

in order to reach the lowest possible taxonomic level. In our study,

however, we aimed at a less detailed distinction of taxa, and thus, we

combined categories to higher taxonomic levels

(see (Supplementary Material DeepLOKI Table S3), Figure 3).

For instance, we grouped the several morphologically very similar

developmental stages of specific copepod species, as determined by

marine biologists, into a single species category. We, however, solely

utilized the images themselves and not their associated parameters.

Additionally, we analyzed a dataset for double takes using ZOOMIE

and re-categorized the images with EcoTaxa, including both

automatic predictions and final evaluations by a scientist. To

ensure accurate model development, 80% of these images were

randomly chosen for training purposes. The remaining 20% of the

data was reserved exclusively for internal model validation,

ensuring its reliability. To evaluate the model’s effectiveness,

images from the fifth cruise (Supplementary Material DeepLOKI

Table S3) that had not been used for pipeline development were
Frontiers in Marine Science 04
used, providing an objective measure of its performance. The

dataset encompassed various quantities of images within its

categories, with the smallest category, Foraminifera, comprising

n = 121 images, while the largest category, (Copepoda_Calanus),

contained n =43,620 images (Supplementary Material DeepLOKI

Table S3).
2.4 The baseline: EcoTaxa

The classification pipeline via the LOKI browser and EcoTaxa

was used as a baseline to compare the performance of DeepLOKI.

To ensure comparability between results obtained by our approach

and those via the EcoTaxa workflow, we extracted the categories

that have been distinguished by the scientists in EcoTaxa but

grouped, for example, development stages of species at a higher

taxonomic level. The EcoTaxa classifier was trained using up to

5,000 images per category as a maximum. The default for EcoTaxa

is a Random Forest classifier, and although it is possible to upload
FIGURE 2

DeepLOKI workflow in detail: Images extracted from LOKI undergo augmentation through torchvision transform functions such as cropping,
flipping, and auto-contrast. These augmented images are then inputted into one of the two variants of the ResNet18 neural network for
classification (DTL, DINO). Our approach consists of two steps, first data training and classification and second data sorting in particular group after
passing a confidence threshold, that we identify as classification likelihood. Images that fall below the threshold are moved to a folder labeled as
unknown/unclear.
FIGURE 1

Overview of the current workflow (top) and the DeepLOKI pipeline (bottom) to categorize objects on LOKI images. Current pipeline: images are
loaded into the LOKI Browser, then processed with ZOOMIE to remove double takes, and loaded to the EcoTaxa website for automatic classification
based on numeric image parameters fed to random-forest algorithms, and finally for a quality check by a scientist. The DeepLOKI pipeline consists
of the automatic classification of images based on one of the two variants of the ResNet18 neural network (DTL or DINO), and a final check by a
scientist as well. Blue boxes: step can be performed on the ship; red box: step requires internet access. Optional steps are indicated by *.
frontiersin.org
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other model implementations (https://github.com/ecotaxa/

ecotaxa_ML_template/blob/main/4.train_classifier.py), the images

have only been processed with the standard algorithm. The

Random Forrest performance is constrained due to imposed

parameters (optimized for UPV or ZooScan images) or training

data restrictions due to EcoTaxa. To evaluate the performance of

our classification tool, DeepLOKI, we first evaluated the accuracy of

EcoTaxa’s current classifier. Therefore, we established a new project

on the EcoTaxa platform and utilized its integrated training and
Frontiers in Marine Science 05
classification services, using 122,693 image training examples. The

exact configuration can be found in the Supplementary Material

EcoTaxa Setup.
2.5 Metrics

We’ve compiled the following metrics into a detailed table

(Supplementary Material DeepLOKI Table S4) that displays
FIGURE 3

Examples for the 33 categories that were utilized in this study. Each image corresponds to zooplankton fauna at different taxonomic levels or other
objects (antennae, bubbles, feces, multiples, detritus), arranged alphabetically according to their name.
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Precision, Recall, F1-Score, and sample size for every class. The last

three rows of the table indicate accuracy, followed by the columns

macro and weighted averages. Additionally, we’ve created a visual

depiction of the confusion matrix by plotting the human-labeled

ground truth against the predictions generated by our algorithm. To

evaluate and compare our models, we used the following five

metrics, here defined for the binary case. Consider a scenario in

which the dataset consists of samples that fall into one of two

distinct categories. Each sample can be assigned to either to these

categories, resulting in a binary classification problem. The scores of

the metrics are in an interval from 0 to 1, with higher scores

indicating better performance.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score =
2TP

2TP + FN + FP

Accuracy =
TP + TN

TP + TN + FN + FP

In the context of multicategory classification, where the dataset

contains more than two possible categories (technical term: classes)

for each sample, we employed the One-vs-All approach. This

approach involved designating one class as the Positive (P)

category, which served as the target category for calculating

specific metrics such as Precision. Conversely, all other categories

were treated as Negative (N) categories.

By adopting this approach, we were able to compute separate

metrics for True Positives (TP), False Positives (FP), True Negatives

(TN), and False Negatives (FN), allowing us to assess the

performance of the model for each category individually.
2.6 Deep learning

For our Deep Learning approach, we used two variants of the

ResNet18 neural network and compared them. The first approach

involved Deep Transfer Learning, where we used a pre-trained

ResNet18 model on ImageNet (Tan et al., 2018; Kronberg, 2022;

Kronberg et al., 2022). This approach was selected due to its well-

documented effectiveness in diverse areas of biology and medicine,

with a specific emphasis on image analysis. Another factor that

influenced our decision was the efficiency offine-tuning, allowing us

to train the model on hardware configurations, such as a Macbook,

without requiring extensive computational resources. (Using Visual

Transformers instead of simple ResNet18 could boost the accuracy

by a bit, as tested in CNNs vs ViTs by the authors for (Yue et al.,

2023) For our second method, we chose the DINO approach (Caron

et al., 2021) primarily because it integrates one of the most advanced

self-supervised pre-training techniques available in the field of

computer vision. To ensure compatibility with our GPU

infrastructure, we made slight adjustments to the DINO method.
Frontiers in Marine Science 06
2.6.1 Image augmentation
Here, we describe the pre-processing steps applied to the images

extracted from the LOKI dataset for the Training. The primary

image augmentation techniques utilized are as follows:
1. Random Resized Crop: Images are randomly cropped and

resized to a fixed size of 300 pixels while maintaining an

aspect ratio within the range of 0.8 to 1.0. This resizing

process ensures that the model receives input images of

varying scales, improving its robustness to different object

sizes.

2. Random Rotation: We apply random rotations to the

images, introducing variability in the orientation of

objects. This augmentation technique helps the model

learn to recognize objects from various angles and

perspectives, with degrees of rotation up to 15 degrees.

3. Random Horizontal Flip: Images are subjected to random

horizontal flips. This operation allows the model to learn

features that may appear differently when mirrored

horizontally, aiding in better generalization.

4. Center Crop: After the aforementioned augmentations, we

perform a center crop on the images, resulting in a final

image size of 224x224 pixels. This cropping operation

ensures that the model focuses on the central region of

the image, which often contains the most relevant

information.

5. Normalization: Normalization is applied to the pixel

values of the images. We subtract the mean values [0.485,

0.456, 0.406] and divide by the standard deviations [0.229,

0.224, 0.225] for each color channel. This step helps

standardize the input data, making it suitable for neural

network training.

6. Random Autocontrast: Autocontrast is applied randomly

with a probability of 25%. This technique enhances image

contrast, which can be beneficial for improving the model’s

ability to distinguish between objects with subtle variations

in lighting and contrast.

7. Random Perspective: Images undergo random perspective

transformations with a distortion scale of 0.25 and a

probability of 25%. This augmentation introduces

geometric distortions, simulating variations that may

occur in real-world scenarios.

8. Random Adjust Sharpness : Random sharpness

adjustments are applied with a sharpness factor of 4 and

a probability of 25%. This operation can help the model

focus on fine details and edges within the images.
These augmentation techniques collectively contribute to a

more diverse and informative dataset, enabling our model to

better generalize and recognize objects under various conditions

and orientations.
2.6.2 Deep transfer learning
To implement our DTL approach architecture (Tan et al., 2018;

Kronberg, 2022; Kronberg et al., 2022) (Supplementary Material
frontiersin.org
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DeepLOKI Section 4), we used a pre-processing pipeline that

involved resizing the images (Height, Width, Color channel) =

(300, 300, 3) and crop to the input size of (224, 224, 3), as well as

normalization, and various augmentations to add robustness to the

training. We fine-tuned the ResNet18 neural network (He et al.,

2016) as previously described (Werner et al., 2021) and adapted it

for our purposes. Specifically, we exchanged the fully connected

layer(matching to our number of classes) of the ResNet18 model

(Figure 4) and fine-tuned the full network. Adam (Kingma and Ba,

2014) (Supplementary Material DeepLOKI Def. Adam) was used as

the optimizer for this deep transfer learning approach. The network

was trained with a batch size of 1536 and trained for 3 out of 20

epochs due to early stopping on the images of 80% of the samples

from the dataset using the biologists’ labeled images as ground

truth. The predicted probability for each image to contain each of

the labels of our 33 classes was used as the objective/loss function

(Supplementary Material DeepLOKI Def. Cross-entropy loss) in

training. We used an initial learning rate of 0.0001.

To assess the performance of our trained model, we conducted

an evaluation on the remaining 20% of the dataset, which was not

encountered by the algorithm during the training phase. By

comparing the results obtained from the model with the ground

truth, we were able to gauge its effectiveness. To ensure fair and

unbiased comparison among different algorithmic approaches, we

incorporated a reference dataset, specifically the Cruise PS99.2,

throughout the study. This reference dataset served as a

standardized benchmark for evaluating the performance of our

model alongside other approaches.

2.6.3 Self-supervised pre-training and then
supervised fine-tuning (DINO)

For the self-supervised pre-training stage, we utilized all

available images in our dataset, disregarding any label

information (Noroozi et al., 2018). The purpose was to train the

model to learn a latent space representation, as described in (Caron

et al., 2021). To maintain consistency with our DTL approach, to be

able to compare the ImageNet pre-trained ResNet18 with the pre-
Frontiers in Marine Science 07
training using self-super-vised learning method, we decided to

employ the same ResNet18 architecture as the backbone for the

self-supervised pre-training. In the original paper even a ResNet50

was used. To reduce training and inference computing costs, we

decided to downscale to ResNet18. For the DINO approach, we

used a 450 epoch for pre-training and trained on 8 x A100 GPUs

with 64 workers and a batch size of 512. The full parameter setup

can be found in our GitHub Repo using the lightly Python package.

Consequently, during the fine-tuning stage, we added the fully

connected layers accordingly to our classification problem and then

fine-tuned all layers using our training dataset Figure 4. This fine-

tuning process was performed for and trained for 12 out of 20 epoch

due to early stopping (on the validation accuracy with patience of 2)

while keeping all parameters identical to the previous approach.

2.6.3.1 Visualization of the latent space after self-
supervised pre-training

The purpose of this approach is to learn a condensed

representation of the classes in a lower-dimensional vector space.

Put simply; it aims to create a representation where images of the

same class are closer to each other while images of different classes

are farther apart. In general, there are two commonly used methods

for visualizing classification results based on a latent space: UMAP

and t-SNE. UMAP tends to preserve more of the overall structure of

the data, while t-SNE focuses on highlighting the local structure

(van der Maaten and Hinton, 2008; McInnes et al., 2018). We

employed UMAP (Uniform Manifold Approximation and

Projection) as another dimensionality reduction technique to

visualize the results from the classification algorithms. UMAP

provides an alternative perspective on the relationships among

the data points in a lower-dimensional space.
2.7 Graphic User Interface

A web-based Graphical User Interface (GUI) has been

developed to streamline the use of DeepLOKI, our powerful deep
FIGURE 4

Architecture of the implemented neuronal network. Convolutional layers (Conv.): These layers use filters (k x k, Conv. f where k is the kernel size and f
the number filters) to extract features from the input image. ResNet18 has a total of 17 convolutional layers. Batch normalization layers: These layers
normalize the output of the convolutional layers, which helps to improve the stability and performance of the network. Pooling layers (Max/Average
Pooling): These layers reduce the spatial dimensions of the feature maps generated by the convolutional layers, which helps to decrease the number of
parameters in the network and reduce overfitting. Fully connected layers (FC layers): These layers connect all the neurons in one layer to all the neurons
in the next layer. In ResNet18, there is one fully connected layer at the end of the network, which is used for classification (He et al., 2016).
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learning framework for taxa group recognition in zooplankton

images. Through the incorporation of the Streamlit Python

library, a seamless and intuitive interface has been created,

thereby simplifying the process of image classification.

Supplementary Tools have also been integrated, offering a user-

friendly interface for labeling new images, thus enabling further

training (Supplementary Material DeepLOKI) Figure 1.
2.8 Hard and software

Training and Validation were performed on an Nvidia A100

(Nvidia Corp., Santa Clara, CA, USA) and on Apple M1 MAX with

32 GB (Apple, USA), depending on the computational power

needed, for example, self-supervised pre-training was performed

on a Hyper performing cluster with Nvidia A100. On the Macbook

Pro (Apple, USA) we used:
Fron
Python VERSION:3.10.5

pyTorch VERSION:13.1.3
On the cluster we used cluster specifics versions of the software:
Python VERSION:3.10.5

pyTorch VERSION:13.1.3

CUDNN VERSION:1107)
3 Results

This section describes and compares the results of the image

analyses based on three methods: EcoTaxa (web link required),

ResNet18 with DTL (autonomous), and ResNet18 with DINO

(autonomous). For the comparisons, we use the PS99.2 data set

(20,683 images). AS evaluation metrics, we deliberately decided to

use the F1-score and, in addition, the classification accuracy to

highlight the different aspects of the “quality of label assignment”.
3.1 EcoTaxa default classifier
performance - study baseline

The automatic EcoTaxa categorization process generated a dataset

where each data point (image) was assigned its respective

categorization. These categories include non-living objects (detritus,

bubbles, feces), high-level taxonomic groups (Crustacea (not further

identified), Amphipoda, Calanoida (not further identified)

Euphausiacea, and Ostracoda; Polychaeta; Cnidaria, Rhizaria (not

further identified) and Foraminifera), copepod genera (Calanus,

Geatanus, Heterorhabudus, Metridia, Microcalanus, Oithona,

Oncaea, Paraeuchaeta, Pseudocalanus, Scaphocalanus, Scolethricella,

Spinocalanus), dead copepods, early life stages (eggs, nauplii, and

trochophora larvae), specific parts of organisms (antennae as well as
tiers in Marine Science
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heads, middle parts and tails of chaetognaths) and “multiples” with

images with more than one object. We compared these labels to the

scientists’ final annotations and produced a confusion matrix and

classification report (Figure 5). The EcoTaxa algorithm achieved an

accuracy of 44.4% applied to a PS99.2 dataset of 20,683 images.

Examining the F1-scores, which consider both precision and recall, we

found an overall score of 44% for all categories Supplementary

Material DeepLOKI Table S5). Among the categories, the highest-

performing categories were Detritus, Chaetognatamiddle, and Bubble,

with a score of 70 -73% (3,363, 184 and 209 images). Categories

such as Copepoda_Heterorhabdus, Copepoda_Scolecithricella,

Copepoda_Spinocalanus, Copepoda_dead, Crustacea, Euphausiacea,

Foraminifera, Trochophora had the lowest scores of 0%, however,

these categories contained few images (i.e. 148, 22, 10, 0,28, 4, 5,0

images, respectively) (Figure 5, Supplementary Material DeepLOKI

Table S5). It should be noted that zero image counts correspond to

misclassified images when the category was present in the training set

but absent in the test set. In summary, 17% of the total images,

representing only 2 out of 33 categories, attained an F1-score of 70%

or higher.
3.2 DeepLOKI: ResNet18 - DTL classifier

As part of our DeepLOKI framework, we initially employed a

Transfer Learning approach, utilizing a fine-tuned ResNet18 model

pre-trained on the ImageNet dataset (Yang et al., 2020). The

ImageNet dataset consists of 1000 categories, encompassing

various objects such as animals, cars, and airplanes. By employing

this technique, we achieved an overall accuracy of 83.1% on our test

dataset. Using a zooplankton test dataset PS99.2 containing 20,683

images, the ResNet18 model achieved a weighted average F1-score

of 82.4% for all categories (Supplementary Material DeepLOKI

Table S6). Notably, the categories Ostracoda, Bubble, and

Copepoda_Calanus exhibited the highest F1- scores, reaching 92-

95% (748, 209, and 3,614 images, respectively). Conversely, the

categories Copepoda_Scolecithricella Copepoda_Spinocalanus,

Copepoda_dead, Crustacea, Euphausiacea, Foraminifera,

Trochophora again had the lowest scores of 0%. However, these

categories contained few images (Figure 6, as summarized in

Supplementary Material DeepLOKI Table S6).

In summary, 13 out of 33 categories, comprising 86% of all

images, achieved an F1-score of 70% or higher. As with the EcoTaxa

results, we generated a confusion matrix from the categorization

outcomes. Our findings revealed that images belonging to the

groups prefixed with Copepoda exhibited a high level of

confusion. This confusion was evident from the higher values

observed in the non-diagonal elements of the matrix. Specifically,

we observed a distinct pattern of confusion within a block

encompassing various species and sub-species of Copepoda, as

indicated by the framed region, notably in the category

Copepoda_Calanoida: here, 318 images were misclassified as

Copepoda_Mircocalanus, 95 as Copepoda_Metridia_longa, 104 as

Copepoda_Scapohocalanus and some smaller number of images to

other that have in their assigned category name Copepoda Figure 6.
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3.3 DeepLOKI: ResNet18 - DINO classifier

Using state-of-the-art methods involving self-supervised learning,

specifically a slightly down-scaled student-teacher approach (Caron

et al., 2021), followed by fine-tuning on our labeled data, we achieved

an overall accuracy of 83.9% on the PS 99.2 dataset of 20,683 images.

This performance surpassed both the EcoTaxa workflow and the DTL

approach. Notably, the categories Ostracoda, Bubble, and

Copepoda_Calanus demonstrated the highest accuracy rates

(measured as F1-score), ranging from 92% to 95% (748, 209, and

3,614 images, respectively Supplementary Material DeepLOKI Table

S7). Conversely, the poorest-performing categories were

Copepoda_Scolecithricella Copepoda_Spinocalanus, Copepoda_dead,

Crustacea, Euphausiacea, Foraminifera, Trochophora each with a 0%

F1-score, (Figure 7, data summarized in Supplementary Material

DeepLOKI Table S7). In summary, 12 out of 33 categories, covering

86.5% of all images, achieved an F1-score of 70% or higher.

The confusion matrix analysis for this categorization of

zooplankton images revealed a consistent pattern. Similar to DTL

analysis, images from the Copepoda groups exhibited higher non-

diagonal values, indicating confusion.

This pattern was particularly noticeable within a framed block

representing various Copepoda species and sub-species. Remarkably
Frontiers in Marine Science 09
similar to the DTL approach is the high confusion in the category

Copepoda Calanoida: here, 243 images are misclassified as

Copepoda_Mircocalanus, 69 as Copepoda_Metridia longa, 54 as

Copepoda_Scaphocalanus and similar patterns for the smaller

categories including Copepoda in their names Figure 7.

3.3.1 Data projection on latent space
To visualize the classification of the self-supervised pre-trained

ResNet18 (DINO) approach, we used UMAP (Figure 8) as a

dimension reduction approach to project the data on a 2D space.

Each dot represents an image, and the distance to each other reflects

their similarity. Dots that are close to each other reflect the same or

similar image content. The coloring was done based on the pre-

defined categories.

These are Copepoda_Microcalanus, Copepoda_Calanus, Detritus,

Copepoda_Oncaea, Copepoda_Calanoida, Copepoda_Metridia_longa,

multiples, Ostracoda, Nauplii and Copepoda_Oithona. The UMAP

plot has revealed the presence of a mirror symmetry at the x = 5

coordinate, effectively dividing the plot into two distinct regions.

Notably, comparable clusters can be observed on both the left and

right sides of this axis. This finding suggests a symmetrical organization

of data points with similar characteristics in both regions. The two taxa

Copepoda_Calanus and Copepoda_Metridia_longa exhibited close
FIGURE 5

Confusion matrix of categories predicted by EcoTaxa versus final categorization by a scientist: The y-axis shows the evaluated labels and the x-axis
the predicted labels of PS99.2. The color gradient indicates the number of images.
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proximity to each other in the two-dimensional latent space plot,

mirroring their similar morphology. It is worth mentioning that the

groups Copepoda_Oncaea, Copepoda_Microcalanus, Nauplii, and

Detritus exhibited a tendency to cluster closely together within a

specific region of the plot. The categories Copepoda_Calanoida and

Ostracoda show a similar representation in the latent space.

Upon conducting a deeper analysis of the metadata, particularly

focusing on the stations, we discovered that the initial group of clusters,

the left clusters (comprising all clusters with x umap ¡ 5), was linked to

three specific locations. Interestingly, these three locations were distinct

from the other locations in the dataset. Notably, the stations were not

part of the pre-training or training processes of the DINO ResNet18

model, yet their consideration offered meaningful insights into the

separation of these clusters based on distinct geographical associations.
3.4 Comparison of the default
EcoTaxa classifier, with the two
DeepLOKI classifiers: DTL ResNet18
and Dino ResNet18

Our proposed DINO classifier demonstrated an accuracy of

83.9% in predicting categories for objects on LOKI images.
Frontiers in Marine Science 10
Furthermore, our classifier reached higher F1-Scores for 26 out of

33 categories, which accounted for 93,9% of all samples. These

categories excluded Copepoda_Scolecithricella, Copepoda_

Spinocalanus, Copepoda_dead, Crustacea, Euphausiacea,

Foraminifera, Trochophora and Feces, where only the category

Feces was Eco Taxa more accurate with a delta of 0.16. For the

remaining categories both classifiers reached 0% F1-Score

(Supplementary Material DeepLOKI Table S4, Figure 9).

Overall, the newly developed DeepLOKI classifier proved to be

superior for LOKI images when compared to the standard random

forest classifier employed in EcoTaxa that had been designed for

UVP and ZooScan images Figure 9.
3.5 The GUI interface

We have developed a graphical user interface (GUI) for pre-sorting

purposes and for manual labeling, which includes a user-friendly image

viewer. The GUI was built using Streamlit, a framework that enables

easy deployment of web applications. One of the key advantages of our

GUI is that it can be accessed directly through a web browser (platform

independent), without the need for an internet connection (Figure 10,

Supplementary Material DeepLOKI Figure S1).
FIGURE 6

Confusion matrix of categories predicted by DTL ResNet18 -Classifier versus final categorization by a scientist: The y-axis presents the evaluated
labels and the x-axis the predicted labels of PS99.2. The color gradient indicates the number of images.
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3.6 Time consumption and benchmark

The pre-training with 450 epochs took less than two days on the

8 - A100 GPU DGX system. The inference of the Haul containing

about 1,400 images only took 14.8202 seconds.
4 Discussion

This study introduces the framework DeepLOKI, designed for

categorizing objects on high-resolution black-and-white images

obtained from the LOKI system (Schulz et al., 2010). Our approach

incorporates advanced deep learning techniques, specifically

convolutional neural networks (CNNs), utilizing both deep transfer

learning and self-supervised learning methods. In terms of accuracy

and F1-score, DeepLOKI outperforms the currently used web-based

tool EcoTaxa that has been developed for images collected by other

camera systems, specifically the UVP and the ZooScan (Grosjean et al.,

2004; Picheral et al., 2017). To improve the usability of DeepLOKI, we

have developed a user-friendly graphical user interface (GUI) that

simplifies interaction with the framework. This GUI streamlines the

classifying of zooplankton images, making this process easy to use. An

advantage of DeepLOKI is that the application can be executed on a

portable computer, making it suitable for implementation during
Frontiers in Marine Science 11
cruises as it does not rely on internet access, which is often limited

in remote regions such as the Arctic. Our DeepLOKI pipeline thus

allows for fast image classification immediately after a cast and prompt

evaluation of the zooplankton community in almost real-time. In this

study, we utilized a training set of approximately 194,479 images

collected during four cruises. We achieved a classification accuracy of

83.9% when classifying images from an independent fifth cruise,

including 20,683 images. Both our proposed approaches are

considered to be supervised, because the fine-tuning is based on

labeled data. This demonstrates the effectiveness and robustness of

DeepLOKI in accurately categorizing zooplankton images from the

same area, i.e., Fram Strait. This approach significantly improves the

efficiency of the research process and empowers researchers to make

more informed decisions on sampling during a cruise.

Deep transfer learning has been employed to classify plankton data

successfully(Orenstein and Beijbom, 2017; Cheng et al., 2019; Lumini

and Nanni, 2019). Utilizing openly accessible datasets of categorized

plankton images can facilitate the development of such designs (Sosik

et al., 2015; Elineau et al., 2018; González et al., 2019; Cornils et al.,

2022). Instead of just relying on transfer learning, the focus has now

shifted to a two-step process called self-supervised learning. In this

approach, a backbone is first pre-trained using self-supervised data to

obtain a latent space representation of the images. Once the backbone

has been pre-trained and its weights learned, it can then be fine-tuned
FIGURE 7

Confusion matrix of categories predicted by Dino DTL ResNet18 -Classifier versus final categorization by a scientist: The y-axis presents the
evaluated labels and the x-axis the predicted labels of PS99.2. The color gradient indicates the number of images.
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for a classification task using annotated images. Numerous such

methods exist, for example, Momentum contrast (MoCo), Self-

distillation with no labels (DINO),and Simple Framework for

Contrastive Learning (SimCLR): (Chen et al., 2020; He et al., 2020;

Caron et al., 2021).We applied the DINOmethod for our work but did

not evaluate the other approaches. It’s worth noting that these

alternative methods incur additional computational overhead

compared to simply utilizing the pre-trained ImageNet models. Our

framework is designed to be modular. We have presented two potential

classifiers in this paper, but it can be extended with more classifiers,

which should be implemented in PyTorch. Thus, we abstain from

comparing our approach to others since both our classifiers are based

on a relatively simple backbone architecture. This architecture may be

replaced or expanded, given sufficient resources. Our framework

facilitates the training and inference of these methods. To make

appropriate methods comparisons, standardized benchmark datasets

should be employed. Our study utilized exclusive proprietary data due

to the specialized nature of our LOKI dataset. Our main goal is to

simplify workflow and integrate the self-supervised learning technique

Dino in LOKI images, along with presenting a detailed representation

of the latent space.

To enhance the initial sorting process and the precision of image

categorization, we incorporated a confidence threshold for the neural

network. This threshold enables us to exercise greater caution when

assigning images to specific category folders.As a consequence, an image

that may have previously been classified with uncertainty is now

allocated to the “unknown” folder. This approach minimizes the risk

of mislabeling images. However, it is important to note that

implementing this method may result in a trade-off with recall, which
Frontiers in Marine Science 12
refers to the ability todetect truepositives.While our focuson improving

classification precisionmay lead to a decrease in recall, as wemay detect

fewer true positive cases, the overall result is amore reliable classification

system with lower numbers of misclassifications. We don’t tackle the

problem of “Previously unseen classes and unknown particles” (Eerola

et al., 2023); this could be future work and is out of scope for this study.

For the automatic removal of duplicate images, certain

algorithms that do not rely on image parameters could be

implemented. However, it is beyond the scope of this study.

To recap, our approach optimizes the allocation of resources by

automatically categorizing images and allows researchers to focus

on more complex cases, i.e., images that are marked as unknown by

the algorithm. Our approach also enables the identification and

separation of artifacts, such as dead tissue, eggs, and bubbles. This

not only enhances the overall accuracy of the classification process

but also saves valuable time by streamlining the analysis.

During our analysis, we noticed somemislabeled images within the

annotated image data, particularly in categories that comprise copepod

genera (i.e., Copepoda_Metridia, Copepoda_Pseudocalanus). This

highlights the need for additional datasets to improve the performance

of neural networks in zooplankton classification. Accurate identification

of the calanoids is especially critical in deep learning-based analyses of

LOKI images, as this is the specific area where the algorithms

encountered the highest level of confusion. Focusing on improving the

network’s ability to correctly identify these species is crucial for

enhancing the overall effectiveness of the analysis. Furthermore, our

study successfully demonstrated the classification of species with a

relatively low number of images in the training data. This indicates the

potential of our approach to effectively classify zooplankton species even

when limited training data is available. For instance, we achieved an F1-

Score of 0.83 for Chaetognata_middle, despite having only 1063

training/validation available for training and 184 test images for

testing. However, our algorithm encountered difficulties when dealing

with smaller categories, such as Foraminifera,with a training dataset size

of only 121 examples.

We observed the trend that for categories with less than 1000

training images, the F1-Score was below 50% with the exception of

Cnidaria, which are morphologically very distinct from all other

categories. The accuracy of neural networks, in general, (Kavzoglu,

2009; LeCun et al., 2015; Krizhevsky et al., 2017) tends to increase

with data set size. This is because a larger dataset provides more

diverse examples, allowing the network to learn more robust

representations of the underlying patterns. Based on more data,

the network can also better capture the underlying distribution of

the problem space and improve its generalization capabilities.

However, it’s worth noting that the relationship between data size

and accuracy is not always linear and can reach a plateau or even

decrease with excessively large datasets (Echle et al., 2020). By

augmenting (i.e., rotating the data) the training data, we can provide

an algorithm with a more comprehensive and representative set of

examples, enabling it to better understand and classify groups that

have limited representation in the current dataset.

Our analysis of the latent space embedding of zooplankton

images obtained through self-supervised pre-training using

ResNet18 revealed an insightful observation. By examining the
FIGURE 8

Learned latent-space Embedding using UMAP: The UMAP plot of
the 512-dimensional latent space representation is displayed, which
was obtained from self-supervised pre-training with DINO. This plot
displays the ten categories, which accounted for 95% of the data.
The UMAP plot provides an alternative visualization of the clustering
of these species in the latent space. The color corresponds to the
images categories as validated by the scientists.
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metadata, specifically station information, we discovered a distinct

clustering pattern that was not influenced by the pre- or training

process of the ResNet18 model. These clusters were primarily

associated with three specific geographic locations (longitude,

latitude), which were separated from all other locations in the

dataset. When we tested the image parameters extracted from the

LOKI browser, we found significant differences in most descriptors,

indicating that the images from different geographic locations

indeed differed in their optical properties (For example, see

Supplementary Material DeepLOKI Table S1 and Supplementary

Material DeepLOKI Table S2 that display the variations in image

parameters and image descriptors for Copepoda_Calanus). At

present, these differences cannot be explained by, for example,

zooplankton population dynamics, and more detailed analyses

would be necessary to make use of this result. Deep-learning-

supported annotation has some requirements that the researchers

must meet. For example, the DINO approach that we implemented

needs access to sufficient computing power. We recommend re-pre-

training the DINO ResNet18 when a sufficient number of new data

(i.e. the next 200,000 images) is available through additional cruises.

If these images are annotated, DINO and DTL should undergo

retraining utilizing the finetuning techniques. To mitigate such

resource limitations, we employed a small ResNet18 model as the

backbone, enabling inference (pre-sorting of the images) on

portable computers and mitigating all resource limitations. Our
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data clearly illustrate the ability of various algorithmic approaches

to differentiate among the 33 categories present in our dataset.

Nevertheless, during the training phase, we observed that the

ResNet18 model with student-teacher self-supervised pre-training

exhibited strong performance for the specific task at hand. The

current method performed successfully and promises to enhance

LOKI image analyses. It has to be noted that LOKI is currently used

only in few working groups, however, with the technical

improvements of cameras, the resolution of images from other

optical systems used in marine studies may increases considerably.

DeepLOKI does not require high-resolution images only; it resizes

(convert down in resolution) the image down to 224 x224 pixel.

Therefore, our pipeline can serve as a valuable principle for

future applications. Its successful performance and ability to handle

the challenges specific to high-resolution images that present great

morphological details could make it a promising framework that

can be adapted and extended for further image-based research and

analysis in marine environments.
5 Conclusion

Our study presents a novel and effective approach for

zooplankton image classification using a self-supervised pre-trained

ResNet18 model in conjunction with the LOKI system. The results
FIGURE 9

Precision, Recall and F1-Score on the hold out test dataset the images of Cruise P99.2 for the classes. The y-axis indicates the scores and the x-axis
indicates the label for each of the 33 classes.
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clearly demonstrate the advantages of this approach over traditional

methods, such as random forest classification, especially when a large

training dataset is available. Compared to the default random forest

available in EcoTaxa, the ResNet18 classification performance was

two times higher. The DeepLOKI framework offers streamlined

processes that save time and minimize potential errors, eliminating

the need for calculating image parameters and providing a more

efficient pipeline from the LOKI system to the classified images. Deep

learning-based classification not only improves accuracy but also

expedites the estimation of organism density at each station. By

considering the potential for miss-classification, density is inferred

based on the number of organisms sorted into specific folders.

Despite the promising results, there is still room for further

improvement by including additional data samples to enhance the

model’s performance.

One of the advantages of our deep learning framework is its

versatility and flexibility. Besides handling just images from a single

device like the LOKI system, the framework can be easily adapted to

different image data, for example, phytoplankton obtained from

multiple devices. By leveraging the power of deep learning, our

framework effectively extracts meaningful features and patterns to

classify images, making it a valuable tool for researchers working

with diverse datasets in various domains.

In conclusion, our study demonstrates the efficacy of utilizing a

self-supervised pre-trained ResNet18 model in combination with

the LOKI system for zooplankton image classification. The

DeepLOKI framework offers improved performance, efficiency,

and adaptability, making it a promising approach for advancing

zooplankton research and facilitating accurate analysis across

different ecosystems.
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