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Exploring the behavior feature of
complex trajectories of ships
with Fourier transform
processing: a case from
fishing vessels

Qinghua Zhu, Yongtao Xi*, Shenping Hu and Yan Chen

Merchant Marine College, Shanghai Maritime University, Shanghai, China
The significant uncertainty and complexity of vessels at sea poses challenges for

regulatory bodies in the fishing industry. This paper presents a method for

identifying fishing vessel trajectory characteristics involving the Fourier series

transform. The model utilizes the Fourier series and Gaussian mixture clustering

to address the complexity and uncertainty issues in fishing vessel trajectories.

First, the vessel trajectories undergo a process of dimensionality expansion and

projection along the temporal axis. The relationship between trajectories and

complex plane projection was elucidated in this process. Second, a vessel

trajectory identification model involving Fourier transformation was

constructed. Subsequently, the phase spectrum was assigned binary values

using differentiation, and the phase spectrum characteristics of the

transformed trajectories through Fourier transformation were analyzed. Finally,

six encoding formats for fishing vessel motion trajectories in phase spectrum

encoding are introduced, along with the determination of uncertain vessel

motion range through mixed Gaussian clustering. This method has been

validated using a dataset comprising 7,000 fishing vessel trajectories collected

from the Beidou satellite positioning system. The results demonstrate that the

range of uncertain vessel motion was able to be obtained with the assistance of

Gaussian mixture clustering, with an 80% probability position of approximately

1,000 m and a 50% probability position of around 2,000 m. Effective

identification of fishing vessel operating and navigational states was achieved,

leading to the determination of a safety distance for fishing vessels in the range of

1,000m–2,000 m. This research holds important reference value for fishery

regulatory agencies in terms of supervising fishing vessels and maintaining a safe

navigational distance.

KEYWORDS

vessel behavior feature, uncertainty and complexity, Fourier transform, Gaussian
mixture clustering, fishing vessel
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1 Introduction

The Earth’s surface is covered by oceans, accounting for 71% of

its total area. Oceanic fisheries play a crucial role in local, national,

and global economies (Yan et al., 2022; Hong and Chun, 2023).

Fishing vessel activities have consistently accounted for a significant

proportion of the global maritime fleet. With the advancement of

the Chinese Belt and Road Initiative and its policies on becoming a

maritime power, the density of vessels in coastal waters has been

steadily increasing (Yang et al., 2023). Additionally, China possesses

abundant fisheries resources, with numerous fishing grounds

scattered along its coast. Presently, China has a fleet of 73,100

fishing vessels, and its fishery production has increased from

5,219,850 t in 2005 to 80,420,190 t in 2019 (Sun et al., 2023).

However, fishing vessel operations were characterized by

complexity and variability. Not only do collisions between fishing

vessels and other vessels occur frequently, leading to severe human

casualties, but also they pose challenges in terms of regulating and

supervising fishing activities (Obeng et al., 2022). Hence, identifying

the behavioral characteristics of fishing vessels has become a key

topic of concern for maritime regulatory agencies and fishery

management departments, aiming to minimize collision accidents

between commercial and fishing vessels.

Normally, ship trajectories, speed, and heading were considered

key factors in studying ship behavior characteristics (Rong et al.,

2019; Zhou et al., 2019). With the increasing deployment of AIS

devices and Beidou navigation systems on fishing vessels, research

on ship behavior characteristics based on big data has become a

focal point for scholars (Gao and Shi, 2019; Wei et al., 2020; Murray

and Perera, 2021). Trajectory prediction and anomaly detection

were the mainstream research directions in studying ship trajectory

characteristics. Extracting ship behavior characteristics and

monitoring abnormal behavior through classification and

clustering methods were the prevalent approaches in this research

field (Naftel and Khalid, 2006; Espindle and Kochenderfer, 2009).

As early as the emergence of AIS data, Suo et al. (2022) started to

explore establishing mathematical models to classify the navigation

behavior of different ships based on historical trajectory records.

The support vector machine (SVM) was the most commonly used

classification method due to its simplicity and robustness, which

makes it favored by many scholars. Moreno-Salinas et al. (2013)

utilized SVM for regression analysis to identify ship behavior

characteristics and monitor abnormal behavior based on ship

rudder angle, speed, and trajectory. In the research direction of

classification, clustering was considered the foundation and

prerequisite (Wei et al., 2022). However, sometimes the two were

parallel. Zhou Yan proposed a two-step approach: first clustering

the vessels and then classifying them based on their characteristics.

The clustering results obtained through unsupervised learning can

be used to describe the behavioral features of the vessels (Zhou et al.,

2019). Among unsupervised clustering methods, k-means was a

classic approach known for its fast convergence. Unfortunately, k-

means were sensitive to complex noise points, which can result in

inaccurate clustering. To address this limitation, Mingyang Zhang

combined two big data clustering methods, DBSCAN and k-means,

with CPA to effectively handle hydrological and meteorological
Frontiers in Marine Science 02
information (Zhang et al., 2023b). These two methods belong to

hard clustering, and in contrast, there was also a soft clustering

method that performed well when the boundaries between clusters

were not clearly defined. Gaussian mixture clustering represents a

notable example of soft clustering. It reflects clusters through

probabilities, where points closer to the center have higher

probabilities (Hong and Chun, 2023). This aligns with potential

collision points surrounding vessels. To identify the spatiotemporal

features of ship trajectories, Gao Ming has improved the sliding

window algorithm for extracting trajectory feature points, resulting

in enhanced accuracy and efficiency of feature extraction (Gao and

Shi, 2019). Currently, interdisciplinary research and the adoption of

technical approaches from neighboring disciplines have received

significant attention in the study of ship behavior characteristics.

Inspired by the automotive industry, artificial intelligence

algorithms have been widely applied to ship trajectory prediction

(Papageorgiou et al., 2022; Zhu et al., 2022; Chen et al., 2023a).

Many scholars utilize machine learning, deep learning, neural

networks, and other artificial intelligence algorithms to integrate

AIS, radar, electronic charts, VTs, and other data sources for real-

time prediction of ship trajectories based on their past behavior

patterns (Espindle and Kochenderfer, 2009; Moreno-Salinas et al.,

2013; Zhao and Roh, 2019; Perera, 2020). These methods were

effective in extracting ship behavior characteristics from speed and

heading features.

Ship motion was influenced by various factors such as vessel

performance, hydrological characteristics, and meteorological

conditions. Analyzing the impact of these environmental factors

from the perspective of ship motion dynamics can reveal the

mechanisms behind ship trajectory. Ship motion involves six

degrees of freedom, making the trajectory characteristics

inherently complex (Zhang et al., 2023c). However, fishing vessels

have a lower tolerance to natural environments compared with

general cargo vessels. Moreover, fishing vessels were influenced by

fishing operations and fish movement, resulting in complex and

highly uncertain trajectories. This poses a significant challenge in

determining the characteristics of fishing vessel motion (Wang

et al., 2023). Interestingly, in the field of information technology,

mathematical methods were often employed to simplify and

establish patterns in the processing of complex signals.

Fortunately, in the field of information processing research,

signals often exhibit highly complex characteristics. For example,

through methods such as Fourier transform, wavelet transform, ST

(singular transformation), and W-V (Wigner-Ville) transform,

these complex signals could be transformed into regular and

traceable patterns (Neild et al., 2003; Khalid, 2010; Bhat and Dar,

2023; Li et al., 2023). The Fourier series has wide applications in

various industries including industrial, optics, chemistry, materials,

and information technology. It allows for the conversion of complex

information into simpler, regular patterns (Ricaud et al., 2019). This

technique has also been applied and adapted in research areas such

as video trajectory recognition and identification of object motion

features. When it comes to extracting spatial trajectory features,

least squares polynomial fitting was suitable for modeling simple

motion trajectories in the spatial domain. Vehicles moving

uniformly along a highway serve as the best example.
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Furthermore, it can also be used to smooth the x–y projection of

more complex spatiotemporal trajectories (Nanayakkara and

Abayaratne, 2003). In highly complex spatiotemporal trajectory

research, the Chebyshev and Fourier series were highly compatible

(Cui and Ng, 2004). The aforementioned studies have shown that

the Fourier series has demonstrated good performance in video

motion target detection and spatiotemporal trajectory classification

(Naftel and Khalid, 2006; Khalid, 2010). The trajectory of a fishing

vessel was a three-dimensional trajectory consisting of both the

temporal dimension and the two-dimensional plane motion. From

a physical perspective, the trajectory of a fishing vessel can be seen

as the projection of the three-dimensional trajectory onto the time

axis. Mathematically, this two-dimensional coordinate can be

regarded as the projection of complex numbers onto the complex

function plane. Therefore, to identify the trajectory features of

fishing vessels, this paper proposes a complex trajectory

identification model involving the Fourier transform. The idea of

addressing the complexity of fishing vessel motion trajectories by

processing complex information into simpler signals was rare in the

research field of ship trajectory complexity characteristics.

Moreover, accounting for the uncertainty of vessel motion was a

prominent topic in studying ship trajectory characteristics (Zhang

et al., 2023a). The current mainstream approach involves

probabilistic descriptions of this uncertainty. As previously

mentioned, Gaussian mixture clustering, which utilizes

probability to describe clustering features, aligns well with the

potential collision probabilities of vessels. It can be effectively

employed to characterize the uncertainty in fishing vessel

motion trajectories.

This paper makes a dual contribution. On the one hand, it

proposes a novel method for fishing vessel trajectory identification by

utilizing the Fourier series to address the complexity of fishing vessel

trajectories. On the other hand, it explores the compatibility between

Gaussian mixture clustering and collision probabilities to address the

uncertainty in fishing vessel motion. The organization of the

remaining sections was as follows: Section 2 provides the workflow

and describes the data sources and formats. It also explains the

mapping relationship between fishing vessel trajectories and the

complex plane and provides relevant theoretical knowledge of the

Fourier transform. Section 3 presents the analysis of the results

obtained from applying the proposed method. Section 4 discussed

the characteristics of the phase spectrum of fishing vessel trajectories

under different operating modes and the issue of uncertain motion

range of trajectories. Finally, the research findings of this article are

presented in Section 5.
2 Data and methods

2.1 Methods framework

In the field of fishing vessel behavior characterization, the

extraction of trajectory features was a critical research area.

However, due to the influence of fish schools and fishing patterns,

the behavior characteristics of fishing vessels vary with different

operation modes. This results in significant uncertainty and
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complexity in fishing vessel trajectories (Li et al., 2022; Gao et al.,

2023). Undoubtedly, this adds to the difficulty of fishing vessel

identification. Therefore, this paper aims to find a method to

identify simple motion features from complex trajectories.

Fundamentally, fishing vessel trajectories consist of two-

dimensional information. By employing mathematical methods,

complex trajectories can be abstracted as information- processing

problems and multidimensional fishing vessel motion trajectories

were able to reduce to one-dimensional information. Thus, this

paper proposed a fishing vessel complex trajectory identification

model based on the Fourier series. Firstly, AIS data and Beidou data

were filtered, cleaned, and interpolated to obtain continuous AIS

and Beidou data for fishing vessels. Secondly, the data were divided

into different operation modes based on vessel identification

numbers. Then, the Fourier series was introduced to process the

complex motion trajectories of fishing vessels and extract motion

features. Ultimate, operation trajectories were identified based on

the encoded features, thereby obtaining the range of uncertain

motion. The specific workflow is illustrated in Figure 1.

The first step involves preprocessing the Beidou data to ensure

data reliability. This process includes obtaining continuous ship

data with equal temporal intervals. Relevant information such as

time, position, speed, and heading would be selected and saved.

Subsequently, a ship trajectory dataset was generated, which serves

as the foundation for subsequent work. The 2D motion trajectory of

the fishing vessel was reconstructed, while also increasing the

dimensionality of the trajectory on the time axis.

Second, to analyze the spatiotemporal motion characteristics of

the fishing vessel trajectory, a trajectory transformation model

involving the Fourier series was constructed. The spatiotemporal

characteristics of the trajectory were analyzed in the XOZ and YOZ

projection planes under the three-dimensional motion trajectory.

The mapping relationship of the trajectory in the complex plane

was analyzed in the XOY plane. Based on this mapping relationship,

the Fourier transform was applied to obtain the phase spectrum of

the motion trajectory. The phase spectrum information was

processed into a binary encoding (0–1) form. The original

classification in the encoded form was obtained. The trajectory

features of the ship were analyzed based on the encoding

characteristics, while also discussing the feature variations caused

by different operation modes.

In the third step, to explore the uncertainty of the fishing vessel’s

motion, the trajectory abnormal region was extracted based on the

encoding content. At last, the central positions onto the abnormal

trajectory section, and the Gaussian mixture clustering was employed

to obtain the uncertain motion range of the fishing vessel.
2.2 Data description

Chinese coastal areas were rich in fisheries resources, spanning

the entire coastal region (Yang et al., 2023). Shanghai Port was the

world’s largest port in terms of container throughput. During the

fishing season, a large number of fishing vessels enter the waterway

and navigate near commercial ships. The Beidou data from

Shanghai Port was the most representative data for this study.
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The Beidou data were in the X–Y Cartesian coordinate system.

However, the initial format of the Beidou data varies, necessitating

preprocessing before experimental analysis was able to be

conducted. The collection and preprocessing of the Beidou data

were described in this section. This study used Beidou data to

describe the behavior of ships. The Beidou Satellite Navigation

System was a globally operated satellite navigation system built and

operated by China, with a focus on national security and

socioeconomic development needs. It provided users worldwide

with all-weather, all-time, high-precision positioning, navigation,

and timing services (Sun et al., 2022a). In recent years, the Beidou

satellite positioning and navigation system has been widely applied

in the field of fisheries production. This article’s data were sourced

from Alibaba Cloud (https://tianchi.aliyun.com/dataset/50009).

The data indicate that fishing vessels are distributed along the

southeastern coast of China. This study was based on 11,000 fishing

vessels, and the data were stored in CSV format, with each CSV file

containing 300–600 records. Each record includes six pieces of
Frontiers in Marine Science 04
information, which were fishing vessel ID, position (x, y), velocity,

direction, time, and type, as shown in Table 1. The fishing vessels

were divided into three operational modes, which were called

trawler, gill netter, and purse seiner, based on the labeled fishing

vessel types in the table. The classification results were then used for

the analysis of fishing vessel operational mode characteristics.

Heading, speed, and position were considered effective attributes

for recording ship behavior. This study focused on the analysis of

fishing vessel behavior characteristics in the context of uncertain

and complex motion trajectories. Therefore, only the positional

points of fishing vessels were considered in this study.
2.3 Problem description

Currently, the trajectories of fishing vessels are influenced by

various factors such as operational patterns, sea conditions, and fish

movement. The entire trajectory of fishing vessels exhibited
TABLE 1 Beidou data sample example.

Fishing vessel ID x y Sog Cog Time Type

0 0 6152038 5124873 2.59 102 1,110 11:58:19 Trawler

1 0 6151230 5125218 2.7 113 1,110 11:48:19 Trawler

2 0 6150421 5125563 2.7 116 1,110 11:38:19 Trawler

363 999 6076254 5061743 3.99 278 1,110 11:40:21 Trawler

364 999 6077380 5061819 4.26 257 1,110 11:33:03 Trawler

365 999 6079838 5062075 3.67 257 1,110 11:10:22 Trawler
front
FIGURE 1

Model for identifying complex motion trajectory characteristics of fishing vessels.
iersin.org
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significant uncertainty, resulting in complex characteristics of their

motion (Li et al., 2022). Research has found that the motion trajectory

of fishing vessels tends to become more complex during fishing

activities. However, apart from that, their motion characteristics were

relatively simple. By elevating the dimensionality of a specific fishing

vessel’s motion trajectory in the temporal dimension, this study aims

to obtain the XOY projection, which represents the actual motion

trajectory. The XOZ projection represents the motion trajectory of

the y-axis in the time dimension, and the YOZ projection represents

the motion trajectory of the x-axis in the time dimension. Hence, we

can interpret the motion along these two axes as signal features.

Fourier transform was then introduced for signal processing of the

trajectory data (Khalid, 2010). If the projection of the XOY trajectory

was mapped onto the complex plane, the real and imaginary parts in

the complex plane correspond to the x and y motion trajectories

(Nanayakkara and Abayaratne, 2003). Under this mapping

relationship, the Fourier transform was utilized for fishing vessel

trajectory identification. Figure 2 illustrates the above process

in detail.
2.4 Modeling

2.4.1 Discrete Fourier series transformation
Every seemingly chaotic appearance in the world was an irregular

curve on a timeline, and in fact, these curves are composed of infinite

sinusoidal waves. The Fourier series perfectly explained this law. This

study recorded the movement trajectory of fishing vessels on nautical

charts, with each position embodying a time attribute. We abstracted

it into a mathematical concept by considering the projection of the

moving object O in the (x, y) plane of the image. O records its

position in the (x, y, t) space at each moment in time. Therefore, we

can define the movement trajectory of the fishing vessel (Naftel and

Khalid, 2006; Khalid, 2010):
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S(O) = ( x1, y1, t1Þ,ðx2, y2, t2Þ,… ,ðxk, yk, tkf Þg (1)

The equation, S(O), represents the set of fishing vessel

movement positions in space. By considering the trajectory as a

motion under a time series, let k denote the length of the

time series.

If we decomposed the fishing vessel movement trajectory into

two separate one-dimensional time series for the horizontal and

vertical displacements as (ti, xi) and (ti, yi), respectively, where i ∈
f1, 2,…, kg, then we can establish a complex motion trajectory

identification model using the Fourier series.

If a condition was met, let us say the condition ti = i, then the

spatiotemporal trajectory of the fishing vessel (ti, xi) can be

represented by fxig, i ∈ f1, 2,…, kg in terms of one-dimensional

time. The k-point discrete Fourier transform (DFT) of fxig was

defined as the sequence of k complex numbers fXjg, j ∈
f1, 2,…, kg as given by Equation (2). Similarly, an expression for

fYjg, j ∈ f1, 2,…, kg can be provided in Equation (3).

Xj =
1ffiffiffi
k

p o
k−1

i=0
xi exp

−j2pjt
k

� �
,j ∈ 1, 2,…, kf g (2)

Yj =
1ffiffiffi
k

p o
k−1

i=0
yi exp

−j2pjt
k

� �
,j ∈ 1, 2,…, kf g (3)

where j =
ffiffiffiffiffiffi
−1

p
. Generally, the DFT sequence was truncated

after n terms, j ∈ f1, 2,…, ng. Here, X1 and Y1 signify real values.

In this scenario, the motion trajectory feature vectors fxig and fyig
consist of 2n+2 entries for each time series, encompassing both the

real and imaginary parts.

It was commonly understood that there exists a mapping

relationship between the complex plane and the real plane, which

can be represented as

z = x + yi (4)
FIGURE 2

Fourier transform process of fishing vessel trajectory.
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The mapping transforms points on the plane into complex

number form, where the real part represents the horizontal

coordinate on the plane, and the imaginary part represents the

vertical coordinate on the plane.

2.4.2 Gaussian mixture clustering based on
location relation

The movement of a fishing vessel was a stochastic process, and

its positional distribution can often be described using a probability

distribution. The Gaussian mixture model (GMM) was a

probabilistic model composed of multiple Gaussian distributions

weighted and combined. Each Gaussian model represents a class, so

the number of models needs to be determined before training the

model (Zhao et al., 2012; Hong and Chun, 2023). Assuming we have

sample data t = (t1, t2,…, ti)
T , if the data ti = (ti1, ti2,…, tij)

T follow

a Gaussian distribution, the probability density function is given by

g(tjvi,oj) = (2p)−j=2 oj
�� ��−1=2exp −

1
2
(t − vj)

To−1
j (t − vj)

� �
(5)

In the context where v represents the model expectation, it was

commonly approximated using the sample mean. Similarly, oj,

which represents the model variance, was typically approximated

using the sample variance. Assuming there are k Gaussian

distributions mixed with certain probabilities, we obtained a

Gaussian mixture model composed of k Gaussian distributions.

Mathematically, it can be represented as

q(t) = o
k

k=1

pkN(tjvk,ok) (6)

This equation, vk, represents themean of the kth class of sample data,

andok represents the covariance matrix of the kth class of sample data
Frontiers in Marine Science 06
g(t;F) = o
k

k=1

pkgk(t;jk) (7)

In the given equation, gk represents the distribution density of

the kth component, whereas pk represents the mixing probability for

the kth component, with its parameters denoted as jk. The

unknown parameters in the equation were collectively denoted as

F = f(pk,jk); k = 1, 2,…, kg.
3 Results

To investigate the spatiotemporal characteristics of fishing

vessel trajectories, an analysis of the phase spectrum features

based on the Fourier transform results was required. In this

section, the phase spectrum was subjected to derivative

processing, resulting in a transformation into a binary coding

pattern of 0 and 1. However, after encoding the phase spectrum

of 7,000 fishing vessel trajectories, it was observed that the phase

spectra can be roughly classified into six encoding patterns. Figure 3

illustrates the composition of the six encoded patterns and their

corresponding phase spectra. Through this encoded scheme, the

seemingly chaotic phase spectra were categorized, which can

facilitate the identification of fishing vessel motion states.
3.1 Operation mode recognition based on
fishing boat trajectory

According to the International Regulations for Preventing

Collisions at Sea (COLREGs), a fishing vessel was defined as any

vessel that was engaged in fishing activities using fishing gear such as a
B

C D

E F

A

FIGURE 3

Phase spectrum characteristics of fishing vessel track. The six encoding formats: (A) 001, (B) 100, (C) 010, (D) 101, (E) 000, (F) 111.
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trawler, gill netter, and purse seiner, or any other equipment that

restricts its maneuverability (Domeh et al., 2023). However, it did not

include vessels that were fishing using trolling gear or any gear that did

not restrict their maneuverability. The regulations clearly state that

there were different responsibilities between powered vessels and fishing

vessels. Therefore, based on the responsibilities they undertake, fishing

vessels can be categorized into three states during their maritime

navigation: underway (not engaged in fishing operations), underway

fishing (engaged in fishing operations), and at anchor. To identify the

underway and fishing operation patterns of fishing vessels, this section

used the projection relationship of fishing vessel positions onto the

complex plane mentioned before. After performing the Fourier

transform on the vessel trajectories, it was observed that the Fourier

transform phase spectrum of the vessel trajectories consists of long

waves and short waves. In this study, the long waves were represented

as 1, whereas the short waves were represented as 0, as shown in

Figure 4A. Figure 4B illustrates that each trajectory’s phase spectrum

was composed of 0 and 1, with 1 representing the long wave

component corresponding to the anomalous positions in the

trajectory shown in Figure 4C. In Figure 4C, the two-dimensional

trajectory of the fishing vessel was presented below the time axis,

forming a three-dimensional positional relationship to analyze the

relationship between vessel trajectory changes, phase spectrum, and

velocity. In the vessel’s motion trajectory, the directly relevant factor

was the vessel’s velocity. In Figure 4D, the influence of velocity on

anomalous trajectories can be observed. This provides sufficient

evidence to verify the accuracy of detecting anomalous vessel actions

using relatively common long waves. Here, anomalous vessel actions

refer to irregular variations in speed and heading during fishing

operations. Therefore, the detected anomalous vessel actions

correspond to the fishing vessel’s operational periods.
Frontiers in Marine Science 07
3.2 Motion track characteristics of
fishing vessels

To study the spatiotemporal motion characteristics of fishing

vessel trajectories, signal processing methods can be applied to

transform the trajectories. The phase spectrum, which was the

result of the Fourier transform of the fishing vessel trajectory,

exhibits distinct features. It was composed of 0 and 1. As

mentioned earlier, coding 1 corresponded to the state of

anomalous vessel actions, whereas 0 corresponded to the state of

normal vessel heading. With the presence of this coding, it became

easy to identify the behavioral state of the fishing vessel during its

navigation process. Thus, in Figure 3, 001, 100, 010, 101, and 111

can be interpreted as instances of abnormal fishing vessel

behavior, whereas 000 can be interpreted as the vessel being in a

normal navigation state with regular motion patterns. Table 2

describes the classification results of the fishing vessels using six

coding formats. However, there were still 4% of cases that were not

included. From the coding distribution, it can be concluded that

fishing vessels rarely exhibit regular navigation states. Therefore,

identifying the uncertain motion of fishing vessels has always been

a focal point of research. Furthermore, the presence of 111

indicated that even in a considerable length of time, nearly 21%

of fishing vessels exhibit abnormal behavior. Meanwhile, the

classification results of 001, 101, 100, and 010 indicated that

fishing vessel motion trajectories were complex and highly

uncertain. They can transition from navigating to conducted

fishing operations for a certain period and then revert to normal

navigation. This made it challenging to predict the future motion

trajectories and states of fishing vessels at any specific

time interval.
B C DA

FIGURE 4

Identification of fishing vessels in navigation state and operation. (A) Code, (B) Phase spectrum, (C) Three-dimensional trajectory, (D) Speed.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1271930
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2023.1271930
3.3 Analysis of differences in fishing vessel
operation patterns

Different fishing operations were able to classify into trawler, gill

netter, and purse seiner (Darasi and Aksissou, 2019). In the dataset,

there happen to be samples representing these three categories. To

explore the distribution of different fishing modes under the six

coding states, this study classified the vessels according to their

operation modes. In Figure 5, it was evident that gill netter occupied

a relatively large proportion within the entire 111 coding format.

This finding was closely related to the operational characteristics of

gill netter fishing vessels. In practice, during the process of

deploying gill netter, fishing vessels need to move slowly or

remain stationary on the sea surface to fully spread the nets in

the designated fishing area. Once the nets were successfully

deployed, the vessels initiated the dragged operation. Due to the

strong water flow and the inertia of vessel motion during gill netter

dragging, the vessels often undergo rotational movements (Kim

et al., 2014). As a result, the motion trajectories of gill netter vessels

frequently change. Compared with the regular motion pattern

represented by the 000 coding mode, the proportion of 111

coding modes in gill netter vessels was particularly low. This

aligns with the unique operational characteristics of gill netter

vessels. Regarding purse seining operations, after selecting the

fishing area, purse seine fishing vessels need to deploy the nets,

and they may remain static or move slowly to accomplish this task

(Granado et al., 2023). During purse seining operations, the motion

of fishing vessels was relatively stable. After successfully deploying

the nets, the vessels need to operate by hauling the nets. This
Frontiers in Marine Science 08
process was generally intense and required the cooperation of

fishermen. They collected the nets from all sides using lifting and

closing techniques, based on the shape and size of the purse seine.

Similarly, in trawler operations, fishing vessels tow the trawl nets at

a constant or variable speed on the sea surface. The propulsion

generated by the vessel was transmitted to the trawl nets through

the towing cables, causing lateral and vertical displacement of the

nets. At the same time, the trawl nets exert a certain drag force on

the vessel, resulting in lateral and vertical displacement motions of

the vessel. These motions were regular. However, in trawling

operations, the resistance and friction generated by the nets in the

seawater caused a decrease in the vessel’s speed. Moreover, during

trawler operations, factors such as wind direction, water currents,

and vessel speed frequently lead to rotational movements of the

fishing vessels (Obeng et al., 2022). The motion patterns of vessels

during trawler and purse seiner operations precisely reflected the

combination of operational and navigational patterns. This aligns

well with the coding patterns of 010, 001, 100, and 101 obtained in

this study.
3.4 Trajectory anomaly monitor
and analysis

In the trajectory observations of the classified results, it was found

that there was a certain type of anomalous vessel behavior in the

seventh coding category, which cannot be categorized into the six

coding formats, as shown in Figure 6. In this coding format, 0 and 1

cross each other. Therefore, based on the results of the anomalous
FIGURE 5

Coding format distribution for different operation modes.
TABLE 2 Classification detection based on coding features.

Coding 000 001 010 111 100 101 Error

Percent (%) 5 23 11 21 27 9 4
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coding, this study traced back to the trajectory states of the fishing

vessels. It was found that fishing vessels in this coding state exhibit two

characteristics in Figure 7. On the one hand, the range of vessel

trajectory movement was limited to a radius of around 500 m. On the

other hand, the distance between adjacent jump points was between

100 and 300 m. Since the time interval used in this study was 10 min,

considering that even if a fishing vessel anchors, it would still be

influenced by the water currents. Previous studies that used Beidou

data to investigate fishing vessel operation characteristics had suggested

that vessel speeds in anchored situations were around 0.3 m/s,

influenced by water currents (Li et al., 2021). To analyze the reasons

for the positional jumps, Figure 8 illustrates a single trajectory and the
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corresponding relationship between the trajectory and velocity. The

left-magnified image shows the projection of the trajectory on the XOY

plane. It can be determined that the fishing vessel’s position jumps

between 100 and 200 m. The right magnified image illustrates the

variation in the vessel’s speed during a certain period. It can be

determined that the vessel is not in a completely stationary state.

Instead, it was moving at a speed of 0.2 knots. Therefore, it can be

concluded that the jumps in the fishing vessel’s position are due to this

speed variation. This speed variation was closely related to the

dynamics of vessel motion (Zhang et al., 2023c). As far as we were

concerned, speed changes may be influenced by two behaviors. On the

one hand, vessel drift occurs due to water currents, resulting in a
FIGURE 7

Abnormal analysis of fishing vessels track.
FIGURE 6

Exception coding.
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migration of approximately 100 m within 10 min. On the other hand,

to keep the vessel stable in a specific position, the operator applies a

certain speed to counteract the water current and return to a relatively

stable position. It was generally understood that within a 10-min time

interval, the vessel moves approximately 100 m during this process.
3.5 Analysis of an uncertain range of
motion of fishing vessels

The abovementioned research confirmed the existence of

uncertainty in fishing vessel motion trajectories. To address the

uncertainty associated with complex vessel motion, this study

analyzed the motion characteristics of fishing vessels in different

operation modes. It was found that the coding feature of 1 in the

phase spectrum is closely related to fishing vessel operations and

exhibits a strong correspondence. Moreover, this study interpreted

abnormal vessel behavior in terms of turning, looping, and circling

movements. By extracting the positions during the segments with

coding 1, the study effectively obtains the periods of fishing vessel

operations, especially during periods of complex trajectory changes.

From a God’s-eye view, the motion of these fishing vessels with

complex movements will always be uncertain. Other vessels cannot

predict the future motion states offishing vessels through conventional

means. However, it can be imagined that fishing vessels move within a

certain range of uncertainty. If this uncertain range of motion can be

identified, it means that the safe zone of the fishing vessel has been

identified. Based on this idea, the study applies relative range processing

to the extracted operation trajectories and then superimposes the

trajectory segments of each vessel to obtain the distribution of fishing
Frontiers in Marine Science 10
vessel motion positions within a certain range. As shown in Figure 9,

this study applied Gaussian mixture clustering to the position features

and processed them accordingly. The uncertainty range was

represented by the probabilities of the Gaussian mixture model. The

corresponding range with a probability of 0.8 was approximately 1,000

m, whereas the range with a probability of 0.5 is around 2,000 m.

Fishing vessel distribution beyond 4,000 m was relatively rare.
4 Discussion

4.1 Advantages and limitations

The proposed method in this paper takes into consideration the

complex nature and uncertainties associated with the motion

trajectories of fishing vessels during navigation. Unlike most

existing methods, this approach employs mathematical reasoning

to study the characteristic patterns of complex vessel trajectories. By

projecting the trajectories onto the complex plane and introducing

the Fourier transform, the complex trajectories were made regular

and predictable. This approach was considered cutting-edge and

uncommon in the research of vessel trajectory characteristics.

Furthermore, coding methods from signal processing are adapted

to encode the results of the Fourier transform. The encoded results

not only enable the classification of trajectory characteristics and

identification of habitual motion patterns of different fishing vessels

but also facilitate the extraction of operational feature segments

from complex trajectories. In similar studies, SVM and LSTM were

considered state-of-the-art methods in ship trajectory classification

research, with accuracy rates typically ranging from 70% to 80%
FIGURE 8

Spatio-temporal analysis of a single anomaly trajectory.
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(Sun et al., 2022b). In the research of using satellite images for

detecting target vessels, the AirSAR ship was a highly accurate

technique, with an accuracy level of approximately 91.11% (Yasir

et al., 2023). CNN and deep learning were considered advanced and

mainstream methods, achieving an accuracy of 92.5% (Xie et al.,

2023). By simplifying the ship’s motion trajectory, Chen was able to

increase the recognition rate to 95.5% (Chen et al., 2023b). The

indirect results in Table 2 indicate a correct classification rate of

approximately 96% for the proposed method. The observed results

demonstrate a significant improvement in the overall performance.

Finally, Probability was considered an effective descriptor for ship

collision point detection (Hong and Chun, 2023). Similarly, we

observe a high level of compatibility between the uncertainty of

fishing vessel motion trajectories and Gaussian mixture clustering.

Gaussian mixture clustering was applied to these operational

feature segments to obtain the uncertain motion range of fishing

vessel trajectories. Unlike the traditional approaches based on

extreme distances for motion and boundary determination, the

clustering results demonstrate robust t imeliness and

comprehensiveness. This not only allows for the delineation of

uncertain motion boundaries based on probabilities but also

presents the probability-based representation of any potential

motion in the surrounding area to other vessels.

This study proposes, for the first time, the use of the Fourier series to

analyze ship motion trajectories. Although the results have shown

promising outcomes, there is still ample room for improvement in

this area of research. In Section 3.3, an analysis of the identification

capability of the codes in different operational modes is presented. For

instance, the gill netter can be well identified using the coding of 111.

However, in terms of identification coverage, there were limitations. It

was not possible to include all operational modes within the six codes.

For example, although the coding of 111 includes a large number of gill
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netter operational modes, approximately 30% still come from the other

two modes. In the case of the 000 code, it can effectively identify cases

that do not belong to the gill netter. However, there was a possibility of

5% of cases being mixed with the other two modes. Furthermore, in the

coding identification results, there remain approximately 4% of cases

that cannot be covered by the six codes, leading to the occurrence of the

cross-interference of 0 and 1 codes mentioned in Section 3.4. This paper

has downplayed the role of ship kinematics, whichmay serve as a crucial

focus for future research. Exploring the influence of ship motion

dynamics could provide valuable insights and contribute to further

advancements in this field.
4.2 Relationships among trajectory,
complex plane, and Fourier series

As is widely known, the motion trajectory of a vessel was, in fact,

the projection of the vessel’s temporal movement on the XOY plane.

For complex numbers, their geometric interpretation was in the two-

dimensional plane as vectors. Specifically, complex numbers were

regarded as linear mappings on the complex plane. Mathematical

theorems informed us that linear mappings inevitably transform

straight lines into straight lines and circles into Fourier series. Hence,

it was understood that the vessel’s motion trajectory could be

represented in the complex plane using complex numbers through

linear mappings. Fourier series revealed that any periodic function

could be expressed as an infinite series composed of sine and cosine

functions. In this context, Euler’s formula played a crucial role as it

facilitated the transformation of the trigonometric form of the

Fourier transform into a complex number form. However, Fourier

series could only transform periodic time domains into non-periodic

frequency domains, which means it could express waveforms of

periodic transformations as simple superpositions of sub-waveforms.

It was capable of decomposing complex signals into simpler ones for

separation. Nonetheless, its limitations resided in its support solely

for periodic time domains. Unfortunately, real-world trajectories

exhibited seemingly chaotic non-periodic motions. Fourier

transforms precisely expressed non-periodic time domains in non-

periodic frequency domains. Therefore, the motion trajectory of a

fishing vessel could be associated with Fourier series, linearly

mapping the complex motion trajectory onto the complex plane. In

fact, the application of Fourier series found widespread use,

particularly in signal processing where it proved to be highly

effective. It offered the means to extract periodic components from

complex signals. This line of reasoning remained equally applicable in

trajectory motion analysis. Based on time-frequency distribution,

multiple periodic motions could be extracted to address complex

motion problems (Briassouli and Ahuja, 2007).
4.3 Applications

Fishery regulation has always been a topic of great significance

within the fishery administration. The sustainable development of

the fishery industry, the practice of rational fishing, and the

reinforcement of regulatory efforts have garnered strong attention
FIGURE 9

Fishing vessels uncertain range of motion.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1271930
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2023.1271930
from regulatory authorities. Identifying fishing behavior patterns

was an effective way to combat illegal fishing and monitor excessive

fishing. In the past, the concealment of fishing vessel data posed the

greatest challenge to identifying fishing behavior patterns.

Nevertheless, with the continuous release of AIS (Automatic

Identification System) and BeiDou data, a foundation has been

laid for using big data to study fishing vessel behavior patterns.

Previous studies based on AIS data have shown significant

differences in operational trajectories among different types of

fishing vessels. The proposed fishing vessel trajectory

identification model involving the Fourier transform can

effectively identify the operational patterns of fishing vessels from

BeiDou data. The identification results can provide a strong basis

for regulatory enforcement by fisheries authorities.

Furthermore, situational awareness was the first step in ship

collision avoidance. Howbeit, fishing vessels may not always adhere

to COLREGs and often exhibit complex motion during navigation

(Zhang et al., 2021b). The issue of uncertainty in fishing vessel motion

trajectories due to their complex behavior was a focal topic in the study

of automatic collision avoidance. The ability of merchant ships to

accurately assess the actions of fishing vessels during navigation was

crucial for successful avoidance. Assigning specific codes to fishing

vessel trajectories can effectively identify their operational behavior

patterns. The Gaussian mixture clustering model can be used to cluster

operational trajectory segments, addressing the issue of uncertainty in

fishing vessel motion. The uncertain motion range described in Section

3.5, ranging from 1,000 to 2,000 m, can serve as a reference for

merchant ships to navigate around fishing vessels. In maritime

navigation, there was a consensus that collision risks already exist

within a range of 1–2 nautical miles (Zhang et al., 2021a). In the field of

fishing vessel research, some scholars have defined the safe distance for

fishing vessels as 1 nautical mile (1,852 m) (Fukuto and Imazu, 2013).

Sheng-Long Kao’s fishing vessel safe avoidance zone defines the safe

areas for nine operation modes, including single-line, longline, trawler,

gill netter, and purse seiner. He suggested that a range of 1.5–1.6

nautical miles was considered safe (Kao and Chang, 2017). The

Chinese fishing vessel guidelines stipulate that fishing vessels should

maintain a distance of 1 nautical mile when navigating through fishing

zones (MSA, 2021). According to the safety operation distance and

rules for Chinese and Korean fishing vessels, both sides of trawler

vessels should not pass within 2,000 m ahead of the vessel that was

currently trawling, which could hinder its operations. It is generally

accepted in ship-to-ship encounters between merchant vessels and

fishing vessels that the probability of collision within a distance of 1 nm

is approximately 70% (Zhu et al., 2023). This finding confirms the

reasonableness of considering a fishing vessel’s uncertain movement

range to be around 1 nm. Hence, the uncertain motion range offishing

vessels in this study roughly aligns with the established safe distances in

China. Compared with other countries, the range was relatively larger,

indicating a safer distance.
5 Conclusions and future work

The present study discussed the identification issue of complex

fishing vessel trajectories and their uncertain motion range. The
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implemented fishing vessel trajectory identification model in this

research is capable of effectively discerning the operational types of

fishing vessels and providing a secure estimation of the uncertain

movement range of the vessels.

First of all, a fishing vessel trajectory identification model

involving the Fourier transform was constructed. The phase

spectrum was encoded with a 0–1 format by taking the derivative

of the phase spectrum. The operational states of the fishing vessel

were represented by six valid encoding formats: 000, 001, 010, 100,

101, and 111. Among these formats, 0 corresponded to regular

fishing vessel trajectories, whereas 1 corresponded to complex

fishing vessel trajectories. Comparative analysis and discussions

were carried out on three different operational modes, revealing that

the obtained encoding formats effectively interpreted the

operational states of different fishing vessels.

Next, in this study, the complex trajectories were extracted

and overlaid using a center-to-center superposition approach.

The uncertain motion range of the fishing vessel trajectories was

obtained through Gaussian mixture clustering. The results

showed that the probabilities of the fishing vessel trajectories

were distributed around 1,000 m with an 80% confidence level

and around 2,000 m with a 50% confidence level. The study

demonstrated the consistency between the obtained uncertain

motion range of the fishing vessels and the safety distances for

fishing vessels in different countries, which was broader

and safer.

Last but not least, this research not only contributes to the

identification and control of fishing vessels by fisheries

regulatory authorities but also provides effective reference

safety distances for commercial vessels to ensure safe

navigation with fishing vessels. Furthermore, the final

uncertain motion range will be used in the avoidance process

of encounters between commercial and fishing vessels in

complex water areas. This method will provide commercial

vessels with the uncertain motion range of fishing vessels,

assisting them in avoiding the dangerous moving range of

fishing vessels. The next phase of research will primarily focus

on developing an automated collision avoidance system based on

uncertain fishing vessel motion range and enhancing

identification accuracy by considering ship kinematics.
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