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Temporal and geographical
changes in the intestinal
helminth fauna of striped
dolphins, Stenella coeruleoalba,
in the western Mediterranean: a
long-term analysis (1982 - 2016)

Alicia Garcı́a-Gallego*, Juan Antonio Raga,
Natalia Fraija-Fernández and Francisco Javier Aznar

Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of
Valencia, Valencia, Spain
Temporal and geographical changes in the infections of intestinal helminths of

striped dolphins, Stenella coeruleoalba were investigated in waters off the

Spanish Mediterranean coast based on a sample of 233 dolphins stranded

during 1982-2016. The influence of host-related factors (length and sex) and

seasonality was also examined. Four helminth species had a prevalence > 5%,

including adults of three cestodes, i.e, Trigonocotyle globicephalae (prevalence:

5.2%), Tetrabothrius forsteri (94.4%) and Strobilocephalus triangularis (18%); and

juveniles of an acanthocephalan of the genus Bolbosoma (15.9%), identified as B.

capitatum using molecular techniques. One immature specimen of

Diphyllobothrium sp. (Cestoda) was also found in a single dolphin, and two

juveniles of Bolbosoma balaenae in two dolphins. Trigonocotyle globicephalae

seems to have low specificity for striped dolphins and was only found

sporadically. Tetrabothrius forsteri and S. triangularis experienced a slight vs. a

strong decrease, followed by a recovery, in infection levels throughout the study

period, which are compatible with a reduction in the striped dolphin population

caused by the Dolphin Morbillivirus outbreak in 1990. Infections of B. capitatum,

a parasite typical from pilot whales, suddenly increased in 1990, then vanished.

This rapid increase and following decrease are puzzling and can hardly be

explained by a single factor. Infections of any helminth species were

apparently uncorrelated to geographic origin, dolphin sex or season, but

parasite load decreased with dolphin length in the case of T. forsteri and S.

triangularis. To our knowledge, this study represents the first investigation of

multi-decadal changes in cetacean parasites.

KEYWORDS

trophically transmitted parasites, Stenella coeruleoalba, cetaceans, long-term trends,
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1 Introduction

Long-term studies on animal populations are essential to

monitor ecosystem changes, especially in the global change

scenario we have been facing during the last century (Luo et al.,

2011). In the marine environment, this type of studies are relatively

common for free-living species, particularly those of commercial

interest (e.g, Kovach et al., 2015; Pershing et al., 2015; Pang et al.,

2018). In contrast, long-term surveys of marine parasite

populations are very scarce. This is unfortunate because parasites

represent an integral part of ecosystems that influence, inter alia,

trophic web dynamics and population sizes of their hosts (Hudson

et al., 1998; Lafferty et al., 2008). In particular, there is evidence

suggesting that trophically-transmitted metazoan parasites (TTPs)

can alter several food-web properties. TTPs can increase interaction

strength through the modification of their hosts behaviour,

enhancing predation on infected prey hosts (Lafferty and Morris,

1996; Moore, 2002). Similarly, they may facilitate new trophic

interactions, thus increasing food-web connectivity (Lafferty et al.,

2006); modulate the flow of energy along certain trophic links

(Morand and Harvey, 2000; Wood et al., 2007), and decrease food-

web stability (Otto et al., 2007). On the other hand, parasites can

reduce the fitness of their hosts, through increased mortality,

reduced fecundity, altered behaviour and/or reduced growth,

among others (Kuris, 2003; Miura et al., 2006; Hasik and

Siepielski, 2022). These interactions may become surprisingly

complex when other environmental stressors (i.e., pollution,

fisheries impacts) are also at stake (e.g., Wood et al., 2010; Sures

et al., 2017). For instance, parasite diversity (and their potential

associated effects) are significantly lower in fished than unfished

areas (Wood and Lafferty, 2015).

There are few studies that have monitored populations of

marine parasites for at least two decades, and those available deal

with species of human health concern, e.g. Anisakis spp., or with

host species in the life-cycle that have commercial interest or are

more easily accessible for sampling, e.g. fish (Mackenzie, 1987;

Fiorenza et al., 2020; Welicky et al., 2021; Diez et al., 2022; Wood

et al., 2023). To our knowledge, none of these studies have focused

on infections in marine top predator species.

Cetaceans are ubiquitous marine top-predators that exert

significant non-linear effects on trophic webs and, therefore,

represent excellent sentinels of marine ecosystem changes

(Heithaus et al., 2008; Estes et al., 2016). These mammals harbour

a rather diverse fauna of TTPs including digeneans, cestodes,

nematodes and acanthocephalans (Fraija-Fernández et al., 2016).

The life-cycle of these parasites also involves invertebrates

(crustaceans, molluscs) as intermediate hosts, and a number of

fish and/or cephalopods as paratenic (transport) hosts that can

expand infections throughout the whole trophic web through

predator-prey interactions (Raga et al., 2009). These features

could make the TTPs of cetaceans particularly useful to trace

trophic interactions and to monitor long-term ecosystem trends.

Unfortunately, the specific identity of the intermediate and

paratenic hosts of these parasites is, for the most part, unknown

(Mateu et al., 2015). Therefore, this part of the cycle must currently

be treated as a ‘black-box’ for interpretation purposes.
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To date, surveys on TTPs of cetaceans have usually been based

on small, opportunistic samples (e.g, Berón-Vera et al., 2001;

Romero et al., 2014; Terracciano et al., 2020). Furthermore, with

a few exceptions (Aznar et al., 1995; Mead and Potter, 1995;

Herreras et al., 1997), hosts have typically been pooled for

analysis, disregarding potential geographic effects on the

composition and abundance of TTPs (Dailey and Perrin, 1973;

Van Waerebeek et al., 1993; Dans et al., 1999; Lehnert et al., 2017).

In this study, we take advantage of a well-established stranding

network to investigate spatial and temporal changes (i.e. through

several decades) in the infections of TTPs of a cetacean species. The

striped dolphin, Stenella coeruleoalba is the most abundant cetacean

species in waters off the Spanish Mediterranean coast [hereafter

referred to as western Mediterranean for brevity] (Gómez de Segura

et al., 2006). In 1990, this population suffered a severe epizootic

outbreak caused by the Dolphin Morbillivirus (DMV), currently

known as a strain of the Cetacean Morbillivirus (CeMV) (see Van

Bressem et al., 2014), which presumably resulted in the death of

several thousand individuals (Aguilar and Raga, 1993). Subsequent

DMV outbreaks occurred in 2007 (Raga et al., 2008) and, perhaps,

2011 (Rubio-Guerri et al., 2013), but in the latter the death toll was

much lower and concentrated in the Valencian Community only.

On the other hand, there is evidence that this striped dolphin

population has progressively shifted its diet throughout the study

period, from one dominated by oceanic prey (chiefly mesopelagic

squids) towards one based on neritic, demersal prey (particularly

hake, Merluccius merluccius) (Gomez-Campos et al., 2011; Aznar

et al., 2017).

In this study, we addressed two research questions. First, we

compared the intestinal helminth fauna of striped dolphins

stranded in different regions along the Spanish Mediterranean

coast. The sample was composed of animals that were killed by

the DMV in the summer and autumn of 1990, which minimized the

confounding effects of time upon spatial variability. This

geographical analysis was exploratory as we did not know

whether striped dolphins in the Western Mediterranean belong to

one or several population units (Gaspari et al., 2019). Second, we

investigated the potential effects of mortality outbreaks in the

dolphins and the dietary shift on the infection dynamics of TTPs

during the last three decades. With regard to the effect of the die-

offs, we expected a general decrease of infections with time because

of the reduction of the striped dolphin population.
2 Materials and methods

2.1 Data collection

Intestinal helminths were collected from a total of 233 striped

dolphins stranded along the east coast of Spain between 1982 and

2016. Permission to collect stranded dolphins was given by the

wildlife services of the regional governments, which are the official

institutions in charge of managing and protecting wildlife. During

the 1990 epizootic, the geographic coverage included the coasts of

Catalonia, Valencian Community, Murcia and eastern Andalusia;

in the remaining years, sampling was restricted to the Valencian
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Community (Figure 1). The sample included the 52 animals

examined by Mateu et al. (2014), as well as 6 of the 13 dolphins

examined by Raga and Carbonell (1985), for which at least

information on occurrence of all intestinal helminths was

available. The remaining 175 dolphins were examined in this

study, and included dolphins from every year within the time

series, in order to avoid significant gaps that could affect the

results. All dolphins in the final sample were > 100 cm long to

exclude calves that had consumed milk only.

Before necropsy, total body length was measured and sex was

determined for all animals. Intestines were removed and stored at -

20°C. After thawing, intestines were weighed, measured and divided

into 20 sections of equal length. Each section was opened and

washed over a 0.02 mm sieve using tap water. The solid content was

collected in a Petri dish and examined under a stereomicroscope.

The intestinal wall was also thoroughly examined for attached

helminths. Acanthocephalans were left in tap water for 24 hours

at 4°C to allow the proboscis to evert. All parasites were washed in

saline (9 g/l), fixed and preserved in 70% ethanol, and later

identified to the lowest taxonomic level possible. Cestodes were

stained with iron acetocarmine (Georgiev, 1986) and identified

following Delyamure (1955) and Raga, (1985). Acanthocephalans

were cleared in lactophenol, drawn using a light microscope
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connected to a drawing tube, and identified following

Petrochenko (1958); Amin and Margolis (1998) and Costa et al.

(2000). All parasites were counted except in 12 dolphins stranded

before 1988, for which only presence/absence data were recorded.

‘Small’ and ‘large’ plerocercoids of tetraphyllidean cestodes were not

considered members of the intestinal assemblage and were not

included in this study (see Aznar et al., 2007).
2.2 Molecular identification of
Bolbosoma vasculosum

All individuals identified as B. vasculosum based on morphologic

traits were juveniles (see the Results section), thus raising the possibility

that they actually represent immature forms of other Bolbosoma

species. We investigated this possibility using molecular barcoding.

Two species of Bolbosoma have been recorded as adults in the

Mediterranean, i.e., Bolbosoma balaenae in fin whales, Balaenoptera

physalus, and Bolbosoma capitatum in long-finned pilot whales,

Globicephala melas (Delyamure, 1955; Yamaguti, 1963; Raga and

Balbuena, 1993; Santoro et al., 2021). We sequenced a partial (479

bp) region of the mitochondrial cytochrome c oxidase subunit I (cox1)

of (i) 5 specimens of B. vasculosum from our sample (DNA extraction
FIGURE 1

Map of the study area showing major water currents and the extent of the continental shelf in the Spanish Mediterranean. Red dashed lines indicate
the four regions (numbered from 1 to 4) in which the coast was divided for the latitudinal comparison of helminth fauna of striped dolphins, Stenella
coeruleoalba. Autonomous Communities are abbreviated as follows: Cat, Catalonia; VLC, Valencian Community; MU, Murcia; and AND, Andalusia.
The map was created using ArcGIS Desktop version 10.8 (ESRI, 2011), and water currents were redrawn from Martıńez et al. (2022).
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was attempted on a number of additional specimens, but it was

unsuccessful due to poor preservation); (ii) two juvenile specimens of

putative B. balaenae also collected from our sample of striped dolphins,

and (iii) one adult specimen of B. capitatum from a long-finned pilot

whale, Globicephala melas sampled in the study area, which was

available at the collection of the Marine Zoology Department of the

University of Valencia, Spain (voucher specimen ID: 13653). Available

cox1 sequences from GenBank from adults of B. balaenae infecting

Mediterranean fin whales, as well as from two other Bolbosoma species,

were also used for comparison (Table 1).

Total genomic DNA was extracted from specimens using the

DNeasy Blood and Tissue Kit (Qiagen), following manufacturer’s

instructions. The cox1 region was amplified using primers forward

LCO1490F (5’-GGTCAACAAATCATAAAGATATTGG-3’) and

reverse HC02198 (5’-TAAACTTCAGGGTGACCAAAAAATCA-

3’) (Folmer et al., 1994). The concentration and quality of the

extracted DNA was measured using a NanoDrop™ One (Thermo

Scientific). PCR amplification reactions were performed in a total

volume of 20 mL, including 1.6 mL of both forward and reverse

primers (final concentration of 5 mM), 2 mL of template DNA, 4.8

mL of PCR water and 10 mL of MyFi™ DNA Polymerase (BioLine,

Meridian Life Science Inc., Taunton, MA, USA). Cycling conditions

were 94°C for 5 min for an initial denaturation, then 38 cycles of 94°

C for 45 s, 48°C for 45 s, and 72°C for 80 s, followed by a final

extension at 72°C for 7 min. Positive and negative (no template

DNA) controls were used in each PCR reaction. PCR products were

purified using the Nucleospin® PCR and Gel Purification Clean-up

kit (Machery-Nagel, Düren, Germany). Purified amplicons were

sent to Macrogen Europe (Amsterdam, The Netherlands) for

sequencing with the same primers used in the PCR amplifications.

Nucleotide sequences from both strands were used to assemble

consensus sequences using Geneious R7 (https://www.geneious.com).

The identity of the assembled sequences was verified using the NCBI

Basic Local Alignment Search Tool (BLAST). The obtained cox1

sequences, together with all cox1 sequences of Bolbosoma available in

GenBank, were aligned and trimmed using Geneious R7. The

accuracy of the alignment was inspected by checking the amino

acid translation, using the invertebrate mitochondrial code. The total

number of sequences included in the final alignment was 23. Pairwise

genetic distances were calculated using the Maximum Composite

Likelihood model (Tamura et al., 2004) in MEGA v.11 (Tamura

et al., 2021).
2.3 Infection parameters

Ecological terms follow Bush et al. (1997). Infection parameters

were determined using the online software Quantitative

Parasitology 1.0.15 (Reiczigel et al., 2019). Prevalence is the

percentage of hosts that are infected by a specific helminth

species, mean abundance is the average number of individuals of

a helminth species per examined host, and mean intensity is the

average number of individuals of a helminth species per infected
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TABLE 1 Data on host, locality and GenBank accession number for cox1
sequences of Bolbosoma spp. used for molecular barcoding of
Bolbosoma vasculosum.

Species Host Locality Acc. no.

B.
vasculosum

Stenella
coeruleoalba

Western
Mediterranean OR601512*

B.
vasculosum

Stenella
coeruleoalba

Western
Mediterranean OR601513*

B.
vasculosum

Stenella
coeruleoalba

Western
Mediterranean OR601514*

B.
vasculosum

Stenella
coeruleoalba

Western
Mediterranean MZ357085*

B.
vasculosum

Stenella
coeruleoalba

Western
Mediterranean MZ357087*

B.
capitatum

Globicephala
melas

Western
Mediterranean OR601511*

B. balaenae
Stenella
coeruleoalba

Western
Mediterranean OR601515*

B. balaenae
Stenella
coeruleoalba

Western
Mediterranean MZ357084*

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047272

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047273

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047274

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047275

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047276

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047277

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047278

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047279

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047280

B. balaenae
Balaenoptera
physalus

Capri Island (Med.
Sea) MZ047281

B.
turbinella

Eschrichtius
robustus

Monterrey Bay (North
Pacific) JX442189

B.
turbinella

Paralichthys
isosceles South Atlantic KU314821

B.
turbinella

Paralichthys
isosceles South Atlantic KU314823

B.
nipponicum

Callorhinus
ursinus

St. Paul Island (Bering
Sea) ON359908

B.
nipponicum

Callorhinus
ursinus

St. Paul Island (Bering
Sea) ON359909
Sequences marked with an asterisk were obtained in this study.
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host. The 95% confidence interval (CI) for prevalence was

calculated with Sterne’s exact method (Reiczigel, 2003). The 95%

CI for mean abundance and mean intensity of each helminth

species were obtained with the bias-corrected and accelerated

bootstrap method using 10000 replications (Rózsa et al., 2000).
2.4 Representativeness of the host sample

Our dolphin sample was not a random sample of the wild

striped dolphin population, but a subset of stranded animals that

died from varied causes. Thus, a pertinent question is to what extent

our sample could be biased regarding helminth infections if, e.g. it is

enriched with heavily parasitized dolphins. We carried out a

preliminary exploration of this question based on the comparison

of two dolphin subsamples collected in the same period (2010-2015)

for which the putative cause of death could reliably be determined

based on a thorough veterinary analysis. The first one (N = 10) was

composed of striped dolphins that were killed by common

bottlenose dolphins, Tursiops truncatus or as a result of fisheries

interactions (Crespo-Picazo et al., 2021; Izquierdo-Serrano et al.,

2022). In principle, these causes of death are not related with the

health condition of dolphins and should be little influenced by the

infections of intestinal helminths, which were light (see the Results

section). In fact, veterinary analyses indicated good body condition

and no pathologies were detected. The second subsample (N = 20)

included dolphins that died from diverse infectious syndromes

(Unpub. data). Therefore, we hypothesized that these animals

would be more prone to concomitant recruitment of TTPs due to

a compromised immune response. Potential differences in

abundance of each helminth species between the two subsamples

were tested with Mann-Whitney tests.
2.5 Geographical analysis

The geographic analysis was carried out using 74 dolphins that

died during the DMV outbreak in the summer and autumn of 1990

and stranded along the coast from Andalusia to Catalonia (Figure 1).

This subsample was considered suitable for three reasons. First, it

was the only sample of dolphins collected across a wide geographical

range; in other years (including 2007, when the second DMV

epizootic occurred), sampling was restricted to the Valencian

Community; second, it was composed of animals that died from

the same disease; and third, it was temporally restricted, thus

reducing potential confounding seasonal or inter-annual effects.

We used two approaches to investigate latitudinal variability in

helminth infections in the stranded dolphins. First, the coast was

divided into four regions based on latitude, distance from coastline

to continental slope, and current circulation schemes (Martıńez

et al., 2022) (Figure 1). The numbers of dolphins from regions 1 to 4

were 9, 33, 16 and 16, respectively (Figure 1). Differences in

prevalence of each helminth species among regions were tested

with exact Chi squared tests. Differences in helminth community

structure were investigated using PERMANCOVA with the

software PERMANOVA + for PRIMER (Anderson et al., 2008).
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Abundances of parasites were firstly fourth-root transformed and a

Bray-Curtis similarity matrix was obtained. The full model included

‘Region’ (fixed factor) and two relevant predictors associated with

individual dolphins, i.e. ‘Sex’ (fixed factor) and ‘Length’ (fixed

covariate), as well as their interactions. Pseudo-F statistics under

a true null hypothesis were obtained by using 20,000 permutations.

Akaike Information Criterion (AIC) values were used to compare

competing models with different numbers of parameters. The

model with minimum AIC for small sample sizes (AICc) was

considered the best model, and the rest of the models were

ranked according to increasing AICc values (Johnson and

Omland, 2004; Anderson et al., 2008; Aho et al., 2014). Models

with values of DAICc ≤ 2 with respect to the best model were

considered to have substantial empirical support, whereas those

with DAICc > 4 were considered to have considerably less support

(Anderson and Burnham, 2004). Akaike weights (wi) were

calculated according to Anderson and Burnham (2004). It was

assumed that models with wi ≤ 0.05 were unlikely to be the ‘true’

models (Anderson and Burnham, 2004).

Second, we used Generalised Additive Models (GAMs) (Zuur

et al., 2009; Wood, 2017) to explore non-linear patterns in the

abundance, or likelihood of occurrence, of each helminth taxon

with latitude of stranding. Abundance and occurrence (presence/

absence) of each parasite species were used as the response variable

for each type of model, respectively, and ‘Latitude’, ‘Dolphin sex’

and ‘Dolphin length’ as the explanatory variables. For abundance

data, negative binomial GAMs were fitted using a log link function;

for occurrence data, binomial GAMs were fitted using a clog-log

link function, which is recommended when there are considerably

more zeros than ones or vice versa (Zuur et al., 2009). Model

selection followed the same criteria used for the PERMANCOVA

models. Collinearity between variables was checked by calculating

the Variance Inflation Factor (VIF); values in between 1 and 5 were

considered to indicate low collinearity (Goldstein, 1993). We

further ensured the lack of dependency between covariates and

factors (‘Sex’) with Mann-Whitney tests, and between the two

covariates with Spearman correlation. Models were validated

following Zuur et al. (2009), i.e., checking normality, homogeneity

of variance, autocorrelation and over-dispersion of residuals.
2.6 Temporal analysis

GAMs were also used to investigate long-term infection changes

of each helminth species. The initial models included two

alternative response variables (helminth abundance or

occurrence) and five predictors, i.e. ‘Group’ (with two levels, i.e.,

epizootic and non-epizootic)’, ‘Dolphin sex’ and ‘Season’ as fixed

factors; and ‘Year’ and ‘Dolphin length’ as covariates for which

smoothers were applied. Alternative models excluding dolphins

affected by the DMV, or using ‘Julian day’ instead of ‘Year’, were

also fitted, but the results were nearly identical to those of the

models described above and are not shown. Note that ‘Latitude’ was

not included in the temporal analysis because, in years other than

1990, all stranded dolphins were collected on the coasts of the

Valencian Community (Figure 1).
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For abundance data, negative binomial GAMs were fitted using

a log link function; for occurrence data, binomial GAMs were fitted

using a clog-log link function. Model selection and validation, as

well as collinearity analysis between predictors, were carried out as

indicated in the previous section. However, AIC was not corrected

for small samples in this case because sample size (n) was large

compared with the number of parameters (k), i.e. n/k > 40

(Anderson and Burnham, 2004). The lack of dependency between

factors was further examined with Chi Squared tests; between

covariates and factors with Kruskal-Wallis (‘Season’) or Mann-

Whitney (‘Group’, ‘Sex’) tests, and between the two covariates with

Spearman correlation.

All GAM models were fitted using the mgcv package (Wood,

2011) available in R version 4.2.2 (R Core Team, 2022).
3 Results

3.1 Infection parameters

Six helminth species were found in the intestine of the striped

dolphins analysed. Three tetrabothriid cestodes included adult

specimens, i.e. Trigonocotyle globicephalae, Tetrabothrius forsteri

and Strobilocephalus triangularis, but only the two latter exhibited a

prevalence > 10% and mean intensity > 10 individuals/dolphin

(Table 2). A single juvenile cestode belonging to the genus

Diphyllobothrium was detected in a dolphin from 1987, but
Frontiers in Marine Science 06
identification at species level was not possible due to poor

preservation (Table 2). Finally, two species of acanthocephalan were

found as juvenile forms. Bolbosoma vasculosum showed an overall

prevalence >15%, whereas single specimens of B. balaenaewere found

in two dolphins from 2011 and 2013, respectively (Table 2).
3.2 Molecular affiliation of
Bolbosoma vasculosum

The ranges of intraspecific genetic distances of Bolbosoma spp.

based on cox1 sequences were as follows: 0.006 - 0.024 (B. vasculosum);

0 - 0.017 (B. balaenae); 0.004 – 0.109 (B. turbinella) and 0.004 (B.

nipponicum) (Table S1). At interspecific level, specimens of B.

vasculosum were indistinguishable from the specimen of B.

capitatum (range: 0.006 - 0.024), showing higher distances with

respect to other Bolbosoma spp. (minimum distance: 0.194) (Table S1).
3.3 Representativeness of the host sample

Infection parameters of helminths from striped dolphins that

were killed by interactions with bottlenose dolphins or fisheries

were closely similar to those from dolphins that died from

infectious diseases (Table 3). In fact, we did not find significant

differences in abundance for any of the helminth species (Mann-

Whitney tests, all p >> 0.680).
TABLE 2 Infection parameters (with 95% confidence intervals in parentheses and ranges in brackets) of intestinal helminths found in striped dolphins,
Stenella coeruleoalba from the western Mediterranean.

Species
Prevalence

Mean
intensity Mean abundance

1982-2016 1987-2016

Cestoda

Tetrabothriidae

Tetrabothrius forsteri 94.4
(90.6 - 96.9)

95.5
(91.9 - 97.6)

44.3 (36.6 - 55.8) [1 - 518]
42.3

(34.6 - 53.2)

Strobilocephalus triangularis 18
(13.5 - 23.6)

15.8
(11.5 - 21.2)

13.0 (8.4 - 20.8)
[1 - 81]

2.1
(1.2 - 3.7)

Trigonocotyle globicephalae 5.2
(2.9 - 8.7)

5.4
(3.1 - 9.2)

2.8 (1.8 - 3.9)
[1 - 6]

0.1
(0.1 - 0.3)

Diphyllobothriidae

Diphyllobothrium sp. 0.4
(0 - 2.5)

0.5
(0 - 2.6)

1
0.005

(0 - 0.014)

Acanthocephala

Polymorphidae

Bolbosoma vasculosum 15.9
(11.5 - 21.2)

16.3
(11.9 - 21.9)

2.3 (1.8-3)
[1-7]

0.4
(0.3 - 0.4)

Bolbosoma balaenae 0.9
(0.2 - 3.1)

0.9
(0.2 - 3.3)

1
0.009

(0 - 0.023)
Host sampling covers the period 1987-2016 (221 dolphins), but additional data on occurrence were obtained from 12 dolphins during the period 1982-1986, hence two sets of values are shown
for prevalence.
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3.4 Geographical analysis

Of the four species found in 1990, T. forsteri, S. triangularis and

B. vasculosum were detected throughout the whole study area,

whereas Tri. globicephalae was apparently restricted to its

southern part (Figure 2). However, we failed to detect differences

in prevalence of this species between regions (exact Chi-Squared,

c2 = 2.308, 3 df, p = 0.538), nor a significant latitudinal trend

(c2 = 1.934, 1 df, p = 0.121).

There were four PERMANCOVA models that had substantial

empirical support (DAICc ≤ 2), and two that had less support (2 <

DAICc < 4). Among them, the simplest and with highest wi value

included the intercept only (Table 4). In the rest of the models, none

of the individual predictors was found to be significant (Table 4).

GAMs could be fitted for T. forsteri, S. triangularis and B.

vasculosum. In the case of T. forsteri, the model with lowest AICc,

highest wi and lowest number of predictors included ‘Latitude’ only.

There was a significant but modest positive effect of this variable on

the abundance of T. forsteri (deviance explained = 13.3%, edf =

3.071, p = 0.0154) (Figure 3). Three additional negative-binomial

GAMs also had substantial empirical support (DAICc ≤ 2), namely,

those including ‘Latitude’ and ‘Dolphin length’ (DAICc = 0.385),

‘Latitude’ and ‘Dolphin Sex’ (DAICc = 1.321) or the three predictors

(DAICc = 1.501). In all of them, the only significant variable was

‘Latitude’ (p < 0.03). In the GAMs for the abundance of S.

triangularis and B. vasculosum, none of the predictors were found

to be significant, and the same occurred in the models involving

occurrence data (data not shown).
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3.5 Temporal analysis

The cestodes T. forsteri, S. triangularis and Tri. globicephalae

were detected throughout the whole study period, but the

acanthocephalan B. vasculosum was almost exclusively found in

1990; only two additional individuals were found in 1989 and 1997,

respectively (Figure 4).

Long-term trends could be investigated with GAMs in the case of

T. forsteri and S. triangularis. Binomial GAMs could not meaningfully

be fitted for T. forsteri due to its high prevalence (> 94%). There were

four negative-binomial GAMs for abundance with substantial

empirical support (DAIC ≤ 2) and two with less support (2 < DAIC
< 4) (Table 5). The two simplest models included two predictors

(Table 5). Among them, the one with the highest wi value explained <

10% of deviance and included the predictors ‘Year’ and ‘Dolphin

length’ (Table 5). In this model, the effect of ‘Dolphin length’ was

highly significant, and that of ‘Year’ just marginally so (Table 5). The

abundance of T. forsteri experienced a slight decrease with a

subsequent recovery throughout the study period (Figure 5A), and

peaked at dolphin lengths between 130 and 150 cm, then decreased

(Figure 5B). All the other competing models included ‘Length’ as a

highly significant predictor; ‘Year’, ‘Group (epizootic vs. non-

epizootic)’ or ‘Dolphin sex’ were included in some models, but their

effects were only marginally significant, or not significant (Table 5).

In the case of Binomial GAMs accounting for the occurrence of S.

triangularis in striped dolphins, there were three models with

substantial empirical support (DAIC ≤ 2) and two with less support

(2 < DAIC < 4) (Table 6). The model with the highest wi value

included the predictors ‘Year’, ‘Dolphin length’ and ‘Dolphin sex’,

while the simplest model included ‘Year’ and ‘Dolphin length’

(Table 6). The deviance explained for these models was 12.5% and

10.6%, respectively (Table 6). The effects of ‘Year’ and ‘Dolphin length’

were statistically significant in both models (Table 6). The likelihood

of occurrence of S. triangularis strongly decreased from ca. 1990 (note

the wide 95% CI in previous years) to 1997-1999, then increased, but

without reaching the initial levels of the time series (Figure 5C). The

likelihood of occurrence also decreased monotonically at increasing

dolphin length (Figure 5D). In the other models; ‘Year’ and ‘Dolphin

length’ remained as significant predictors; ‘Group (epizootic vs. non-

epizootic)’, ‘Dolphin sex’ and ‘Season’ were included only in some

models, having just marginally significant, or not significant effects

(Table 6). None of the negative binomial GAMs for the abundance of

S. triangularis had a suitable fit according to model validation plots,

thus they are not considered further.
4 Discussion

4.1 Representativeness of the dolphin
sample

The sample used in this study is composed of stranded

dolphins, thus a potential concern is whether they represent an

unbiased subset of animals from the wild population. First, the

DMV that caused the epizootics in 1990 and 2007 is known to
TABLE 3 Infection parameters (with 95% confidence intervals in
parentheses and ranges in brackets) of intestinal helminths found in two
samples of striped dolphins, Stenella coeruleoalba from the western
Mediterranean collected during the period 2010-2015, and for which the
cause of death was determined.

Species Prevalence Mean
intensity

Mean
abundance

Tetrabothrius forsteri 95.0 (75.6 -
99.7)

29.4 (18.4 -
48.0)

[3 - 119]

27.9 (17.5 -
46.7)

100 (70.9 - 100) 37.1 (14.4 –

101.5)
[2 - 213]

37.1 (14.4 –

101.5)

Strobilocephalus
triangularis

20.0 (7.1 - 42.4) 13.8 (1.0 – 34.0)
[1 - 48]

2.8 (0.2 - 11.7)

20.0 (3.7 - 55.4) 22.5
[18 - 27]

4.5 (0.0 - 10.8)

Trigonocotyle
globicephalae

5.0 (0.3 - 24.4) 1 0.05 (0.0 - 0.2)

0.0 (0.0 - 29.1) – –

Bolbosoma balaenae 10.0 (1.8 - 32.0) 1 0.1 (0.0 – 0.2)

0.0 (0.0 - 29.1) – –
For each helminth species, infection parameters are given considering dolphins that died from
infectious diseases (N =20, upper row) or that were killed by interspecific competition or
fisheries interactions (N = 10, lower row).
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TABLE 4 Permutational Multivariate Analysis of Covariance (PERMANCOVA) accounting for the effect of region, dolphin length, dolphin sex, and their
interactions, on the abundance of four intestinal helminth species found in 74 striped dolphins, Stenella coeruleoalba, stranded in the western
Mediterranean in 1990.

Model DAicc wi Predictor F df p

Intercept 0 0.343

Intercept + Region 0.790 0.231 Region 0.981 3, 73 0.462

Intercept + Sex 1.922 0.131 Sex 0.431 1, 73 0.743

Intercept + Length 1.992 0.127 Length 0.272 1, 73 0.816

Intercept + Region + Sex 2.725 0.088 Region 0.974 3, 69 0.463

Sex 0.514 1, 69 0.686

Intercept + Region + Length 2.873 0.081 Region 0.944 3, 69 0.486

Length 0.272 1, 69 0.814
F
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Models are arranged by increase of the Akaike Information Criterion for small samples (AICc) and decrease of Akaike weight (wi). Models with DAICc > 4 with respect to the best model are not
included. Probability values for individual predictors are also shown.
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FIGURE 2

Maps showing the localities where 74 striped dolphins, Stenella coeruleoalba were found stranded along the Mediterranean coast of Spain in 1990.
Colors indicate the abundance of intestinal helminths, when present. (A) Tetrabothrius forsteri. (B) Strobilocephalus triangularis, (C) Trigonocotyle
globicephalae and (D) Bolbosoma vasculosum.
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impair the host’s immune system (Bossart et al., 2011; Van Bressem

et al., 2014). Although this effect could facilitate the establishment of

parasites, thus abnormally increasing their loads (Aznar et al., 1994;

Aznar et al., 2005), this is unlikely to occur in the case of TTPs.

Mammals affected by other morbillivirus diseases have been

reported to die between 8 hours and 2 weeks after the first

clinical symptoms (Harder et al., 1990; Evermann et al., 2001;

Mahy and Van Regenmortel, 2008). If the disease caused by

DMV also runs its course quickly (Kennedy, 1998), the temporal

window for recruitment or senescence of the helminths infecting

striped dolphins would be too narrow to generate significant

alterations of previous parasite loads (Mateu et al., 2014).

Second, the cause of stranding for other dolphins was not always

easy to assess but included, inter alia, by-catch (Cuvertoret-Sanz et al.,

2020; Izquierdo-Serrano et al., 2022), deadly interactions with

bottlenose dolphins (Crespo-Picazo et al., 2021) and infectious

diseases (Isidoro-Ayza et al., 2014; Cuvertoret-Sanz et al., 2020). Our

results indicate that infection parameters were closely similar for ill vs.

non-ill dolphins. One could wonder whether the striped dolphins

belonging to the latter category exhibited non-lethal pathological

conditions that made them prone to accidental catch or aggression

by bottlenose dolphins; however, no such conditions were detected in

any of them during the necropsies. Besides, none of the intestinal
B

C D

A

FIGURE 4

Scatterplots representing the abundance of the four helminth species found in the intestine of striped dolphins, Stenella coeruleoalba from the
western Mediterranean during the period 1987-2016. (A) Tetrabothrius forsteri (B) Strobilocephalus triangularis (C) Trigonocotyle globicephalae
(D) Bolbosoma vasculosum.
FIGURE 3

Generalized Additive Model (GAM) smoother showing the effect of
latitude on the abundance of the cestode Tetrabothrius forsteri in 74
striped dolphins, Stenella coeruleoalba stranded in the western
Mediterranean in 1990. The solid line is the estimated smoother and
the colored bands are 95% point-wise confidence bands.
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parasites found, except perhaps Diphyllobothrium sp., have

pathological significance (Geraci and St. Aubin, 1987; Cuvertoret-

Sanz et al., 2020), thus they were unlikely to be involved in dolphin

stranding. In addition, post-mortem infection is not a possibility, since

TTPs are transferred to dolphins through the consumption of infected

prey. Accordingly, the load of intestinal helminths in our dolphin

sample is not expected to be significantly higher than that of the

wild population.
4.2 Intestinal helminths collected

Out of the 6 helminth species found, 4, i.e., T. forsteri, Tri.

globicephalae, S. triangularis and B. vasculosum, had previously been

reported by Mateu et al. (2014) based on a subset of 52 striped

dolphins from 1990, now included in the present study. Mateu et al.

(2014) identified the juvenile specimens of Bolbosoma as B.

vasculosum, as we do here, based on the most detailed descriptions

of this taxon (Van Cleave, 1953; Costa et al., 2000). However, the

absence of adults in a large sample of worms (n = 84, collected from

37 dolphins), which agrees with previous reports in cetaceans (Van

Cleave, 1953; Fernández et al., 2004; Fraija-Fernández et al., 2016),

indicates that these specimens must be juveniles of another

Bolbosoma species. We cannot rule out the possibility that they

belong to a new species associated with striped dolphins, but the

absence of adults rather suggests that they correspond to an existing

species present in other cetacean hosts. In the western
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Mediterranean, the only two additional species of Bolbosoma are

B. balaenae and B. capitatum (Raga and Balbuena, 1993; Santoro

et al., 2021). Molecular barcoding showed that our specimens of B.

vasculosum were indistinguishable from B. capitatum. Nevertheless,

further research using a higher number of markers and Bolbosoma

specimens should be conducted to confirm our results. Since

morphological similarities are also apparent between both species

(Amin and Margolis, 1998; Costa et al., 2000), a taxonomic re-

analysis of the concept of B. vasculosum is warranted.

Bolbosoma balaenae and Diphyllobothrium sp., were not

detected by Mateu et al. (2014) and constitute exceptional records

in the present survey. The former species typically infects baleen

whales worldwide (Fraija-Fernández et al., 2016), with only two

previous records in Stenella spp. (Dailey and Perrin, 1973). In the

Mediterranean Sea, adults of B. balaenae have been reported in the

only baleen whale species regularly present in this area, the fin

whale Balaenoptera physalus (Santoro et al., 2021). The occurrence

of juvenile specimens in striped dolphins could be interpreted as an

accidental infection through shared prey.

With regard to Diphyllobothrium sp., a single immature

specimen was found in our sample. The only previous record of

species of Diphyllobothrium in striped dolphins corresponds to an

adult of an unidentified species in the Atlantic Ocean (Jaber et al.,

2006). In the study area, there are records of adults of an

unidentified species of Diphyllobothrium in common bottlenose

dolphins Tursiops truncatus (Raga, 1985; Quiñones et al., 2013).

Since at least 7 species of this genus have been reported in
TABLE 5 Negative binomial Generalized Additive Models (GAMs) assessing the effect of year, dolphin length, group (epizootic vs. non-epizootic),
dolphin sex and season on the abundance of the cestode Tetrabothrius forsteri in striped dolphins, Stenella coeruleoalba, from the western
Mediterranean during the period 1987-2016 (N = 221).

Model Predictors DAIC wi Deviance explained (%) Predictor df/edf p value

1 Length + Year 0 0.309 9.64 Length 4.555 < 0.0001

Year 1.949 0.037

2 Length + Group 0.651 0.223 8.38 Length 4.136 < 0.0005

Group 1 0.046

3 Length + Year + Group 1.319 0.160 9.66 Length 4.418 < 0.0001

Year 1.777 0.264

Group 1 0.256

4 Length + Year + Sex 1.979 0.115 9.63 Length 4.533 < 0.0001

Year 1.950 0.037

Sex 1 0.914

5 Length 2.043 0.111 7.40 Length 4.501 0.003

6 Length + Group + Sex 2.638 0.083 8.37 Length 4.117 < 0.0005

Group 1 0.047

Sex 1 0.961
Models are arranged by increase of the Akaike Information Criterion (AIC) and decrease of Akaike weight (wi). Models with DAIC > 4 with respect to the best model are not included. The
percentage of deviance explained by each model, and the degrees of freedom/effective degrees of freedom (df/edf) and probability associated to the effect of each variable are also given. Statistically
significant p-values are in bold.
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odontocetes (Fraija-Fernández et al., 2016), further molecular

studies are needed to determine the identity of the species

occurring in our study area.
4.3 Effects of host size on
parasite infections

Mateu et al. (2014) did not detect a significant effect of host

body length or sex on the abundance of any intestinal helminth

taxa. Using now a larger sample size, we neither detected a sex effect,

nor seasonal changes in infections, but we did find a significant

effect of dolphin length on the abundance of T. forsteri and the

prevalence of S. triangularis. Admittedly, the current sample also

covers a large number of years and, therefore, inferences are more

prone to confounding effects of time. However, there are also

contrasting differences in the host length composition between

samples that could readily explain the difference. Only 4 of 52

dolphins (7.7%) from the sample analysed by Mateu et al. (2014)

could be considered sexually immature (<180 cm long, see Calzada

et al., 1997), vs. 72 of 233 (30.9%) in the present study. Thus, it is

likely that host length effects on parasite infections are now being
Frontiers in Marine Science 11
detected because there is a suitable representation of small dolphins;

among adult dolphins, infection parameters would vary individually

regardless of host’s body length (Mateu et al., 2014).

The occurrence of S. triangularis was found to be negatively

related with host length, whereas the abundance of T. forsteri

peaked at ca. 140 cm, then decreased in larger dolphins.

Interestingly, comparable trends appear to exist for the same

parasites in other Stenella spp. Dailey and Perrin (1973) reported

raw data on the abundance of T. forsteri and the occurrence of S.

triangularis in a sample of pantropical spotted dolphins, S.

attenuata from the eastern tropical Pacific. When we examined

the relationship of both variables with host length (excluding

calves), it was negative and significant, as expected (T. forsteri:

Spearman correlation, rs= -0.235, n= 75, one-tailed p< 0.021; S.

triangularis: logistic regression, b= -3.561, 1 df, one tailed p= 0.025).

The factor(s) accounting for such trends are difficult to

ascertain. In theory, larger (older) dolphins have more chances to

get infected because they are exposed to infected prey for longer

and/or consume more infected prey due to their higher metabolic

demands (Mateu et al., 2014; Pool et al., 2020). Since this does not

occur in the striped dolphins of our study, one could argue that

smaller (younger) dolphins have a weaker immune system (thus
B
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FIGURE 5

Generalized Additive Model (GAM) smoother showing the effect of two predictors on the infection parameters of two cestode species infecting
striped dolphins, Stenella coeruleoalba in the western Mediterranean. Effects of year (A) and dolphin length (B) on the abundance of Tetrabothrius
forsteri (N = 221 dolphins); effects of year (C) and dolphin length (D) on the likelihood of occurrence of Strobilocephalus triangularis (N = 233
dolphins). The solid line is the estimated smoother and the colored bands are 95% point-wise confidence bands.
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they offer more opportunities for parasite establishment) and/or

feed more on specific prey that serve as intermediate hosts for T.

forsteri and S. triangularis. The latter possibility opens future

avenues to pinpoint relevant prey taxa for the transmission of

these cestodes.
4.4 Spatial patterns

At a spatial scale of ca. 800 km (from the highest to the lowest

latitude), we did not detect obvious geographical differences in the

intestinal helminth assemblages of striped dolphins, except for a

modest positive effect of latitude on the abundance of T. forsteri.

The dolphins used for this analysis were collected in a narrow time

window (summer and autumn, 1990) that minimises confounding

time effects, but these animals were ill and could have performed

unusual movements or suffered post-mortem transport by currents

prior to stranding. However, it seems unlikely that such movements

occurred at the spatial scale of the study as we compared regions ca.

200 km long on average.

Differences in helminth infection levels between localities have

been observed when cetacean populations are sedentary within the

spatial scale covered by the surveys (e.g., Aznar et al., 1995; Mead

and Potter, 1995). In contrast, it is likely that, in the study area,

striped dolphins perform large-scale movements, perhaps facilitated

by the lack of obvious physical or oceanographic barriers, and this

would tend to homogenise infections across the defined regions.
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Currently, there are no precise data on movements of striped

dolphins based on satellite tagging, but evidence obtained for

other Stenella spp. indicate that individuals can perform

movements of > 100 km/day along the continental slope (Scott

and Chivers, 2009). Mediterranean striped dolphins appear to be

also highly mobile; there are reports of diel movements covering

dozens of km (Gannier, 1999), and seasonal changes in abundance

that would suggest migrations at the scale of hundreds of kilometres

(Gómez de Segura et al., 2006; Laran and Drouot-Dulau, 2007;

Panigada et al., 2011; Arcangeli et al., 2017).

Interestingly, a parasitological survey of 14 striped dolphins that

were collected on the coasts of the Ligurian Sea during the 1990

epizootic reported a similar composition and comparable

prevalence of helminth fauna as that of the present study

(Manfredi et al., 1992). Whether or not this homogeneity was

caused also by extensive dispersal of striped dolphins between

these two regions is difficult to assess in this case. There is

evidence of significant genetic differentiation between dolphins

from the Spanish vs. Ligurian populations (Gaspari et al., 2007),

thus the parasitological similarity could have resulted just from

ecological convergence.
4.5 Temporal trends

Infections of Tri. globicephalae in striped dolphins were

sporadic and scattered throughout several decades. This cestode
TABLE 6 Binomial Generalized Additive Models (GAMs) assessing the effect of year, dolphin length, group (epizootic vs. non-epizootic), dolphin sex
and season on the likelihood of occurrence of the cestode Strobilocephalus triangularis in striped dolphins, Stenella coeruleoalba, from the western
Mediterranean during the period 1982-2016 (N = 233).

Model Predictors DAIC wi Deviance explained (%) Predictor df/edf p value

1 Length + Year + Sex 0 0.401 12.5 Length 1.060 0.013

Year 3.860 0.007

Sex 1 0.051

2 Length + Year + Group + Sex 0.778 0.271 12.3 Length 1.114 0.011

Year 2.984 0.006

Group 1 0.253

Sex 1 0.046

3 Length + Year 1.957 0.151 10.6 Length 1 0.014

Year 3.839 0.005

4 Length + Year + Group 2.853 0.096 10.4 Length 1 0.012

Year 3.048 0.004

Group 1 0.281

5 Length + Year + Season + Sex 3.188 0.081 13.4 Length 1 0.009

Year 3.569 0.019

Season 3 0.427

Sex 1 0.070
Models are arranged by increase of the Akaike Information Criterion (AIC) and decrease of Akaike weight (wi). Models with DAIC > 4 with respect to the best model are not included. The
percentage of deviance explained by each model, and the degrees of freedom/effective degrees of freedom (df/edf) and probability associated to the effect of each variable are also given. Statistically
significant p-values are in bold.
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species seems to be specific to members of the subfamily

Globicephalinae and, in the western Mediterranean, it has been

further detected in long-finned pilot whales Globicephala melas and

Risso’s dolphins Grampus griseus (Supplementary Tables S2, S3).

Our findings suggest that the striped dolphin is a secondary host for

this cestode, its unpredictable occurrence perhaps resulting from

unusual host-parasite contacts.

On the contrary, T. forsteri and S. triangularis are typical

cestode species of striped dolphins (Supplementary Tables S2, S3).

In the study area, their long-term infection trends were contrasting,

with infection levels decreasing slightly (T. forsteri) or strongly (S.

triangularis) up to year 2000 and subsequently recovering. To

understand why such decrease occurred, and why each species

was affected differently, we would need detailed knowledge on the

life-cycle of both parasites. Unfortunately, no such information

exists, although the general life-cycle for tetrabothriid cestodes is

suggested to be complex, involving zooplanktonic organisms as first

intermediate hosts, and fish or cephalopods as second intermediate

hosts (Hoberg, 1987; Hoberg, 1996; Hoberg and Soudachanh,

2021). Thus, a potentially vast number of both biotic and abiotic

factors could influence transmission dynamics of T. forsteri and S.

triangularis, as evidenced for other TTPs infecting marine

mammals (Des Clers and Wootten, 1990; Des Clers and

Andersen, 1995; Stobo and Fowler, 2001).

It is worth noting, however, that three aspects of the patterns

found in this study are compatible with the potential effects of a

sudden significant reduction of the striped dolphin population in

1990. First, the dolphin mortality decreased the number of adult

worms that successfully released infective stages, which could result

in lower infections in dolphins in the following years (see

MacDonald and Brisson, 2022). Second, the effect should be

expected to be more pronounced in S. triangularis, at least for

one reason, i.e., there seems to be a smaller number of other

cetacean hosts supporting this cestode population. Out of the

odontocete species analysed for parasites in the study area, S.

triangularis has only been further detected in bottlenose dolphins,

with low prevalence, whereas T. forsteri infects three other cetacean

species, some with moderate prevalence (Table S2). Finally, the

increase in infection levels of T. forsteri and, particularly, S.

triangularis after year 2000 would be not surprising if we

consider that the striped dolphin population also experienced a

fast population recovery in just a decade (Gómez de Segura et al.,

2006). Note that some decoupling is expected between the recovery

of the host and the parasite populations (Anderson and May, 1978).

This is also congruent with the absence of a significant effect of the

variable ‘Group (epizootic vs. non-epizootic)’ in our models, since

the effect of the first morbillivirus outbreak seems to have extended

over the next years, rather than being restricted to year 1990. In

addition, this outbreak was far more severe and affected a much

higher number of dolphins than the following ones in 2007 and

2011 (Raga et al., 2008; Rubio-Guerri et al., 2013), which would

explain the absence of an observable effect of the other epizootic

events in the abundance/prevalence of TTPs.
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Long-term trends of the acanthocephalan B. capitatum (=B.

vasculosum) are striking. This parasite was detected just once in

striped dolphins before and after 1990, respectively, but in nearly

half of those analysed in 1990 (34 of 74 dolphins), when infections were

widespread across the study area. Moreover, as noted above, the striped

dolphin acts as an accidental host for this parasite and likely acquired

infections via prey shared with their ‘true’ cetacean hosts (see Hoberg

et al., 1993; Costa et al., 2000; Gregori et al., 2012). Acanthocephalans

identified as B. vasculosum have never been reported in other cetacean

species from the study area, and B. capitatum only in the long-finned

pilot whale, Globicephala melas, as adult (Raga and Balbuena, 1993; see

also references in Table S2). The sperm whale, Physeter macrocephalus

could also be a host for B. capitatum (Amin and Margolis, 1998) but

has not been analysed for parasites in the study area. Therefore, these

two odontocetes could be considered as the putative source of the

infections observed in striped dolphins.

The reason(s) for such puzzling temporal pattern of B.

capitatum (=B. vasculosum) in striped dolphin is(are) difficult to

ascertain. First, we could hypothesize that, for some reason, the

production of infective stages was exceptional in 1990 but, if so, the

effects should last longer than a year in the trophic web. Species of

Bolbosoma are relatively long-lived in paratenic hosts (Costa et al.,

2000), similarly to other TTPs, for which a lifespan of several years

is not uncommon (Kuhn et al., 2016). Second, we could postulate

that, in 1990, striped dolphin fed on infected prey that were seldom

exploited in other years. However, there is no evidence for this;

although striped dolphins shifted diet from more oceanic to more

neritic prey during the period 1990-2012, the change was gradual

and did not entail the disappearance of any of the common fish prey

taxa (Aznar et al., 2017). Third, we could argue that, in 1990, the

dolphins immunocompromised by the DMV provided more

favourable conditions for a longer permanence of B. capitatum in

the intestine, thus significantly increasing their likelihood of

detection. Yet, we did not find B. capitatum in dolphins likewise

affected by the DMV in the 2007 or 2011 epizootics. Finally, we

could speculate that migratory prey brought infections from

elsewhere but, again, why this did occur only in 1990? In

summary, the singular infection pattern of B. capitatum is hard to

explain and was likely multi-causal in nature. Further monitoring of

the intestinal helminth fauna of striped dolphins in the western

Mediterranean could shed more light on this enigmatic parasite.
5 Conclusions

To our knowledge, this study represents the first investigation of

multi-decadal changes in the parasites of a marine top-predator. It

was possible to document interesting patterns than open research

avenues but, as it might be expected, interpretation was difficult due

to broad gaps in the basic knowledge of the parasites’ biology.

Therefore, this study serves as (i) a baseline to monitor parasites of

cetaceans in the western Mediterranean, (ii) a foundation for

comparative studies in other geographic areas and, (iii) a plea for
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more integrative studies in the oceanic realm, for which parasites

should be considered an integral element.
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Gómez de Segura, A., Crespo, E. A., Pedraza, S. N., Hammond, P. S., and Raga, J. A.
(2006). Abundance of small cetaceans in waters of the central Spanish Mediterranean.
Mar. Biol. 150, 149–160. doi: 10.1007/s00227-006-0334-0

Gregori, M., Aznar, F. J., Abollo, E., Roura, Á., González, Á.F., and Pascual, S. (2012).
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