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Complex temperature mosaics
across space and time in
estuaries: implications for
current and future nursery
function for Pacific salmon

Phoebe L. Gross1*, Julian C.L. Gan1, Daniel J. Scurfield1,
Cory Frank2, Cedar Frank2, Caelan McLean2, Chris Bob3

and Jonathan W. Moore1

1Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University,
Burnaby, BC, Canada, 2Guardian Watchmen, K’ómoks First Nation, Lantzville, BC, Canada,
3Snaw’naw’as First Nation Council, Courtenay, BC, Canada
Water temperature is a key dimension of estuaries that can influence important

biological processes including organismal growth, survival, and habitat use. For

example, juvenile Pacific salmon rely on temperature-mediated growth

opportunities in estuaries during seaward migration in the spring and summer.

However, oncoming climate change is warming estuary temperatures and

transforming growth potential. Yet, it is likely that estuary water temperatures

are complex and dynamic across space and time. Here we investigated spatial

and temporal patterns of water temperature across two contrasting estuaries on

Vancouver Island, BC, and used these data to simulate juvenile Chinook salmon

growth potential under both present conditions and a simplified scenario of

climate warming. Summer temperatures were warmer and more spatially

homogeneous across the Englishman River estuary relative to the Salmon

River estuary. Within each system, temperature was variable across habitats

and sites, appearing to be driven by a combination of local climate, river and

ocean temperatures, tidal fluctuations, and habitat features. This shifting mosaic

of temperatures generated a complex portfolio of growth opportunities for

juvenile Chinook salmon. There were broad patterns of increasing growth

potential across both systems as temperatures warmed in early summer.

However, excessively hot late summer temperatures drove steep declines in

growth potential across the Englishman River estuary, while positive trends

continued through August in the Salmon River estuary. A simple climate

change scenario revealed that estuaries and habitats may have differing

vulnerabilities to increasing temperatures—with climate warming, favorable

growth opportunities were even more constricted to early summer in the

Englishman River estuary, but expanded across most habitats and times in the

Salmon River estuary given lower baseline temperatures and higher habitat
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complexity. Collectively, this work underscores the importance of habitat

complexity and local climate for maintaining diverse growth opportunities

across estuaries, which may confer resilience to the nursery function of

estuaries as temperature mosaics warm.
KEYWORDS

estuary, water temperature, nursery habitat, bioenergetics, oncorhynchus,
climate change
1 Introduction

Estuaries are mosaics of interconnected habitats at the interface

between watersheds and oceans. Therefore, they are shaped by

complex interactions between terrestrial, marine, and atmospheric

processes (Talley et al., 2003; Ray, 2005; Sheaves, 2009). These

interacting processes generate spatio-temporal variability in key

habitat conditions (Beck et al., 2001; Sheaves et al., 2015).

Numerous habitat conditions, such as salinity, water temperature,

vegetation, and geomorphology, vary across multiple spatial scales

(Peterson, 2003; Fulford et al., 2011). For example, salinity profiles

are often characterized estuary-wide (i.e. salt-wedge or well-mixed)

given dominant river-tide interactions, but may also show

significant local variability (i.e. between channels) due to

differences in stratification and mixing processes throughout the

estuary (Giddings et al., 2011). Many of these spatial patterns also

change over time, and shifts can range from daily fluctuations to

interannual variation (Peterson et al., 2007). For example, daily tidal

fluxes influence water quality patterns (i.e. temperature, salinity,

and dissolved oxygen), while interannual cycles such as the El Niño

Southern Oscillation can impact long-term estuarine mixing and

temperature regimes (Wooldridge and Deyzel, 2012; Sutherland

and O’Neill, 2016; Possamai et al., 2018). Together, these spatio-

temporal processes shape estuarine habitats into highly complex

and dynamic systems.

Water temperature is a key dimension of the estuarine habitat

mosaic (Fulford et al., 2011). Many processes govern estuarine water

temperature—including river flows and temperature, meteorologic

conditions, and ocean temperature and tides—which together drive

dynamic spatio-temporal patterns (Schumann, 2000; Brown et al.,

2016; Marin Jarrin et al., 2022). Across aquatic systems, water

temperature patterns can influence many biological processes

including organismal physiology, species distributions, and

community composition (Sanford, 1999; Perry et al., 2005; Eliason

et al., 2011). For example, the growth potential and physiological

performance offishes is temperature dependent—growth increases as

temperatures rise, but declines precipitously when temperatures

exceed thermal optima (Beauchamp, 1989; Hanson et al., 1997).

Within river networks, cold-water fishes have been shown to track

optimal growth temperatures between seasons, exploiting different

habitats over the year, and even complete daily migrations across

temperature gradients (Armstrong et al., 2013; Armstrong et al., 2021,

Hahlbeck et al., 2022). These and other studies have increasingly
02
revealed how fish rely on both broad- and fine-scaled spatio-temporal

variability in freshwater temperatures; however, few studies have

examined these temperature dynamics in estuaries (Welsh et al.,

2001; Kaylor et al., 2021). Investigating fine-scaled temperature

variation across both space and time is therefore an important step

towards understanding and predicting key biological processes in

estuaries (Wagner et al., 2011; Marin Jarrin et al., 2022).

Estuarine systems can support many important species,

including anadromous fishes like Pacific salmon (Oncorhynchus

spp.). Juvenile salmon transit through estuaries during seaward

migration in the spring, but may also rely on these systems as

nursery grounds prior to ocean entry (Magnusson and Hilborn,

2003; Weitkamp et al., 2014; Moore et al., 2016; Sharpe et al., 2019;

Woo et al., 2019). The duration of estuary residency varies

considerably within and between species. For example, Chinook

salmon (O. tshawytscha) are known to rear extensively in

estuaries, while pink salmon (O. gorbuscha) typically pass

through rapidly (Bottom et al., 2005; Moore et al., 2016; Quinn,

2018; Chalifour et al., 2021). During estuarine residency, spatio-

temporal temperature dynamics mediate key physiological and

ecological processes for juvenile salmon including growth,

survival, movement, and prey availability (Cordell et al., 2011;

David et al., 2014; Davis et al., 2019; Davis et al., 2022). Estuarine

growth can be relatively rapid compared to upstream habitat, and

this growth can have subsequent benefits for marine survival

(Bond et al., 2008; Duffy and Beauchamp, 2011, Sawyer et al. in

press). For example, Sawyer et al. (in press) estimated that

estuarine growth improved marine survival by 31-47% for

juvenile coho salmon (O. kisutch) on the Central Coast of

British Columbia and that growth was substantially higher in a

year with warmer temperatures. On the other hand, observations

from an estuary lagoon in California suggest that excessively

high estuary temperatures can limit rearing habitat and

drive diel movements for juvenile steelhead and coho salmon

(Osterback et al., 2018; Bond et al., 2022). Thus, navigating

mosaics of temperature in estuaries and the associated growth

opportunities can have important consequences for juvenile

salmon during estuary rearing and seaward migration.

Understanding the spatial and temporal dynamics of

temperature in estuaries is particularly important given oncoming

climate change. Depending on the emissions scenario, sea-surface

temperatures are expected to increase anywhere from 1.3-4.4°C in

the northeast Pacific Ocean between 2010-2099 (Hoegh-Guldberg
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et al., 2014). In addition, global river temperatures are projected to

increase by several degrees by 2100 relative to 1971-2000, also

dependent on emissions, location, and river water source (van Vliet

et al., 2013) (e.g., up to 6°C increase in annual maximum

temperature by the 2080s relative to the 1980s in the Pacific

Northwest, Mantua et al., 2010). These shifts, along with changes

to other climatological processes like precipitation, will likely drive

increases in estuarine water temperature (Wagner et al., 2011; Cho

and Lee, 2012; Brown et al., 2016; Davis et al., 2022). Shifting

temperature mosaics will transform growth opportunities for fishes

across estuarine systems (Harley et al., 2006). For juvenile salmon,

this could have cascading impacts including changes in marine

survival and migration phenology (Pörtner and Peck, 2010;

Gillanders et al., 2011; Wilson et al., 2021; Davis et al., 2022;

Wilson et al., 2023). Therefore, predicting shifts in growth

potential is a key step towards understanding Pacific salmon

vulnerability to increased estuarine temperatures, which can in

turn help inform conservation and management strategies

(Griffiths and Schindler, 2012; Davis et al., 2022; Spanjer

et al., 2022).

Here we aim to quantify estuary temperature mosaics and their

implications for nursery function for salmon in this era of climate

warming. Specifically, we (1) assess spatial and temporal patterns of

summer temperatures across different habitats within two

contrasting estuaries on Vancouver Island, BC, (2) use this data

to explore juvenile Chinook salmon growth potential across each

system using bioenergetics modeling, and (3) investigate changes in

growth potential under a simple scenario of increased temperature.

Collectively, we discovered high variation in water temperatures

and associated growth opportunities across both space and time

that suggests key linkages between estuarine habitat complexity and

oncoming vulnerability to climate warming.
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2 Methods

2.1 Study systems

We performed this study in the estuaries of two salmon-bearing

rivers, the Englishman and Salmon, on the eastern side of

Vancouver Island, British Columbia, Canada. This work is a part

of a large-scale collaborative initiative—Estuary Resilience project—

led by The Nature Trust of British Columbia (NTBC), in

collaboration with coastal First Nations and other organizations.

Both the Englishman and Salmon Rivers and estuaries support all

five species of Pacific salmon in addition to sea-run dolly varden

(Salvelinus malma), cutthroat trout (Oncorhynchus clarkii), and

anadromous steelhead trout (Oncorhynchus mykiss) (Silvestri, 2007;

Lament et al., 2015). These two estuaries contrast in their size, local

climate setting, and degree of anthropogenic alteration. The Salmon

River estuary is larger and relatively intact with cooler and less

variable climatic patterns. Contrastingly, the Englishman River

estuary is smaller and highly altered by residential developments,

flow modification, and land-use conversion, and experiences

warmer and more seasonally variable climatic conditions.

The Salmon River estuary is located on the ancestral territory of

the K’ómoks First Nation, who know this area as X’wésam. The

estuary encompasses approximately 8.4 km2 of wetlands, bordering

the small town of Sayward to the west, forested mountains to the

east, and draining into Johnstone Straight (GPS: 50.39N, 125.95W)

(Figure 1). Johnstone Strait is a deep (e.g. over 500 m in some

sections) and narrow (e.g. 4.5-2.5 km wide) channel that

experiences rapid tidal streams and high winds. Thus, water is

vertically well-mixed and typically remains relatively cool year

round (Thomson, 1981). The Salmon River watershed is 1210

km2, and the river is 208 km long (Atagi, 1994). This is a rainfall-
FIGURE 1

(A) Map of the Salmon River estuary. Temperature logger locations are indicated by the shapes, with each shape corresponding to a habitat type as
indicated by the key. Sites are numbered 1-3 within each habitat type. The white dot on the inset indicates the location of the Salmon River estuary
on Vancouver Island. (B) Map of the Englishman River estuary. Temperature logger locations are indicated by the shapes (triangles are beach
habitats, squares are marsh habitats, and circles are meadow habitats). Sites are numbered 1-3 within each habitat type. The white dot on the inset
indicates the location of the Englishman River estuary on Vancouver Island.
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dominated system, with the highest discharge in fall and winter

(Environment and Climate Change Canada (ECCC), 2023a). The

estuary sits within the Coastal Western Hemlock (CWH)

biogeoclimatic zone, which is characterized by cool summers and

mild winters (Pojar et al., 1991). The Salmon River watershed has a

long history of logging, and a log-sort continues to operate in the

northwest corner of the estuary, separated from the system by a

narrow jetty (Baldwin and Bradfield, 2010).

The Englishman River estuary is in southeastern Vancouver

Island on the ancestral territory of the Snaw’naw’as First Nation,

who know this area as Kw’a’luxw. The system sits within the city of

Parksville and includes about 3.7 km2 of wetlands that are almost

entirely surrounded by residential developments (GPS: 49.33N,

-124.29W) (Figure 1). Thus, the estuary is less than half the size

of the Salmon River estuary. The Englishman watershed is 319 km2,

and the river runs for 40 km before entering the estuary and Strait of

Georgia (Bocking and Gaboury, 2001). The Strait of Georgia is

shallower (e.g. average depth is 155 m) and wider (e.g. average

width is 28 km) in comparison to Johnstone Strait, with strong year

round vertical stratification. In the Strait of Georgia, water

temperature in the upper layer displays strong seasonal variation,

with summer temperatures exceeding 20°C in some places

(Thomson, 1981). The Englishman River is rainfall-dominated

and is generally characterized by lower discharges than the

Salmon River (Environment and Climate Change Canada

(ECCC), 2023b). A dam operates 34 km above the estuary in the

headwaters. The estuary is also within the CWH biogeoclimatic

zone (Pojar et al., 1991). However, the system typically experiences

higher summer temperatures and less annual precipitation in

comparison to the Salmon River estuary (Environment and

Climate Change Canada-Meteorological Service of Canada

(ECCC-MSC), 2023a; Environment and Climate Change Canada-

Meteorological Service of Canada (ECCC-MSC), 2023b). Many

land-use activities impact the Englishman River watershed,

including logging, agriculture, and residential developments

(Boom and Bryden, 1994). Similarly, the estuary has been altered

substantially by development, although there have been recent

restoration efforts.
2.2 Field methods

To obtain temperature data across a range of estuarine habitat

conditions, we deployed ten temperature loggers (HOBO TidbiT

v2) in each estuary from May-August, 2022. Logger sites were

chosen to cover three broad estuarine habitat types—beach, marsh,

and meadow (Figure 1). These classifications span a range of

vegetation, geomorphology, and tidal influence, thus representing

a mosaic of available juvenile salmon estuarine habitat (Levings,

2016; Woo et al., 2019). More specifically, beach habitats are

predominantly marine influenced with sandy and rocky

shorelines and some marine macroalgae (e.g., Fucus spp.).

Estuarine marshes are diurnally tidally influenced and dominated

by salt tolerant plants such as Lyngbye’s sedge (Carex lyngbyei).

Last, meadow habitats are generally highest and furthest upstream

in the estuary, experiencing less frequent tidal inundation and
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featuring diverse plant communities (MacKenzie and Moran,

2004). We chose three sites within each habitat type based on

accessibility and variability in characteristics such as water flow,

depth, and vegetation. The tenth logger was placed upstream in the

mainstem river channel above tidal influence to record freshwater

inflow temperatures. Loggers were set to record at fifteen-minute

intervals and deployed at every site between April 30-May 4, 2022.

Rebar was hammered into the substrate, and loggers were

connected using zip-ties to sit 15cm above the bottom. Although

loggers were not deployed within a protective housing, research

suggests that loggers at sites with continuous flow, turbid water,

and/or shading (i.e. riparian or aquatic vegetation) experience much

less heating from direct solar radiation. All of our deployment sites

were characterized by at least one of these conditions, so we suggest

that the lack of housings does not significantly impact our results

(Johnson and Wilby, 2013; Caissie and El-Jabi, 2020). We

downloaded and redeployed all loggers at the beginning of July

with final retrieval on August 27-28, 2022. Throughout this field

work, members of the K’ómoks and Snaw’naw’as First Nations

joined us to share guidance on site selection and assist with

field operations.
2.3 Analysis

Temperature recordings taken during dewatered periods were

removed from each dataset. This included readings taken during

initial deployment, the mid-summer logger check, and final

retrieval. In addition, two loggers in the Salmon River estuary

(Marsh 2 and Beach 3) were found dewatered when retrieved in

August due to lower water levels. We visually inspected these

temperature time-series for increased daily variance, which

indicates that the loggers were recording air temperature, and

removed data accordingly. Data from all other loggers was also

examined to check for dewatered periods, but none were identified.

During the mid-summer check, one logger in the Salmon River

estuary was missing (Meadow 2). A new logger was deployed at this

time, so data for this site is limited to July-August.

We used generalized additive models (GAMs) to quantify

variation in summer water temperatures between habitat types

across each estuary. For each system, we modeled daily average

water temperature against a factor-smooth interaction between day

(an integer ranging from 1-119) and habitat type (beach, marsh,

and meadow) using a Gaussian distribution. Factor-smooth

interactions fit separate smooths for each level of a factor, which

allows for post-hoc comparisons between these different levels

(Pedersen et al., 2019). We fit the factor-smooth interaction

between day and habitat type using thin-plate regression splines

with forty knots. Habitat type was also added as a random effect to

allow for varying intercepts. In addition, site was included as a

random effect to account for variation between temperature loggers.

Both models were fit with restricted maximum likelihood

estimation (REML) using the R software package “mgcv” (R Core

Team, 2022, R version 4.2.1 [2022-06-23], Wood, 2017). After

models were fit, we used the “plot_differences” function from the

R package “gratia” to examine pairwise differences between habitat-
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level smooths for each model (Simpson, 2023). This function

calculates pairwise difference smooths with 95% credible intervals

for every combination of factors in a factor-smooth interaction. We

concluded that daily water temperature differed significantly

between habitat types when the 95% credible interval for the

difference smooth did not include zero.

For further data visualization and analysis, we used tide

predictions from the nearest Fisheries and Oceans Canada

stations, regional ocean temperatures from the nearest Fisheries

and Oceans Canada lighthouse stations, and air temperature data

from the nearest Meteorological Service of Canada weather stations

(Department of Fisheries and Oceans Canada (DFO), 2023c—

Tides, currents, and water levels for Kelsey Bay-08215 [data for

the Salmon River estuary], Department of Fisheries and Oceans

Canada (DFO), 2023d—Tides, currents, and water levels for

Nanoose Bay-07930 [data for the Englishman River estuary],

Department of Fisheries and Oceans Canada (DFO), 2023b—

British Columbia Lightstation Sea-Surface Temperature and

Salinity Data (Pacific), 1914-present for Pine Island [data for the

Salmon River estuary], Department of Fisheries and Oceans Canada

(DFO), 2023a—British Columbia Lightstation Sea-Surface

Temperature and Salinity Data (Pacific), 1914-present for

Departure Bay [data for the Englishman River estuary],

Environment and Climate Change Canada-Meteorological Service

of Canada (ECCC-MSC) (2023a) [data for the Salmon River

estuary] , Environment and Climate Change Canada-

Meteorological Service of Canada (ECCC-MSC) (2023b) [data for

the Englishman River estuary]).
2.4 Bioenergetics

We used bioenergetics models to explore the implications of

temperature mosaics on potential growth of juvenile salmon given

simple assumptions. Specifically, we used the Wisconsin

Bioenergetics model to simulate growth of juvenile Chinook

salmon at each temperature logger site from May-August (Hewett

and Johnson, 1987; Hewett and Johnson, 1992; Hanson et al., 1997).

We focused on Chinook salmon given their cultural importance,

imperiled conservation status, estuary-dependent life-histories, and

available bioenergetic parameters (Plumb and Moffitt, 2015; Price

et al., 2017; Atlas et al., 2021; Chalifour et al., 2021). The Wisconsin

model is an energy balance equation where energy consumed by a

fish is balanced against metabolism, waste losses, and growth

(Deslauriers et al., 2017). Model inputs of water temperature, prey

energy density (EDprey), predator energy density (EDfish), starting

weight, and the proportion of maximum consumption (Pcmax) can

be used to estimate fish growth. We ran models on a daily time-step

with inputs of daily-averaged water temperature and constant

values of Pcmax, EDprey, EDfish, and starting weight with an output

of weight per day. A separate model was run with each full

temperature logger dataset to examine differences in juvenile

Chinook salmon growth under different thermal regimes across

the two estuaries. We did not run a model for the Salmon River

estuary site with a July-August dataset (Meadow 2) to maintain

consistency in start timing.
Frontiers in Marine Science 05
A starting weight of 5 grams was chosen to represent sub-

yearling fish entering the estuary in early May (Davis et al., 2019).

EDprey was set to 4000J based on recent values from bomb-

calorimetry studies of juvenile Chinook salmon estuarine diets

(David et al., 2014; Davis et al., 2019). EDfish was calculated as a

function of body mass (Stewart et al., 1983). We set Pcmax to 0.6,

which is an ecologically plausible consumption rate for juvenile

Chinook salmon in estuaries (Davis et al., 2019, Kaylor et al., 2021).

Physiological parameters for juvenile Chinook salmon were used in

all simulations, which sets the thermal optimum for consumption at

20.93°C (Stewart and Ibarra, 1991; Plumb and Moffitt, 2015). All

models were run with the R shinyApp program Fish Bioenergetics 4

(Deslauriers et al., 2017). The model outputs of daily weight were

used to calculate daily growth rate potential (GRP) as follows, where

t1 and t2 are on daily time increments:

%   change   in   body  mass
day

=
weightt2 − weightt1

weightt1
 �   100%

We calculated average monthly GRP for each site from May-

August to compare relative growth between sites over the summer.

An increase of 2°C was applied to all temperature datasets to

simulate a simplistic end-of-century climate change scenario. We

chose 2°C given end-of-century predictions for sea-surface (1.3-4.4°

C from 2010-2099 in the northeast Pacific Ocean) and river (several

degrees) temperature increases, although we recognize the

limitations and assumptions of this method, as further detailed in

the discussion (Mantua et al., 2010; van Vliet et al., 2013; Hoegh-

Guldberg et al., 2014). Keeping all other parameters constant, we re-

ran the bioenergetics models for each logger site under the increased

temperature scenarios to investigate shifts in juvenile Chinook

salmon GRP patterns.
3 Results

3.1 Water temperature

Water temperatures generally increased from May-July across

both estuaries, although the Englishman River estuary reached

substantially warmer temperatures than the Salmon River estuary.

At all Englishman River estuary sites, water temperature peaked in

late July before decreasing slightly and roughly plateauing through

August (Figure 2). For example, at a marsh site (Marsh 2), weekly

mean temperature increased from 11.6°C in early May (May 5-11)

to 22.9°C in late July (July 25-31). Mean weekly temperature at the

end of August (Aug 20-26) was 21.7°C (Supplementary Figure 1). In

comparison to the Englishman River estuary, Salmon River estuary

temperatures followed a similar pattern, although May-July

increases were generally smaller (Figure 2). For example, at a

marsh site (Marsh 3), weekly mean temperature increased from

9.4°C (May 5-11) to 14.0°C (July 25-31). August temperatures in

the Salmon River estuary displayed a steady trend with a mean of

13.5°C in late August (Aug 20-26) (Supplementary Figure 1). Thus,

estuary temperatures generally increased during the spring to

summer, but reached substantially warmer temperatures in the

Englishman River estuary relative to the Salmon River estuary.
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Temperatures varied across different estuary habitats through

time, although this thermal diversity was greater in the Salmon

River estuary compared to the Englishman River estuary. The

Salmon River estuary GAM and pairwise difference smooths

indicated that all habitat-level smooths differed significantly from

each other at more than one time throughout the summer

(Figure 3). Broadly, meadow habitat had significantly lower early-

summer temperatures and significantly higher late-summer

temperatures compared to both beach and marsh habitats.

Differences between marsh and beach habitat temperatures were

smaller, but marsh temperatures were significantly lower in parts of
Frontiers in Marine Science 06
May-June and significantly higher in parts of July. As an example, at

the end of July (July 25-31), weekly mean temperatures were 11.8°C

(beach), 13.4°C (marsh), and 17.9°C (meadow) (Supplementary

Figure 1). In the Englishman River estuary, the GAM and pairwise

difference smooths showed that only meadow habitat differed

significantly from the beach and marsh habitats over the summer

(Figure 3). Meadow habitat had significantly lower temperatures in

parts of May-June, and significantly higher temperatures in parts of

July-Aug compared to marsh and beach habitat, although

differences were smaller than in the Salmon. For example, weekly

mean temperatures at the end of July (July 25-31) were 22.9°C
FIGURE 2

May-August water temperature for each temperature logger site in the Salmon and Englishman River estuaries. Each panel displays temperature
from one temperature logger. Water temperature is color-coded by value, with the scale bar to the right of the panels. The horizontal gray line in
each panel indicates the 20°C isoline to ease comparability between each plot.
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(beach), 24.0°C (marsh), and 23.6°C (meadow) (Supplementary

Figure 1). Therefore, different habitats had diverse temperatures

that were asynchronous through time, with the Englishman River

estuary having a warmer and more homogenous temperature

mosaic than the Salmon River estuary.

Estuary temperature dynamics across time appeared to be

driven in part by two key processes: first, there was a seasonal

reversal in the temperature differences between ocean and

freshwater inputs; second, tidal fluctuations controlled fine-scaled

temperature patterns. Across both estuaries, the relationship

between tide height and water temperature displayed a clear daily

pattern that shifted seasonally at some sites. In early summer, high

tide corresponded with warmer temperatures, but by mid-late

summer, cooler temperatures were observed at high tides. This

pattern suggests that sea-surface temperature (SST) is initially

warmer than river temperature—thus, tidal influxes bring warmer

water into the system—before reversing at some point over the

summer. Indeed, this reversal is evident through a comparison of

regional ocean and river temperature data for both systems, where

river temperatures are initially cooler in early summer before

exceeding more stable ocean temperatures (Supplementary

Figure 3). Interestingly, the timing of this switch differed between

estuaries. For example, a beach site in the Salmon River estuary

(Beach 3) displayed the change about a month earlier than an

Englishman River estuary beach site (Beach 1), reflecting differences

in river and ocean temperature trends between the systems

(Figure 4, Supplementary Figure 2, Supplementary Figure 3). On

a larger spatial scale, between-habitat temperature differences in

both estuaries also illustrate this shifting pattern between ocean and

river temperatures—in early summer, river-dominated meadow

habitat was generally cooler than beach and marsh habitats before

switching in July (Figure 3). However, this seasonally shifting
Frontiers in Marine Science 07
pattern was not evident across all sites. For some sites with

limited freshwater influence (e.g. Sal-Beach 1 and Eng-Beach 3),

high tide always corresponded with lower water temperatures. In

addition, not all sites showed a clear link between water temperature

and tide (e.g. Eng-Marsh 3). Instead, water temperature at these

sites consistently peaked in the afternoon alongside air temperature,

suggesting that these sites are likely more isolated from tidal

flushing. Together, these complex temporal patterns of estuary

temperatures suggest that rivers switch from being a source of

cooler water to warmer water compared with the more stable ocean

water temperatures over the summer, and that the magnitude and

timing of tidal ebb and flow drives temperatures on a fine scale, all

mediated by habitat complexity.
3.2 Bioenergetics

The complex temperature mosaics within estuaries led to

diverse growth opportunities for juvenile Chinook salmon across

space and time, with temperatures ranging from colder-than-

optimal, optimal, and excessively hot. Under present conditions,

juvenile Chinook salmon GRP generally increased through early

summer across both estuaries as temperatures warmed, but declined

sharply in the Englishman River estuary over mid-late summer

when temperatures got too hot (Figure 5). In the Englishman River

estuary, average GRP was highest in June before dropping to

negative values in late-July and early-August as summer

temperatures peaked. This broad temporal trend was consistent

estuary-wide, but spatio-temporal temperature patterns within the

system generated variable growth opportunities between habitats

and sites. For example, on a monthly timescale, average GRP was

highest in marsh habitat in May, but highest in beach habitat from
FIGURE 3

Difference smooths for each pairwise habitat type combination from the factor-smooth interactions of day and habitat type in the GAMs for the
Salmon and Englishman River estuaries. Each panel displays the difference between the two habitat-level smooths indicated in the title from May-
August, with the 95% credible interval included as a gray ribbon. Pairwise differences from the Salmon River estuary are displayed in the first row,
with pairwise differences from Englishman River estuary below. Where the credible interval does not include zero, the pair of habitats have
significantly different temperatures for that date.
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June-August. In contrast, growth opportunities in the Salmon River

estuary continued to increase into July and remained stable through

August as water temperatures never exceeded optimal growth

conditions. GRP patterns between habitats were more consistent

in the Salmon River estuary, with the highest average monthly GRP

in meadow habitat across all months. Comparing growth potential

between the two estuaries, GRP was generally higher across the

Englishman River estuary from May-June. This trend switched

from July-August, with higher GRP throughout the Salmon River

estuary. Thus, spatio-temporal temperature patterns led to variable

growth opportunities within and between estuaries, with warmer

temperatures in the Englishman River estuary leading to higher

early-summer GRP but substantial declines by late-summer, while

lower temperatures in the Salmon River estuary created positive,

stable GRP trends through the summer.

The simple climate change scenario had variable impacts

between estuaries, with GRP increases across most habitats and

times in the Salmon River estuary, but consistent GRP declines

through the Englishman River estuary from June-August (Figure 5).

Growth opportunities in the Salmon River estuary improved across

all habitats from May-June, as an increase of 2°C pushed

temperature mosaics closer to optimal conditions. Average GRP

in beach and marsh habitats continued to increase in July-August,

while meadow habitat GRP declined in late-summer as

temperatures became excessively hot. These shifting patterns

drove changes in relative GRP between habitats over space and

time—average growth potential was highest in meadow habitat

fromMay-June, but switched to marsh habitat from July-August. In

the Englishman River estuary, warmer temperatures drove higher
Frontiers in Marine Science 08
GRP across habitats in May, but temperatures began to exceed

optimal growth conditions by June, causing GRP declines estuary-

wide through mid-late summer. Relative GRP between habitats also

changed in the Englishman River estuary as temperatures reached

and exceeded optimal temperatures asynchronously. GRP was

highest in beach and marsh habitats in May, meadow habitat in

June, beach and meadow habitat in July, and beach habitat in

August. By this final month, average GRP was negative across all

habitats, effectively limiting the rearing capacity of the estuary to

earlier in the summer. Between the two estuaries, growth potential

was similar between the Englishman and Salmon River estuaries in

May-June, but consistently higher in the Salmon River estuary from

July-August. Therefore, increasing temperatures by 2°C largely

expanded growth opportunities across space and time in the

Salmon River estuary, but constricted growth opportunities to

early-summer in the Englishman River estuary, illustrating how

the nursery capacity of the Salmon River estuary may be more

resilient to oncoming climate warming relative to the Englishman

River estuary.
4 Discussion

This study reveals how complex spatio-temporal summer water

temperature patterns within and between two estuaries on

Vancouver Island, BC provide rich mosaics of growth

opportunities for juvenile Chinook salmon that may be

challenged by climate warming. Different habitats had different

water temperatures. Multiple processes likely drove these
B C D

A

FIGURE 4

May-June water temperature (blue line) and tide height (black line) for site Beach 3 in the Salmon River estuary. Tide height data is from the nearest
Fisheries and Oceans Canada station (Department of Fisheries and Oceans Canada (DFO), 2023c—Tides, currents, and water levels for Kelsey Bay-
08215). (A) Temperature and tide height over the full May-June period. The grey bars indicate the time periods displayed in (B–D). (B) Temperature
and tide height from May 1-3. Low tide corresponds with lower water temperatures. High and low tides are indicated by light and dark blue bars in
(B–D). (C) Temperature and tide height from May 31-June 2. Water temperature shows little variation with tide height. (D) Temperature and tide
height from June 28-30. Water temperature is higher at low tides.
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temperature patterns, including local climate setting, tidal influence,

seasonally changing river and ocean temperatures, and habitat

processes that together generated asynchronous temperature

dynamics between habitats and sites over time. These dynamic

temperature patterns drove shifting mosaics of growth

opportunities. In the smaller, more degraded estuary with warmer

and more variable climatic patterns (Englishman), temperatures

reached excessively hot temperatures at some habitats and times,

leading to substantial declines in growth opportunities over the

summer. These declines were exacerbated in the simplified climate

change scenario, further limiting favorable growth opportunities to

early-summer. Water temperatures in the larger, more intact system

with cooler and more stable climatic influences (Salmon) never

exceeded optimal growth conditions, creating a mosaic of positive

growth opportunities across the summer that was largely enhanced

by increasing temperatures. Therefore, this study illustrates how

modest levels of climate change may increasingly limit estuarine

nursery capacity across some habitats and times—but expand it

in others—dependent on the underlying spatio-temporally

complex temperature patterns and associated portfolios of

growth opportunities.

The dynamic temperature patterns across both systems

implicate several key underlying processes. First, at the interface

between rivers and oceans, estuarine temperatures are shaped by

interactions between ocean and river temperatures (Thomson,

1981; Wooldridge and Deyzel, 2012; Khadami et al., 2022). In

both the Salmon and Englishman River estuaries, this was evident

when predominantly river-influenced meadow habitats were
Frontiers in Marine Science 09
coolest in early summer but warmest in late summer, reflecting a

pattern where river temperatures warm and eventually exceed more

stable ocean temperatures through the summer (Hall et al., 2018).

The timing of this pattern varied between systems, likely driven by

differing river and regional ocean temperatures. For example, mean

weekly stream temperature fromMay 5-11 was 6.6°C in the Salmon

River vs. 7.2°C in the Englishman River, and regional ocean

temperature for the same period was 9.65°C in Johnstone Strait

and 10.17°C in the Strait of Georgia (Department of Fisheries and

Oceans Canada (DFO), 2023b—British Columbia Lightstation Sea-

Surface Temperature and Salinity Data (Pacific), 1914-present for

Pine Island [data for the Salmon River estuary], Department of

Fisheries and Oceans Canada (DFO), 2023a—British Columbia

Lightstation Sea-Surface Temperature and Salinity Data (Pacific),

1914-present for Departure Bay [data for the Englishman River

estuary]). Regardless, the seasonal reversal in temperature gradient

across estuaries is an intriguing and likely widespread phenomenon

at these latitudes. Second, tidal inundation interacted with these

river and ocean temperature patterns to shape daily temperature

fluctuations (Schumann, 2000; McKay and Iorio, 2008). At some

sites, cyclic patterns reflected river and ocean temperature dynamics

where lower temperatures occurred at high tide before reversing

later in the summer, but this only occurred where there was

substantial oceanic and freshwater mixing. In addition,

temperature variability was likely also influenced by local habitat

and site-specific features including flow patterns, aquatic and

riparian vegetation, and channel connectivity (McKay and Iorio,

2008; Fogarty et al., 2018). For example, one of the Englishman
FIGURE 5

Juvenile Chinook salmon growth rate potential (GRP) for the Salmon and Englishman River estuaries under present and +2°C scenarios from May-
August. Present GRP trends are shown in the top two panels for each estuary, while +2°C GRP trends are displayed below. The individual lines
represent GRP at each temperature logger site, and these lines are color-coded by habitat type with the key to the right of the panels.
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River estuary meadow sites (Mead 3) is in a pool that disconnects

from the channel at low tide—therefore resulting in stagnant flows

—which may have contributed to higher temperatures relative to

the other meadow sites that are both in higher flowing freshwater

tributaries. Last, meteorological patterns obviously controlled water

temperatures. For example, a heat dome occurred across Vancouver

Island in late July, driving air temperatures in the Englishman River

estuary up to 32°C and resulting in water temperatures in excess of

30°C at some estuary sites (Environment and Climate Change

Canada-Meteorological Service of Canada (ECCC-MSC), 2023b).

In comparison, air temperatures in the Salmon River estuary

reached 22°C and water temperatures at some sites exceeded 20°C

(ECCC-MSC 2023—Historical Climate Data for Fanny Island,

British Columbia). Thus, these data reveal the underlying

processes that generate spatio-temporal temperature dynamics

within each system, working alongside key between-estuary

differences in climate, oceanography, complexity, and degradation.

One of the striking patterns in this study was the degree to

which one estuary (Englishman) had warmer and more

homogenous water temperatures than the other (Salmon), which

remained cool and more variable over space. We recognize that a

comparison of only two estuaries offers limited inference, but

suggest that these patterns bear careful consideration. First, the

Englishman River estuary experiences warmer and more variable

climatic patterns relative to the Salmon River estuary, which is likely

driven in part by differing oceanographic patterns between the

systems. Johnstone Strait (Salmon) has relatively cool and stable

year-round temperatures with consistent vertical mixing, while the

Strait of Georgia (Englishman) displays strong seasonal variability,

year round vertical stratification, and warmer summer

temperatures. These differences likely influence local climate

patterns including air temperatures and fog frequency (Thomson,

1981, Supplementary Figure 3). Therefore, marine and climatic

influences in each system vary considerably. In addition, the

Englishman River has warmer water temperatures and lower

discharge in the spring-summer relative to the Salmon River,

which together brings warmer freshwater inputs into the

Englishman River estuary [Supplementary Figure 3; Environment

and Climate Change Canada (ECCC), 2023b); Environment and

Climate Change Canada (ECCC) (2023a)]. Together, these differing

atmospheric, terrestrial, and marine inputs may help explain the

cooler summer water temperatures across the Salmon (Thomson,

1981; Vaz and Dias, 2008; Roegner et al., 2011; Cho and Lee, 2012).

Additionally, the Salmon River estuary is a larger and more complex

system, with over twice the area of the Englishman River estuary

and more intact estuary habitats. Estuary size and morphology are

known to impact mixing patterns and heat dispersion, where

smaller systems are usually more well-mixed (McKay and Iorio,

2008, Webb, 2020). The Englishman River estuary is also more

degraded, with a dammed and heavily urbanized upstream river

that often runs at minimum baseflows throughout the summer that

could more easily reach radiative equilibrium with the atmosphere,

agriculture and logging across the watershed, and encroaching

residential developments constraining the estuary (Boom and

Bryden, 1994, Environment and Climate Change Canada
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(ECCC), 2023b); Sutherland, 2014). These characteristics have

been linked to warmer and more homogenous temperature

regimes in river systems (Olden and Naiman, 2010; Somers et al.,

2013; Juracek et al., 2017; Cunningham et al., 2023). We suggest that

understanding the impact of watershed and estuary degradation on

estuary temperature mosaics is a key research priority for

future work.

The complex summer temperature patterns across both

estuaries generated shifting spatio-temporal mosaics of growth

opportunities for juvenile Chinook salmon. Water temperatures

fluctuated above and below the thermal optimum for consumption

(20.9°C) at differing magnitudes and times between estuaries,

habitats, and sites—thus, while growth opportunities shared

similar seasonal trends across each system, they also varied at

smaller habitat and site-level scales (Plumb and Moffitt, 2015).

These multiple scales of variability generated portfolios of potential

growth across the estuaries, which would be expected to drive

several important responses in juvenile Chinook salmon (Greene

et al., 2021; Davis et al., 2022). In both freshwater and estuarine

systems, for example, water temperature has been shown to direct

movement and habitat use patterns, where juvenile salmon will

select for metabolically favorable conditions (Armstrong and

Schindler, 2013; Matsubu et al., 2017; Morrice et al., 2020). In

addition, estuarine water temperatures have been linked to the

duration of estuary residency (Greene et al., 2021). For example,

when temperatures exceeded tolerable rearing conditions, juvenile

Chinook salmon have been found to spend less time in estuarine

habitats before outmigrating and entered the ocean at smaller sizes

(Munsch et al., 2019). These changes could have cascading impacts

on subsequent marine survival (Sawyer et al. in press). Thus, our

study serves as a first step towards understanding and predicting

these key physiological and ecological responses to temperature

mosaics, which may have important consequences for juvenile

salmon during this life-history transition to sea.

The simplified warming scenario illustrated how forthcoming

climate warming may have diverging impacts on estuarine growth

opportunities for juvenile Pacific salmon, dependent on baseline

temperatures and habitat complexity (Nielsen et al., 2013; Zhang

et al., 2019). Our study was performed with a single year of

temperature data and simple warming assumptions—climate

change will undoubtedly manifest with more unpredictability

across time given complex climatic processes and ecological

patterns. That being said, our study did reveal several key

findings that we anticipate will be robust to these study

limitations. First, excessively warm temperatures have already

made some estuarine habitats unsuitable at certain times, and

climate warming will further constrict growth opportunities for

cold water fishes such as salmon over space and time. Second,

estuaries and habitats have differing vulnerabilities to these impacts

—in some cases, rising temperatures may actually expand summer

growth opportunities across cooler and more heterogenous systems

like the Salmon River estuary over the next few decades, depending

on climate change. However, these gains will have a finite temporal

window—as temperatures continue to rise beyond a few degrees

and exceed thermal tolerances, portfolios of growth opportunities
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will collapse. As temperature mosaics approach and exceed these

tolerances, juvenile salmon will likely face several physiological and

ecological consequences. For example, Marine and Cech (2004)

found that juvenile Chinook salmon experimentally reared in 21-

24°C experienced significantly decreased growth, impaired

smoltification indices, and increased predation vulnerability in

estuaries compared to fish reared at lower temperatures. In

addition, the timing and duration of estuary migration could start

to shift as temperatures rise, which may lead to phenological

mismatches in marine prey availability (Visser and Both, 2005;

Crozier et al., 2008; Wilson et al., 2021; Wilson et al., 2023). Our

study suggests that juvenile salmon in warmer systems like the

Englishman River estuary may face these consequences more

acutely and rapidly, while growth opportunities may increase

before losses occur in systems like the Salmon River estuary that

are not as far along in this trajectory of warming.

Our bioenergetics modeling approach entailed assumptions and

simplifications that are important to consider. Throughout all

simulations, we held prey energy density and the proportion of

maximum consumption at constant literature-obtained values

given our lack of empirical data. However, numerous studies have

shown that prey communities vary over space and time across

estuaries (Arbeider et al., 2019; Davis et al., 2019; Woo et al., 2019;

Weil et al., 2020). In addition, prey community dynamics are

expected to shift under climate change, which we did not account

for in our climate change scenario (Daufresne et al., 2004; Hallett

et al., 2018; Woodland et al., 2021). Given this variability in prey

resources, the proportion of maximum consumption for juvenile

salmon could also vary spatio-temporally, and potentially shift with

climate change (Beauchamp, 2009; Davis et al., 2019; Kaylor et al.,

2021). Therefore, further work is needed to understand how prey

mosaics shape present and future growth opportunities across these

systems, but we suggest that the reasonable prey and consumption

parameters we selected nonetheless generated useful estimates of

growth potential. Our approach of applying a 2°C increase to

temperature across all sites based on a single year of temperature

data for the climate change scenario is also a major simplifying

assumption. While this methodology allowed for a simplistic

evaluation of potential impacts on juvenile Chinook salmon GRP,

water temperature will not increase uniformly over space and time

in estuaries. Process-based and statistical models of water

temperature have the ability to account for some of this

variability, and could therefore be used to improve estimates of

future GRP (Wagner et al., 2011; Brown et al., 2016; Davis, 2019;

Des et al., 2020).

In addition to water temperature, climate change will drive

shifts in other key estuarine conditions that may impact the nursery

quality of estuaries for juvenile salmon. Over the coming century,

sea level rise (SLR) is projected to transform estuarine habitat

mosaics, and systems constrained by coastal development may

disappear entirely without the ability to migrate inland (Craft

et al., 2009; SChile et al., 2014; Thorne et al., 2018). These

changes are expected to impact habitat availability, connectivity,

and growth opportunities for juvenile salmon (Fulford et al., 2014;

Torio and Chmura 2015; Flitcroft et al., 2018). For example, Davis
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et al. (2022) found that under end-of-century SLR and temperature

scenarios, juvenile Chinook salmon are predicted to experience

decreased summer growth in the Nisqually River estuary, WA,

USA. In addition to rising sea levels, many other climate change-

induced shifts including ocean acidification, extreme river flows,

and more frequent and intense storm activity will potentially impact

estuarine habitat structure and quality (Lee et al., 2016; Munsch

et al., 2019; Scanes et al., 2020; Lonsdale et al., 2022). These climatic

changes will occur alongside growing anthropogenic pressures such

as pollution and habitat alteration, which together may have

cumulative or interacting effects on estuarine nursery capacity

(Lotze et al., 2006; Healey, 2011; Jorgensen et al., 2013; Toft et al.,

2018; Hodgson et al., 2020; Tulloch et al., 2022). Thus, investigating

changes in individual conditions such as water temperature is an

important piece of the puzzle, but future work is needed to continue

building an understanding of more comprehensive shifts in estuary

quality and function for juvenile salmon with global change

(Hodgson et al., 2020).

Our study demonstrates how variability in a key estuarine

habitat condition, water temperature, shapes diverse growth

opportunities for juvenile Chinook salmon in two contrasting

estuaries. Across both systems, growth potential shifted across

habitats and sites through the summer, suggesting that juvenile

Chinook salmon could increase their growth by using different

estuarine habitats over time (Greene et al., 2021). These portfolios

of growth and habitat use may also confer resiliency to estuarine

systems, as high GRP in some habitats can compensate for lower

GRP across others (Harley et al., 2006; Peirson et al., 2015; Greene

et al., 2021). However, we illustrate that as temperature increases

across a smaller system with more homogenous spatial temperature

patterns like the Englishman River estuary, growth opportunities

faced consistent declines estuary-wide. In contrast, when

temperatures were increased across a cooler and more complex

system like the Salmon River estuary, only some sites faced

decreased growth opportunities while others remained stable or

increased given higher spatial heterogeneity within the estuary.

Together, this underscores the importance of maintaining diverse

temperature mosaics across estuaries, which will be especially

important for creating and sustaining thermal refuges as

temperatures continue to rise (Waples et al., 2009; Wade et al.,

2013). Therefore, looking ahead, conservation and management

initiatives that aim to maintain spatio-temporal habitat complexity

and connectivity among these habitats can serve to support diverse

growth opportunities and other key ecological functions for

important species like Pacific salmon in this era of climate change

(Beck et al., 2001; Schindler et al., 2010; Nagelkerken et al., 2015;

Sheaves et al., 2015; Moore and Schindler, 2022).
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SUPPLEMENTARY FIGURE 1

Violin plots illustrating the distribution of water temperature data from every

temperature logger site over three one-week periods between May-August.
Abbreviations E and S indicate the Englishman and Salmon River estuaries,

respectively, and abbreviations B, Ma, and Me indicate beach, marsh, and

meadow habitat types, respectively. (A)Water temperature distributions from
May 5-11 for each site. (B)Water temperature distributions from July 25-31 for

each site. (C) Water temperature distributions from August 20-26 for each
site. Across all panels, the black dot indicates the mean temperature for each

site for the respective week.

SUPPLEMENTARY FIGURE 2

May-August water temperature (blue line) and tide height (black line) for site

Beach 1 in the Englishman River estuary. Tide height data is from the nearest
Fisheries and Oceans Canada station (Department of Fisheries and Oceans

Canada (DFO), 2023d—Tides, currents, and water levels for Nanoose Bay-
07930). (A) Temperature and tide height over the full May-August period. The

grey bars indicate the time periods displayed in (B–D). (B) Temperature and

tide height from May 11-13. Low tide corresponds with lower water
temperatures. High and low tides are indicated by light and dark blue bars

in (B–D). (C) Temperature and tide height from July 13-15. Water temperature
shows little variation with tide height. (D) Temperature and tide height from

August 15-17. Water temperature is higher at low tides.

SUPPLEMENTARY FIGURE 3

Air temperature (red lines), river temperature (light blue lines), regional ocean

temperature (dark blue lines) and river discharge (green lines) for the
Englishman (left) and Salmon (right) River estuaries. River and regional

ocean temperature data is plotted together to illustrate the seasonal
reversal in relative temperature. Air temperature data is from the nearest

Meteorological Service of Canada weather stations (Environment and Climate

Change Canada-Meteorological Service of Canada (ECCC-MSC), 2023a [data
for the Salmon River estuary], Environment and Climate Change Canada-

Meteorological Service of Canada (ECCC-MSC), 2023b [data for the
Englishman River estuary]), regional ocean temperature data is from the

nearest Department of Fisheries and Oceans lighthouse stations
(Department of Fisheries and Oceans Canada (DFO), 2023b—British

Columbia Lightstation Sea-Surface Temperature and Salinity Data (Pacific),

1914-present for Pine Island [data for the Salmon River estuary], Department
of Fisheries and Oceans Canada (DFO), 2023a—British Columbia Lightstation

Sea-Surface Temperature and Salinity Data (Pacific), 1914-present for
Departure Bay [data for the Englishman River estuary]), and river discharge

data is from Environment and Climate Change Canada maintained
hydrometric stations (Environment and Climate Change Canada (ECCC),

2023b [data for the Englishman River estuary], Environment and Climate

Change Canada-Meteorological Service of Canada (ECCC-MSC), 2023a [data
for the Salmon River estuary).
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