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Flow cytometry methods
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1Department of Biology, University of Miami, Coral Gables, FL, United States, 2Department of Marine
Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of
Miami, Miami, FL, United States, 3Center for Systems Immunology, Benaroya Research Institute at
Virginia Mason, Seattle, WA, United States, 4Northwest Fisheries Science Center, National
Oceanographic and Atmospheric Administration, Seattle, WA, United States
Cell suspension fluidics, such as flow cytometry (FCS) and fluorescence-activated

cell sorting (FACS), facilitates the identification and precise separation of individual

cells based on phenotype. Since its introduction, flow cytometry has been used to

analyze cell types and cellular processes in diverse non-vertebrate taxa, including

cnidarians, molluscs, and arthropods. Ctenophores, which diverged very early

from the metazoan stem lineage, have emerged as an informative clade for the

study ofmetazoan cell type evolution. We present standardizedmethodologies for

flow cytometry-mediated identification and analyses of cells from the model

ctenophore Mnemiopsis leidyi that can also be applied to isolate targeted cell

populations. Here we focus on the identification and isolation of ctenophore

phagocytes. Implementing flow cytometrymethods in ctenophores allows for fine

scale analyses of fundamental cellular processes conserved broadly across

animals, as well as potentially revealing novel cellular phenotypes and behaviors

restricted to the ctenophore lineage.

KEYWORDS
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1 Introduction

Flow cytometry (FCS) was developed as a technique to analyze intrinsic cellular

properties of mammalian cells, including relative cell size and presence of intracellular

granules (Fulwyler, 1965; Herzenberg et al., 2002). Light scatter properties and

fluorescence, measured by lasers and photon emission detectors, are used to characterize

parameters of individual cell morphologies as well as a wide range of molecular labels.

Thus, flow cytometry represents a powerful tool for identifying and investigating individual

cells within a heterogeneous cellular suspension (Barteneva et al., 2012). Basic attributes

associated with an individual cell, such as relative size and granularity (or complexity), can

be measured via light scatter properties. Forward scatter (FSC) is used as a proxy for
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evaluating relative cell size. Side scatter (SSC), the measure of light

scattered 90° from the source, is used as a proxy for determining the

relative granularity of a cell (McKinnon, 2018). Fluorescence-

activated cell sorting (FACS) further facilitates the identification

of single cells based on the detection of subcellular fluorescent

markers associated with specific cellular characteristics, such as the

expression of specific proteins, cell cycle state, cell proliferation, cell

viability, and apoptosis (Julius et al., 1972; Adan et al., 2017;

McKinnon, 2018). FACS has also been used successfully to

analyze cellular processes in diverse non-vertebrate marine

organisms including corals, tunicates, and molluscs (de la Cruz

and Edgar, 2008; Choi et al., 2010; Schippers et al., 2011; Park et al.,

2012; Rosental et al., 2016; Cheng et al., 2018; Siebert et al., 2019;

Snyder et al., 2020). Flow cytometry methodologies are also critical

for downstream analyses including collection of targeted cells for

single-cell sequencing or cell culture (Nguyen et al., 2018).

Ctenophora are a clade of non-bilaterian, gelatinous marine

predators possessing a suite of unique character traits (Dunn et al.,

2015). Genomic analyses place Ctenophora near the base of the

Metazoa, thus making them a critical group to study evolution of

metazoan cell types (Sebé-Pedrós et al., 2018; Li et al., 2021; Schultz

et al., 2023). Previous studies have usually relied upon microscopy-

based analyses to characterize distinct ctenophore cell types including

true muscle cells, nerve cells, various digestive cells, stellate

phagocytic amoebocytes, and ctenophore-specific cell types

including tentacular colloblasts and ctene-row ciliary cells (comb-

rows) (Hernandez-Nicaise, 1991; Jager et al., 2010; Dayraud et al.,

2012; Moroz et al., 2014; Presnell et al., 2016; Babonis et al., 2018;

Traylor-Knowles et al., 2019; Jokura et al., 2022; Burkhardt et al.,

2023). Additionally, optimization of methodologies that build on cell

culture techniques (Presnell et al., 2016; Vandepas et al., 2017; Dieter

et al., 2022) are required to study functional characteristics and traits

associated with specific cell types. Here we present reliable, repeatable

methods for performing flow cytometry and FACS with ctenophore

primary cells that facilitate the isolation, behavioral assessment, and

functional characterization of distinct cell types in the model lobate

ctenophore Mnemiopsis leidyi. We apply these methods for the

identification, isolation, and collection of ctenophore phagocytes.
2 Materials and methods

2.1 Animal maintenance and preparation of
ctenophore cells

2.1.1 Laboratory culture of Mnemiopsis
Laboratory strains of Mnemiopsis leidyi were maintained as

previously described (Presnell et al., 2022). Individual animals were

isolated in minimal ctenophore media (MCM); 0.22 mm filter-

sterilized filtered seawater (FSW; Instant Ocean) treated with 1x

penicillin/streptomycin solution (P/S) (100 units/mL penicillin, 100

mg/mL streptomycin; Gibco; ThermoFisher). Isolated animals were

deprived of food for a minimum of three hours and subsequently
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screened via light microscope to verify clearance of gut contents.

Three water changes with FSW were then performed to remove

remaining debris and excess mucus.

2.1.2 Dissociation of ctenophore tissues
and cell isolation

Ctenophore cells were mechanically dissociated using a dounce

homogenizer and loose-fitting pestle as previously described

(Vandepas et al., 2017; Dieter et al., 2022). Briefly, individual

small adult ctenophores were transferred into an equal volume of

FSW supplemented with 2x P/S immediately prior to

homogenization with 10-15 strokes of the loose-fitting pestle. The

homogenization step should be performed slowly to reduce shear

forces that may damage cells, leading to poor viability and/or yield.

Dissociated cells were decanted to a 15 mL centrifuge tube

(Falcon). An equal volume of chilled FACS buffer (0.2 mm filter-

sterilized 1x PBS, 2%(v/v) FBE (fetal bovine essence, Avantor),1%

penicillin (Sigma, P7794), 1% streptomycin (Sigma, S9137), 2 mM

EDTA (Sigma, E5134), and 400 mM NaCl (Sigma, S3014); stored at

4°C) was then gently mixed into the cell homogenate by inversion.

The cell suspension was centrifuged at 500 g for 10 minutes at 8°C

to pellet the cells. The upper, cell free, supernatant was then

removed by aspiration, leaving behind a translucent, loosely

pelleted visible cell fraction. An additional wash was performed

by gently resuspending the cell pellet with approximately 2x volume

of chilled FACS buffer and re-filtering the cell homogenate through

a cell strainer stack with a final 70 mm mesh (pluriStrainer) to

remove any remaining large cell aggregates and/or tissue debris

(Dieter et al., 2022). Cell suspension densities were determined

using an automated cell counter (Invitrogen Countess 3 FL) and

adjusted to ~1-2 x106 cells/mL with chilled FACS buffer. Prepared

cell suspensions are kept on ice prior to flow cytometry analysis.

While the methods and representative results presented here

use cell preparations isolated from individual ctenophores diluted

to ~1-2 x106 cells/mL, applications requiring large numbers of cells

(for example, single-cell sequencing) can combine multiple

individuals. However, increasing relative cell densities can result

in increased viscosity of the cell suspension, which may reduce flow

or clog microfluidic chambers. The addition of one or more

filtration steps with a 70 mm mesh prior to cell sorting can

mitigate reductions in flow within microfluidic chambers when

analyzing high density cell preparations.

2.1.3 Assessing viability of Mnemiopsis
cell preparations

To determine cell viability, readily available reagents used to

determine mammalian cell culture viability were compared: Trypan

Blue (Invitrogen15251525, 0061) and ReadyCount Green/Red

Viability Stain (Invitrogen A49905) (Dieter et al., 2022). Both of

these commercial stain preparations were mixed at a 1:7 ratio with

ctenophore cell suspensions to mitigate osmotic differences between

mammalian and ctenophore cell culture media. Quantification of

cell viability was performed with an automated cell counter
frontiersin.org
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(Invitrogen Countess 3 FL). Cell suspensions with < 85% viability

were not used for downstream flow cytometry assays.
2.2 Fluorescent markers

To analyze samples containing fluorescent reagents, unstained

controls were used in all experiments to visualize shifts in recorded

event fluorescence and inform gating strategies.

2.2.1 Propidium iodide (eScience, USA)
Propidium iodide (PI) is a membrane impermeable DNA dye

commonly used to determine cell viability (Riccardi and Nicoletti,

2006). Fluorescent PI signal correlates with nuclear staining of dead

or dying cells that have compromised cell membranes (Johnson

et al., 2013).Mnemiopsis cell suspensions were incubated with 2 mg/
mL PI solution in MCM at room temperature for 15 minutes

protected from light. After PI incubation, cell suspensions were

centrifuged at 500 g for 10 minutes at 8°C to pellet cells. The

supernatant was removed by aspiration. Cell pellets were gently

resuspended with approximately 2x pellet volume of chilled FACS

buffer and then filtered through a 70 mm mesh cell strainer.

2.2.2 Vybrant DyeCycle Green (Invitrogen
V35004, USA)

Vybrant DyeCycle Green is a cell permeable dye that exhibits

stoichiometric binding with double stranded DNA (Bradford et al.,

2006). Fluorescent intensity of Vybrant DyeCycle Green increases

linearly with DNA content, making it an efficient reagent for

detecting cell cycle state (Kim and Sederstrom, 2015). Vybrant

DyeCycle Green was used at a final concentration of 5 mM inMCM.

Mnemiopsis cell suspensions were incubated at 16°C for 1 hr

protected from light. After incubation, cell suspensions were

centrifuged at 500 g for 10 minutes at 8°C to pellet cells. The cell

free supernatant was then removed by aspiration. Cell pellets were

gently resuspended with approximately 2x pellet volume of chilled

FACS buffer and filtered through a 70 mm mesh cell strainer.
2.3 Preparation of Mnemiopsis cells for
phagocytosis assays

To functionally probe the phagocytic potential of ctenophore

cells, we exposed heterogenous Mnemiopsis cell suspensions to

pHrodo Red E. coli BioParticles (Invitrogen P35361). Fluorescence

of labeled E. coli is selectively activated when exposed to low pH

environments, such as within the lumen of phagosomes, endosomes

or lysosomes (Kissing et al., 2018).

2.3.1 Preparation of pHrodo E. coli BioParticles
Stock E. coli BioParticles were resuspended at 2 mg/mL in

MCM. To disperse E. coli aggregates, the suspension was passed

through a 28g needle fitted with a 1mL syringe 20 times.

Alternatively, E. coli BioParticle suspensions can be disaggregated

with sonication for 10 minutes.
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2.3.2 Preparation of Mnemiopsis cells for
incubation with E.coli Bioparticles

Mnemiopsis cell suspensions were prepared as described in

Section 2.1.2. Pelleted cells were then resuspended in MCM with

pHrodo Red E. coli BioParticles at a final concentration of 100 mg/
mL and incubated at RT for 1 hour protected from light on a gentle

rocking platform to prevent cell suspensions from settling. The

pHrodo E. coli BioParticles reach maximum fluorescence

approximately 90 minutes after ingestion. After incubation, cell

suspensions were centrifuged at 500 g at 8°C for 10 minutes. The

upper cell free supernatant was decanted or aspirated to remove

excess non-phagocytosed E. coli. The recovered cell pellet was then

resuspended in 1mL chilled FACS buffer and filtered through a 70

mm Nylon mesh cell screen (Corning, cat# 431751), or alternatively

a 70 mm pluriStrainer fitted with a Luer-Lock adapter ring and

syringe over a 50mL Falcon tube (Dieter et al., 2022).
2.4 Flow cytometry

2.4.1 Overview of flow cytometry analysis
Flow cytometry assays were conducted using both a Sony

SH800 Cell Sorter (LE-Sony SH800 V2.1.6) and BD FACSAria™

Fusion Flow Cytometer (BD FACSDiva™ Software) to compare

FSC-A/SSC-A measurements and clustering sensitivity (Figure 1).

Data was collected using LE-Sony SH800 V2.1.6 software and BD

FACSDiva™ Software, respectively, and subsequently analyzed

with FlowJo™ Software for Windows Version 10 (Becton,

Dickinson and Company, Ashland, OR, USA). Flow cytometer

nozzle size should be selected and optimized based on

considerations for each assay and the size of targeted cell

populations to reduce sorter-induced cell stress (SICS). For

collecting a range of ctenophore cells, including phagocytes, 100

mm sorting chips (Sony Biotechnology Inc, San Jose, California,

USA) were used. In addition, selection of the cytometer flow rate

(sample pressure) for live cell sorting should be optimized to reduce

cell damage. For collecting live ctenophore cells, the flow rate was

set to 3. Typically, large nozzles (100 mm) and low flow pressure

should be applied for sampling that will include the collection of

large cells. A minimum of 30,000 cells were analyzed per sample.

Doublet and multiplet events that represent cell aggregates were

removed and excluded from further analysis by selecting a diagonal

gate around events with an approximate 1:1 ratio between FSC-

Area and FSC-Height (Figure 1B). After applying this exclusion

gate, the majority of recorded events represent single cells

(Figure 1C). As expected, both flow cytometers detect Mnemiopsis

cells of variable size and granularity when querying a sample

containing mixed cell types (Figure 1C).
2.4.2 Sony SH800 sheath buffer for marine
invertebrate cell cultures

Sheath fluid is used to hydrodynamically focus cells in

suspension as they travel through the Sony SH800 cytometer. We

use a modified high-salt sheath buffer composed of 3X PBS (for 1L:

700mL ultrapure water, 300mL sterile 10X PBS) to reduce osmotic
frontiersin.org
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differences between the sheath fluid and the FACS buffer used to

resuspend marine invertebrate cell preparations. Changes to the

standard sheath buffer were not required for analyses ofMnemiopsis

cells using a BD FACSAriaII Fusion flow cytometer, as the

microfluidics for that system reduce mixing between the cell

suspensions in FACS buffer and the sheath fluid.

2.4.3 Sony SH800 machine maintenance
following processing of high salinity samples

Several adjustments to standard cytometer maintenance were

necessary to analyze cell preparations when using a high-salt sheath

buffer on the Sony SH800. Prior to analyses, the flow cytometer

collection chamber was washed with 70% ethanol and then cleaned

with low-lint paper wipes to reduce triboelectric effects from static

electricity build-up during machine operation. To prevent salt

accumulation, both the waste collection chamber and deflection

plates were periodically removed, soaked in ultrapure water and

cleaned with 70% ethanol to remove remaining residual water from

the cytometer components.
2.5 Imaging

Post sorting, cells were collected into 1.5 mL microcentrifuge

tubes containing 500 mL of MCM. The collected cells were pelleted

by centrifugation at 500 g at 16°C for 10 minutes. The cell-free

supernatant was carefully removed, leaving the pellet of sorted cells

in approximately 50 mL of MCM. The cell pellet was then gently
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resuspended using a sheared pipette tip. For microscopy,

resuspended cells were pipetted onto microscope slides in 7.5 mL
aliquots (Fisherbrand™ Superfrost™ Plus, VWR: 48311-703; fitted

with SecureSeal Imaging Spacers, Electron Microscopy Sciences

#70327-9S). Differential interference contrast (DIC) and fluorescent

images were acquired using a Zeiss Axio Imager.Z2, Zeiss AxioCam

MRm Rev3 camera and Zeiss Zen Blue software.
3 Results

3.1 Viability of Mnemiopsis cell suspensions

Identification and removal of dead or dying cells present in a

cell suspension from subsequent flow cytometry analyses is a critical

step to ensure accuracy of results. Additionally, measuring cell

viability can be informative when assaying cellular responses to

drugs or other experimental treatments (Kummrow et al., 2013). To

quantify viability of Mnemiopsis cell preparations prior to flow

cytometry analyses, live/dead cell counts were performed using

Trypan Blue or ReadyCount Green/Red Viability Stain and an

Invitrogen Countess Cell Counter. Across cell suspension

preparation replicates, the Trypan Blue exclusion assay indicated

an average of 7% cell death and the ReadyCount Green/Red

Viability Stain indicated approximately 11% cell death (Table 1).

We also incubated cells with propidium iodide (PI) and visualized

PI fluorescence using FACS to independently assessMnemiopsis cell

preparation viability (Figures 2A, B). An increase in PI fluorescence
A B C

FIGURE 1

Comparisons of flow cytometry analyses of Mnemiopsis cells using a BD FACSAria™ Fusion Flow Cytometer (top row) and Sony SH800 Cell Sorter
(bottom row). Both flow cytometers detected Mnemiopsis cells of variable size and granularity, as anticipated when querying a sample containing
mixed cell types. Measurements of FSC-A and SSC-A are represented by arbitrary units and displayed as a log-scale. (A) FSC-A/SSC-A profiles of
Mnemiopsis cell suspensions prior to doublet exclusion. (B) Gating strategy for doublet and multiplet exclusion using FSC-H/FSC-A. (C) Contour plot
(2%) showing event densities of FSC-A/SSC-A profiles following doublet exclusion with outliers included.
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compared to unstained controls identifies dead or dying cells

(Figure 2B). PI staining indicated an average of 9% cell death

across cell preparation replicates (Supplementary Figure 1).

Replicates from the same cell suspensions were tested for all

three cell viability dyes to compare consistency. We found no

statistically significant difference (p = 0.18; Table 1; Figure 2C).

Thus, either PI, Trypan Blue, or ReadyCount Green/Red stains can

be used to assess viability of Mnemiopsis cell preparations

quantitatively and accurately.
3.2 Analyzing relative cell size
and granularity

Measurements of FSC/SSC can facilitate broad identification of

cell morphologies within a sample by separating cells based on

variation in relative cell size, intracellular granularity and/or

membrane complexity (Rico et al., 2021). To initially examine

general morphological characteristics within heterogeneous cell
Frontiers in Marine Science 05
populations prepared from whole Mnemiopsis, we measured FSC/

SSC of unstained cell preparations. Representative results from

FSC/SSC analyses using a Sony SH800 identified five broad cell

clusters (Figure 3; Supplementary Figure 2). Following exclusion of

doublet and multiplet events representing cell aggregates

(Figure 1B), we analyzed and gated on populations of events

representing variable FSC and SSC values. Microscopy on sorted

live Mnemiopsis cells revealed expected correlations between gate

selection, relative cell size, and intracellular granule complexity. For

example, cells with the lowest values for FSC and SSC isolated from

Gate A are relatively small and have few or no visible granules. As

FSC-A and SSC-A values increase, cells increase in size and/or

morphological complexity. Gates A and B contain small, agranular

or semi-granular cells that were highly abundant, while Gates C and

E capture large highly granular cells that were the least abundant

(Figure 3; Supplementary Figure 2).
3.3 Determining cell cycle stages in
Mnemiopsis cells by FACS

Nuclear DNA in Mnemiopsis cells was stained with Vybrant

DyeCycle Green to assess cell cycle state distribution. FACS plots

comparing Vybrant Green-positive cells demonstrate that cells of

variable sizes have similar DNA content (Figure 4A). This result

was expected for mixed cell populations containing an array of cell

types when querying by FSC-A (refer to Figure 3; Qiu et al., 2013;

Kim and Sedersom, 2015). A threshold gate on the FITC axis can be

used to remove background fluorescent signal representing dead

and dying/apoptotic cells containing less than 2N DNA content

(Vignon et al., 2013).

We observed distinct cell populations by DNA labeling: cells in

G0/G1 , or G2/M (F igure 4B ; V ignon e t a l . , 2013 ;
A B C

FIGURE 2

Assessment of Mnemiopsis cell preparation viability using DNA staining. Measurements of FSC-A and fluorescence are represented by arbitrary units
and displayed as a log-scale. (A) FACS plot of cell suspension that has not been stained with propidium iodide (PI). There are few events detected in
the red fluorescent channel. (B) FACS plot of a Mnemiopsis cell suspension that has been stained with PI. Increased red fluorescence signal indicates
the labeling of apoptotic or necrotic cells, comprising 8.49% of the sample. (C) Comparisons of Mnemiopsis cell suspension viability using Trypan
Blue exclusion assays, ReadyCount Green/Red Viability Stain, or PI. There was no significant difference in cell viability quantification between stains.
TABLE 1 Percent viabilities of Mnemiopsis cell suspension replicates
using common staining assays.

Biological
Replicate

Trypan Blue
Exclusion
Assay

ReadyCount
Viability
Stain

Propidium
Iodide
(Flow
cytometry)

Ctenophore 1 91 92 90

Ctenophore 2 94 85 93

Ctenophore 3 91 92 91

Ctenophore 4 92 83 92

Ctenophore 5 99 93 88
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Kim and Sedersom, 2015). Cells in G0 are quiescent and have a

genome content of 2N, while cells in G1 also have a DNA content of

2N and are preparing to initiate DNA replication in addition to

performing other normal cellular functions. Cells in G2/M are in

the process of dividing, and these cells have a DNA content of 4N.

This increase in DNA content can be seen as a second fluorescent

signal peak across replicate samples (Figure 4B).
Frontiers in Marine Science 06
3.4 Identification and isolation of
phagocytic cells

Phagocytosis is a fundamental cell behavior central to many

metazoan cell processes, including nutrient uptake and immune

response (Hartenstein and Martinez, 2019). Cells competent for

phagocytosis can be readily identified using FACS by selecting cells
frontiersin
A B

FIGURE 4

Analysis of cell cycle state distribution using Vybrant DyeCycle. (A) Representative FACS plot demonstrating labeling of Vybrant DyeCycle in
Mnemiopsis cells. Two clusters of cells are visible based on green fluorescence intensity. The FSC-A axis shows that cells of variable sizes have
similar DNA content. (B) Histogram of green fluorescence reveals two distinct peaks of fluorescence representing cells in G0/G1 or G2/M. Events
below 105 are background fluorescent signal or represent dead and dying/apoptotic cells that contain less than 2N DNA content.
FIGURE 3

Assessment of general morphological characteristics within heterogeneous unstained cell populations prepared from whole Mnemiopsis.
Representative contour plot (2%) of FSC-A/SSC-A profiles of a cell suspension with outliers shown. FSC/SSC analyses identified five broad cell
clusters. DIC microscopy on sorted Mnemiopsis cells shows expected correlations between relative cell size, intracellular complexity and gate
selection. Cells with the lowest values for FSC and SSC isolated from Gate A) are relatively small with few or no visible granules. As FSC-A and SSC-A
values increase, cells increase in size and morphological complexity. Gates C, D and E capture larger, highly granular cells.
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that have internalized fluorescent particles (Lehmann et al., 2000).

To assess whether FACS could be applied to target, isolate and

collect Mnemiopsis phagocytes, we incubated heterogeneous cell

suspensions with pHrodo E. coli BioParticles along with MCM

alone as control cell suspensions. We analyzed samples on both

Sony SH800 and BS FACSAria Fusion flow cytometry systems to
Frontiers in Marine Science 07
compare fluorescent and FSC/SSC profiles (Figure 5). Control

samples show a normal FSC/SSC profile (Figures 5A, F, compare

to Figure 1C) and low levels of fluorescence (Figures 5B, G). The

FSC/SSC profile of pHrodo incubated samples show an increase in

SSC, indicative that intracellular granularity has increased in cells

that have phagocytosed bacteria (Figures 5C, H). We also observed
A B

D

E

F G

IH

J

K

C

FIGURE 5

Analysis of phagocytic ability of Mnemiopsis cells by FACS. (A–E) Data collection from BD FACSAria™ Fusion Flow Cytometer. (F–J) Data collection
from a Sony SH800 Cell Sorter. (A, F) FSC-A/SSC-A dot plot of control Mnemiopsis cell suspensions not incubated with phRodo E. coli. (B, G)
Control sample showing no red fluorescence. (C, H) FSC-A/SSC-A dot plot of Mnemiopsis cell suspensions that have been incubated with pHrodo E.
coli. A shift in events with higher SSC-A are observed, indicating that some cells have ingested bacteria thereby increasing intracellular granularity.
(D, I) Positive shift in red fluorescent signal indicating that some cells have phagocytosed pHrodo E. coli and trafficked the bacteria to acidic vesicles,
activating fluorescence. FSC-A shows that phagocytic cells are diverse in size. (E, J) Back-gating on selected fluorescence-positive cells shows that
cells of diverse sizes and intracellular complexities phagocytose bacteria. (K) Combined DIC and fluorescent microscopy on sorted phagocytic
Mnemiopsis cells. A variety of cell types have phagocytosed the fluorescent E. coli. Red: pHrodo E. coli bioparticles. Blue: nuclei. Scale bar 10 um in
all panels.
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a shift in fluorescent signal in approximately 9-15% of cells across

replicates, signifying that these cells had sequestered bacteria into

low pH vesicles, activating fluorescence (pHrodo-positive cells;

Figures 5C, D, H, I; Supplementary Figure 3).

We sorted pHrodo-positive cells and labeled cell nuclei with

Vibrant Green to better visualize and identify intact phagocytic

cells. We recovered an array of cells of varying sizes and

intracellular complexities, including cells that look similar to

previously reported round digestive cells (Figures 5E, J, K;

Presnell et al., 2016; Vandepas et al., 2017; Traylor-Knowles et al.,

2019). Intriguingly, some phagocytes also display multiple processes

(Figure 5K). Stellate cells with phagocytic capability have been

identified in Mnemiopsis and may have immune function

(Traylor-Knowles et al., 2019). We show here that a range of

Mnemiopsis phagocytic cells can be identified, isolated and

collected using FACS.
4 Discussion

The standardized methods presented here allow for the

preparation of ctenophore cells from whole animals for reproducible

flow cytometry analyses. We demonstrate techniques critical for

filtering debris and removing cell aggregates from heterogenous

ctenophore cell suspensions to efficiently and accurately identify

intact single cells. Our results demonstrate that applying selective

gating facilitates the isolation of targeted populations of live,

unstained Mnemiopsis cells over a range of sizes and intracellular or

morphological complexities. We also detail DNA staining parameters

for determining cell viability, as well as analysis of cell cycle state. Many

species of ctenophores, including Mnemiopsis, are capable of rapid

regeneration and wound healing of damaged body parts (Henry and

Martindale, 2000; Edgar et al., 2021). The ability to analyze cell

proliferation by FACS in ctenophores will be a useful tool in

studying the remarkable regenerative properties of this clade.

We performed phagocytosis assays as an explicit functional

approach for using FACS to analyze and isolate Mnemiopsis cells.

We identified functionally phagocytic cell populations in

Mnemiopsis and show via FSC/SSC and microscopy that cells of

diverse size and morphology are capable of ingesting and

sequestering bacteria in phagosomes. Additional FACS

experiments on Mnemiopsis phagocytic cells such as co-labeling

with reactive oxygen species (ROS) and other identifiers of cellular

mechanisms will facilitate further characterization of phagocytic

cell types (Rosental et al., 2017).

These flow cytometry methods have significant implications for

the study of ctenophore cell biology. The ability to isolate specific

ctenophore cell types by FACS will enable a wide range of

downstream applications such as gene expression studies

including single-cell RNAseq, epigenetic profiling, cell culture,

and immune response assays. Future studies may focus on the

optimization of additional fluorescent reagents to query ctenophore

cells - such as tagged antibodies - will enable enhanced isolation

techniques, as well as the identification of additional specific

ctenophore cell types. These applications will improve our

understanding of specific ctenophore cell types, behaviors, and
Frontiers in Marine Science 08
cellular processes, providing insight into both the conservation

and divergence of cellular processes across Metazoa.
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SUPPLEMENTARY FIGURE 1

Propidium iodide live/dead assay on Mnemiopsis cell suspensions across
three biological replicates.

SUPPLEMENTARY FIGURE 2

Flow cytometry profiles of unstainedMnemiopsis cell suspensions across five

biological replicates. Contour plot (2%) showing FSC-A/SSC-A ofMnemiopsis
cell suspensions with gating strategies and corresponding frequencies of

each population.

SUPPLEMENTARY FIGURE 3

Phagocytosis assays using pHrodo E. coli Bioparticles in Mnemiopsis cell
suspensions across four biological replicates. (A) Histograms showing

distribution of fluorescent signals and gating on pHrodo-positive cells
across four biological replicates. (B) Flow cytometry profiles of Mnemiopsis

cell suspensions showing that cells of diverse sizes, as shown by FSC-A, have
phagocytosed E. coli. (C) Back-gating on pHrodo-positive cells shows that

cells displaying a variety of sizes and complexities are capable of

phagocytosing bacteria.
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