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Guangdong Laboratory (Zhuhai), Zhuhai, China, 5Knowledge Management Dept. Fujian Yongfu Power
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Earthquake in the sea area is an important factor affecting the safety of marine

engineering construction, seabed site seismic response analysis is an important

preliminary work for marine engineering construction. Based on a fluid-solid weak

coupling model which could simulate seawater-seabed interaction, four typical

borehole sections along the proposed tunnel at Qiongzhou strait are selected to

establish layered seabed models for studying the seabed site seismic responses

affected by the seawater, seabed soft sediments and bedrock earthquake motion

under bidirectional seismic excitation, in which the dynamic nonlinearity of the seabed

soft soil is simulated by a generalized non-Masing constitutive model (DCZ model).

The result shows: the suppression effect of seawater on seabed seismic motion exists

only in the shallow range of seabed (< 50m), and the suppression effect on the vertical

seismic response is higher than that along the horizontal direction; the suppression

effect of seawater on the seabed surface seismic motion and the frequency response

phenomenon of “high frequency suppression, low frequency amplification” of seabed

seismic response is positively correlated with seawater depth; The mean lines of the

horizontal and vertical spectrum b obtained by numerical calculation are higher than

the design spectrum in the land code within several period ranges, and the possibility

of adverse effects induced by seawater and seabed soft sedimentation on the seismic

resistance of marine engineering should be considered.

KEYWORDS

seabed site, bidirectional seismic excitation, nonlinear seismic response, fluid-solid
weak coupling model, soil nonlinearity
1 Introduction

A large number of marine projects in China’s coastal and offshore marine areas have

entered the climax period of planning and construction in the context of building an ocean

power. The correct understanding of the seismic response characteristics of seabed sites is
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of great significance in guiding the seismic design of marine

engineering. Marine earthquakes can cause severe destruction,

such as the 1989 Loma Prieta earthquake, which resulted in the

collapse of the main span of the San Francisco-Oakland Bay Bridge,

and the 1995 Kobe earthquake, which caused liquefaction of the soil

on two nearshore artificial islands: Port Island and Rokko Island

(Nolen-Hoeksema and Morrow, 1991; Tanaka, 2000).

The seismic information recorded by seismic stations is the

most direct and reliable means to study seismic motion

characteristics (Boore, 1999; Boore and Smith, 1999; Boore and

Bommer, 2005; Karimzadeh et al., 2021). Typical differences in

seismic response between marine and land sites are characterized by

statistical analysis of existing marine ground shaking: vertical peak

acceleration at the seabed surface is significantly smaller than at the

adjacent land surface; long-period response of the seabed surface is

greater than that of the surrounding land surface, but the short-

cycle response is less than (Chen B. et al., 2015; Hu et al., 2020; Tan

and Hu, 2023). Diao et al. (2014) and Li et al. (2015) used fluid

dynamics equations and one-dimensional wave theory, the

researchers investigated the mechanisms of seawater’s influence

on seismic response of the seabed. The findings suggest that when

the impedance of seawater is significantly different from that of the

site, the dominant frequency response of vertical seismic motion on

the seabed is close to the resonant frequency of the P-wave in

seawater. Conversely, the vertical seismic motion on the seafloor is

noticeably suppressed near the resonant frequency of the P-wave in

seawater compared to near the coast. Furthermore, there exists a

closer correlation between P-wave propagation in seawater and the

seabed site. This research contributes to a deeper understanding of

the effects of seawater on seismic response of the seabed. The

seismic response of established sites is still difficult to determine due

to the limitations of ground shaking recordings in the sea area as

well as analytical calculation methods.

Over the years, the effectiveness of numerical simulation

methods in the analysis of seismic response of land-based sites

has been widely verified (Yang et al., 2011; Chen G. et al., 2015;

Guoxing et al., 2015; Adhikary and Singh, 2019; Falcone et al.,

2020), and it is an effective method to analyze the seismic response

of the seabed by taking the analysis method of seismic response of

land-based sites as a basis and further considering the influence

of seawater.

The sediment beneath the ocean floor is subject to dynamic

water pressure from waves. Airy (1993) introduced the theory of

small-amplitude wave oscillations, which assumes that the wave

amplitudes are significantly smaller than the water depth. Based on

the one-way transmission of wave forces generated by Airy waves to

the seabed and the omission of seawater-seabed interaction during

seismic events, the computed results indicate that the seismic

response of the seabed increases under the combined effect of

small waves and earthquakes (Liu et al., 2013). However, it is

crucial to recognize that the interaction between seawater and the

seabed is a significant factor influencing seismic responses in

marine areas. Using potential flow theory and Biot consolidation

theory, investigated the influence of seawater-seabed interaction,

including fluid exchange, on the seismic response of a simplified

seabed configuration. The results revealed a notable amplification of
Frontiers in Marine Science 02
the P-wave vertical component due to the presence of an inclined

seabed (Chen B. et al., 2021). Moreover, variations in seawater

depth also impact the characteristics of seismic motion. Chen et al.

(2023) considering the effect of seawater, established a coupled

model of seawater-pile foundation-cable-stayed bridge system.

Their research demonstrated that as the seawater depth increases,

the restraint on the vertical seismic motion becomes more

pronounced. In conclusion, the interaction between seawater and

the seabed is a critical factor affecting seismic responses in marine

environments. Accounting for this interaction and its effects on

seismic behavior in seabed structures during earthquake events is of

utmost importance for accurate seismic analyses.

In numerical modeling of seismic characteristics in marine

areas, the method of seismic excitation can also influence the

nonlinear response behavior of seismic motion. Chen W. et al.

(2021) utilized the acoustic module of the ABAQUS software

platform to calculate the dynamic water pressure exerted by

seawater on the seabed surface during earthquakes. The results

indicate that bidirectional seismic motion leads to greater seismic

response on the seabed surface. The influence of seawater enhances

the low-frequency response of both the seabed and tunnels. The

interaction between seawater and seabed varies with changes in the

motion state. Jeng et al. (2013) used the fluid VARANS equation to

simulate seawater and the dynamic Biot equation to simulate the

seabed, considering the seawater-seabed interaction and the fluid

exchange between them, the proposed numerical model can

accurately simulate the transient dynamic response of fluids and

solids at the same time, and it has a great potential to be applied in

the analysis of seismic response of seabed sites.

In this study, considering the dynamic water pressure generated

by seawater during earthquakes, based on a weakly coupled analysis

method that can realize the two-way exchange of variables between

the fluid domain and the solid domain, the fluid N-S equations are

used to simulate seawater, and the generalized non-Masing intrinsic

model describes the nonlinear dynamic properties of marine soils,

And the layered seafloor model, which is established by taking four

typical borehole profiles of the Qiongzhou Strait cross-sea channel

profiles as the object of study, takes into account seawater-seafloor

interactions, and the effects of bidirectional seismic motions (P-

wave and S-wave) on the nonlinear seismic response characteristics

of the seafloor site are analyzed to investigate the effects of seawater

on nonlinear seismicity in seafloor sites and the mechanism of

its action.
2 Materials and methods

2.1 Flow-solid weak coupling method

The fluid-solid coupling between seawater and the seabed

involves: (1) the interaction between dynamic water pressure of

seawater and the motion of the seabed, and (2) the seepage forces

resulting from fluid exchange between seawater and the seabed.

This study focuses solely on the interaction between the dynamic

behavior of seawater and the motion of the seabed surface, utilizing

a weak fluid-solid coupling analysis method. The analysis process of
frontiersin.org
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the weak fluid-solid coupling method is achieved through an

alternating coupling integration algorithm, where the field

variables of the fluid domain (WF) and the solid domain (WS) are

interactively exchanged in real-time at the fluid-solid interface.

The specific procedure is illustrated in Figure 1: After

completing the initialization, ① the fluid dynamic analysis is

conducted, and the pressure PF on the fluid-solid interface GF-S at
the coupling increment time Dt. is converted into external loads for

the solid domain. Subsequently, the solid dynamic analysis is

carried out to solve for the solid motion displacement uS and

velocity _uS on the GF-S interface at time Dt, completing the weak

fluid-solid coupling analysis at Dt. ② At 2Dt, the solid domain

variables uS and _uS on the GF-S interface are converted into the

boundary conditions for fluid flow, initiating the solid dynamic

analysis for 2Dt. This process is then repeated, alternating between

① and ②, incrementing the coupling increment steps until the entire

weak fluid-solid coupling analysis is completed.

Assuming a homogeneous and horizontally layered seabed site

for analysis, the numerical model for weak fluid-solid coupling

corresponding to the layered seabed site is shown in Figure 2B.

A horizontally layered homogeneous model is established for

the seawater layer and the seabed site, with the fluid-solid coupling

interface located at the interface between the seabed and the sea

bottom. Due to the 3D nature of the ABAQUS/CFD fluid model,

the seabed site model consists of a horizontally layered soil column

model composed of a single layer of 3D solid elements using C3D8R

elements. The model employs improved equivalent viscoelastic

artificial boundaries at the bottom and lateral boundaries. The

calculation increment step (Dts) for solid dynamic analysis is set

to 5×10-5 s (Wang et al., 2023). The fluid model consists of a layered

water domain with a single layer of 3D fluid elements using FC3D8

elements. The water surface is modeled as a free fluid interface. The

initial calculation increment step (DtF) for fluid dynamic analysis is

set to 0.01 s. The coupling increment analysis step (Dt) is set to 0.01
s, which means that data exchange between the fluid and solid
Frontiers in Marine Science 03
domains occurs every 0.01 s. The bottom of the model receives

bidirectional input ground motion.

The Seabed soil-column model (Ss model), shown in Figure 2A,

without considering the dynamic water pressure of seawater, is

compared to the Seawater seabed soil-column model(S-Ss model).

It is important to incorporate the static water pressure generated by

seawater in the analysis of the Seabed soil-column model.

The interaction between seawater and the seabed is closely

related to the gravitational field. In the S-Ss model, a gravity field is

formed by simulating the buoyancy-driven flow field. The

calculation of the gravity field is described by Equation(1).

G = FBuoyancy≈rIb(q−q0)g (1)

Where G is gravity; FBuoyancy is buoyancy; rI is the initial density
of the flow field; b is the coefficient of thermal expansion; q is the

analyzed temperature; q0 is the reference temperature; so that rI

=1000kg/m3, b(q − q0)= 1.0, the seawater pressure is equal to

seawater gravity (rw g h), rw is the density of the seawater, and h

is the water depth. Figure 3 gives the initial stress field of the

seawater-soil column model with borehole ZK-04 as an example.
2.2 Seabed site information

This research utilizes data from four representative borehole

profiles (ZK-04, ZK-08, ZK-11, and ZK-13) along the proposed

tunnel route in Qiongzhou Strait, China. These profiles are used to

construct a layered seabed site model, and the typical borehole

velocity information is presented in Figure 4A. Borehole ZK-04 has

a depth of 100.0m and a top elevation of -25.60m. The upper section

consists of silty clay interbedded with sand, silty clay, and medium

sand, while the lower section is characterized by thick layers of

laminated clay. Borehole ZK-08 has a depth of 120.20m and a top

elevation of -55.60m. The upper section includes a thick layer of
A
Solid S Fluid F

t : Coupling increment time step

t : Computing time

Figure legend:
B

Fluid- solid interface

Fluid mesh nodes

Solid m esh nodes

FIGURE 1

(A) Bidirectional cross coupling integration algorithm at GS-F interface; (B) Schematic diagram of node data transfer at GS-F interface.
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silty clay, followed by an interlayer of silty clay and fine sand.

Borehole ZK-11 has a depth of 200.20m and a top elevation of

-84.80m. The upper section comprises interlayers of fine sand, silty

clay, and an intermediate layer of fine sand and medium sand. The

lower section exhibits thick clay layers and serves as a key borehole

for determining the seabed soil conditions. Borehole ZK-13 has a

depth of 120.50m and a top elevation of -81.60m. The upper section
Frontiers in Marine Science 04
of the borehole features a thick layer of fine sand, while the lower

section consists of thick, layered silty clay. According to the

specifications outlined in the ‘Seismic Ground Motion Parameter

Zonation Map of China’ (GB18306-2015), shear wave velocity (VS)

greater than 500 m/s, and the absence of lower velocity rock-soil

interfaces below, can be considered as bedrock. Based on Figure 4A,

it can be observed that the shear wave velocities (VS) at the final
Fluid-solid coupling interface

Seawater surface

Seawater

Seabed
/MPa

Seawater 

pressure

Seabed 
vertical stress

FIGURE 3

Initial stress field of S-Ss model (Borehole ZK-04).
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depths of all four boreholes satisfy the regulatory requirements.

Therefore, these boreholes can be considered as input surfaces for

seismic ground motion analysis.
2.3 Nonlinear parameters of marine soils

The nonlinear dynamic characteristics of seabed soils are

described using the generalized non-Masing constitutive model

based on the Davidenkov skeleton curve, developed by Chen et al.

(Chen G. et al., 2021; Wang et al., 2021). This model, known as the

DCZ model, depicts the dynamic stress-strain relationship of the

seabed soil, as illustrated in Figure 4B.

The expression for the Davidenkov skeleton curve is as follows:

t = Gmax · g = g · ½1 −H(g )� (2)

H(g) is the function describing the shape of stress-strain

relationship, expressed in the Davidenkov form:

H(g ) =
(g ∕ g r)

2B

1 + (g ∕ g r)
2B

� �A

(3)

Where t is the shear stress; g is the shear strain; G is the shear

modulus; Gmax = rVS is the maximum dynamic shear modulus, r is

the density, and VS is the result of the site shear wave velocity

obtained from the field survey; A, B and gr are the best-fit

parameters related to the soil properties, which are determined by

the G/Gmax - g and l - gmean curves of various types of soils of the
Frontiers in Marine Science 05
Qionghzhou Strait given by experiments conducted by Sun et al.

(Sun et al., 2012; Sun et al., 2013) (Figure 4C).
2.4 Selection of bedrock input motion

There is currently no historical seismic record data available for the

Qiongzhou Strait and its neighboring areas. Therefore, based on the

reference of previous earthquake magnitudes, epicentral distances, and

selected borehole depths (Chen et al., 2022), four seismic records from

the Japanese Strong Motion Network (KiK-Net) were chosen for input

groundmotion at different distances: near-field, mid-field, intermediate

distance, and far-field, as shown in Table 1.

The EW/NS components with higher peak ground accelerations

and the UD component were separately applied as horizontal and

vertical ground motions at the bedrock level. Figure 5 presents the

acceleration time history and Fourier spectrum of the bedrock

ground motion.

3 Results and discussions

3.1 Fundamental period and site
classification of the seabed

The fundamental period (Ts) of the seabed site was determined

using the HVSR (Horizontal-to-Vertical Spectral Ratio) method

(Nakamura, 2019), which calculated the average values of a for
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different seismic excitations using Ss model and S-Ss model. The site

classification of different borehole profiles was determined based on

three indicators (Chen et al., 2020): average shear wave velocity

(VS30) obtained from seabed average travel time, fundamental

period (Ts), and thickness of the overlying layer (H). The results

of site classification are presented in Table 2. The calculated values

of Ts, without considering the influence of seawater, ranged from

0.97 s to 1.56 s. Considering the influence of seawater in the S-Ss

model, the calculated values of Ts ranged from 1.38 s to 1.79 s,

indicating an increase in the fundamental period of the seabed due

to the presence of seawater. Additionally, based on the analysis

results of this study, it was found that the inclusion of seawater did

not affect the classification of site types.
3.2 Acceleration of the seabed surface

Figure 6 shows the acceleration time history response of the

seabed surface observation points for boreholes ZK-04, ZK-08, ZK-

11, and ZK-13 under different seismic motion excitations:

EHMH04, MYGH10, FKSH10, and IBRH12. The influence

coefficient (Q) of seawater on the peak ground acceleration
Frontiers in Marine Science 06
(PGA) of the ground surface is defined as Q = (PGASs model −

PGAS-Ss model)/PBA, PBA is the peak bedrock acceleration of

the seabed.

For borehole ZK-04, the horizontal influence coefficient (QH)

under different seismic excitations is -0.07, 0.11, 0, and 0.08,

respectively. The vertical influence coefficient (QV) is 0.21, 0.81,

1.18, and 1.64, respectively. For borehole ZK-08, the QH values

under different seismic excitations are 0.34, 0.05, -0.24, and 0.24,

respectively. The QV values are 1.88, 0.52, 0.58, and 2.74, respectively.

For borehole ZK-11, the QH values under different seismic excitations

are -0.07, 0.16, 0, and 0.16, respectively. The QV values are 0.83, 0.74,

0.59, and 0.68, respectively. For borehole ZK-13, the QH values under

different seismic excitations are 0, 0.05, 0, and 0.08, respectively. The

QV values are 1.04, 0.52, 0.59, and 0.96, respectively.

In summary, it can be observed that seawater has a restraining

effect on the vertical motion of the seabed surface. The influence of

seawater on the vertical motion of the seabed surface is greater than

the horizontal motion. The strength of seawater’s influence on the

peak ground acceleration depends on various factors such as seabed

soil characteristics, water depth, and seismic motion characteristics.

The seismic duration extension factor of the seabed surface,

defined asD5-95-PF =D5-95-G/D5-95-B, where G represents the ground
A B C D

FIGURE 5

Ground motion information of bedrock: (A) EHMH04. (B) MYGH10. (C) FKSH10. (D) IBRH12.
TABLE 1 Information of original earthquake recordings for bedrock input motions.

Station

Location

Year Component M
Epicentral
distance/
km

PA/
g

D5-

95/s
Tp/
s

fp/
Hz

Borehole
depth/mLongitude/

°E
Latitude/
°N

EHMH04 133.07 33.9 2013
EW

6.4 41
0.145 18.64 0.48 2.09

200
UD 0.048 31.99 0.28 3.61

MYGH10 140.89 37.94 2022
EW

7.4 70
0.186 21.50 0.10 10.00

205
UD 0.135 30.28 0.10 10.00

FKSH10 140.09 37.16 2022
NS

7.4 148
0.042 37.15 0.20 5.00

200
UD 0.034 41.10 0.18 5.55

IBRH12 140.32 36.84 2011
NS

9.0 265
0.124 47.09 1.26 0.79

200
UD 0.073 61.04 1.18 0.85
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surface and B represents the bedrock, is illustrated in Figure 7. Both

in the horizontal and vertical directions, the values of D5-95-PF under

the influence of seawater are relatively small, indicating that

seawater suppresses the extension of effective seismic duration at

the seabed surface. Under the influence of seawater, the average

values of horizontal D5-95-PF decrease from 1.66 to 1.43 for the

MYGH10 excitation, and the average values of vertical D5-95-PF

decrease from 1.23 to 0.78. For the FKSH10 excitation, the average

values of horizontal D5-95-PF decrease from 0.89 to 0.82, and the

average values of vertical D5-95-PF decrease from 1.17 to 1.05. It can

be observed that as the intensity of the bedrock seismic motion
Frontiers in Marine Science 07
increases, the inhibitory effect on the extension of seismic duration

at the seabed surface also increases, with the vertical seismic motion

being more significantly suppressed than the horizontal motion.
3.3 Mechanistic analysis of the
role of seawater in the seismic
response of the seabed

Figure 8 presents the spectrograms of the acceleration transfer

function (Fourier spectrum amplitude ratio of soil layer seismic
40
KZ

80
KZ

11
KZ

MYGH10 FKSH10 IBRH12

31
KZ

EHMH04
PGA of Ss model

PGA of S-Ss model S-Ss model

Ss model

FIGURE 6

Acceleration responses at the observation points at the surface.
TABLE 2 Site classification.

Borehole ZK-04 ZK-08 ZK-11 ZK-13

VS30/(m/s) 317 168.7 270.8 204.5

H/m 50 110 154 87.6

Ts/s
Ss model 1.56 1.44 0.98 0.97

S-Ss mode 1.38 1.70 1.73 1.79

Site
Classification

Ss model III IV IV IV

S-Ss mode III IV IV IV
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motion to bedrock seismic motion, FSR) for different borehole

profiles considering or not considering the influence of seawater,

under the excitation of bidirectional input MYGH10 records.

It can be observed that the color distribution of the

spectrograms varies for the horizontal and vertical FSR graphs

due to the differences in borehole site profiles. The similarity or

dissimilarity of the soil layer structures is the primary factor causing

these differences. Without considering the influence of seawater,

significant resonance phenomena are observed in the horizontal

seismic response at around 0.25 Hz and 0.9 Hz for the four

representative boreholes under different seismic motion

excitations. Vertical seismic responses exhibit resonance

phenomena at multiple frequencies throughout the entire

frequency range. When considering the influence of seawater, the

resonant frequencies of the horizontal seismic component mainly
Frontiers in Marine Science 08
concentrate in the range of 0.7 Hz to 1.1 Hz, while the resonant

frequencies of the vertical component concentrate in the range of

1.5 Hz to 3.0 Hz. The resonant frequency (f) of the seawater P-wave

is determined by Equation (4) (Li et al., 2015).

fn =
c
4H

•n,   (n = 1,   3,   5… ) (4)

Where n is an odd number; fn is the corresponding nth-order

frequency; H is the water depth; c is the seawater P-wave velocity,

and c = 1450 m/s for a temperature of 20°C.

In this study, the water depths of all seabed boreholes are less

than 110 m, and the corresponding first-order resonance frequency

of seawater’s P-wave is greater than 3.3 Hz. This frequency range

aligns with the reduction in the seismic ground motion at the

seabed surface caused by the influence of seawater. This indicates
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that seawater suppresses the propagation of high-frequency

components. However, the amplification of long-period

components at the seabed surface can be attributed to the

seismic-induced dynamic water pressure in the seawater. The

high impedance boundary is located in a region deeper than the

seafloor, as discussed in the deep sea region (Nosov and Kolesov,

2007), and this can make the dominant frequency lower than 3.3 Hz

(i.e., the fundamental resonance frequency) if a water layer is

present. There is a relatively high intention domain shallower

than 20 m near 2 Hz of vertical ATF at ZK-11 in Figure 8B

suggested that high impedance boundary could have appeared at

a depth of 40 m, the above two phenomena are related.

It is generally believed that seawater mainly influences the

vertical seismic motion and has no direct impact on the

horizontal seismic motion (Li et al., 2015). A comparison between

the horizontal responses of the Ss model and S-Ss model in

Figure 8A reveals significant differences in the resonant frequencies.

Using the representative seafloor borehole ZK-11 as an

example, this study investigates the mechanism by which

seawater affects the ground seismic motion of a soil column

model. Comparing the seismic response of the seabed site with

and without seawater under horizontal seismic action only

(Figure 9A), it is observed that seawater has almost no effect

on the spectrum acceleration (SA) at the soil column surface. A

further comparison is made between the SA at the surface of the

soil column under horizontal seismic action only and under bi-

directional seismic action without considering the influence of

seawater (Figure 9B). Significant differences are observed

between the two cases, with bi-directional seismic action

inducing a more diverse frequency response in the horizontal

acceleration response of the soil column surface, revealing a

coupled seismic response phenomenon involving both

horizontal and vertical directions.

Combining the above observations, it is concluded that seawater

directly influences the vertical seismic response of the seafloor site.

The differences in the horizontal seismic response of a horizontally

stratified seabed site induced by seawater are not directly

attributable to the effects of seawater, but rather result from the

bidirectional coupled seismic effects of the site.
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3.4 Site amplification

The variation curves of Peak Acceleration (PA) along the depth

of the borehole profiles of boreholes ZK-04, ZK-08, ZK-11, and ZK-

13 under the bi-directional excitation of bedrock ground shaking

MYGH10 and FKSH10 are shown in Figure 10.

It can be observed that, regardless of the presence of seawater, there

is little difference in the horizontal peak acceleration (PAH) among the

seabed profiles. As the distance from the seabed surface decreases, the

vertical peak acceleration (PAV) of the seabed profiles gradually

decreases under the influence of seawater, reaching its minimum

value at the seabed surface. The depth at which the difference in

vertical peak acceleration (PAV) caused by seawater disappears is

approximately as follows: for borehole ZK-04, the difference

disappears at a depth of approximately 42 meters from the seabed

surface; for borehole ZK-08, the difference disappears at a depth of

approximately 45 meters from the seabed surface; for borehole ZK-11,

the difference disappears at a depth of approximately 43 meters from

the seabed surface; and for borehole ZK-13, the difference disappears at

a depth of approximately 40 meters from the seabed surface. This

indicates that the influence of seawater on the seabed site is only

present in the shallow layers (approximately< 50 meters).

Figure 11 presents the normalized spectral accelerations (b
spectra at 5% damping) of the seabed surface considering and not

considering the influence of seawater, along with the mean curves.

Additionally, the design response spectra (b spectra) for rare

seismic events in Class III and Class IV sites, as specified in the

‘Seismic Ground Motion Parameter Zonation Map of China,’ are

shown. It can be observed that, regardless of the presence of seawater,

the mean curves of the horizontal and vertical b spectra for the seabed
surface exhibit periods greater than those in the design b spectra,

indicating potential safety hazards in seismic design of marine

engineering projects following the onshore design standards. Under

the influence of seawater, the mean curves of both horizontal and

vertical b spectra display a pronounced ‘high-frequency filtering, low-
frequency amplification’ phenomenon, with a corresponding shift

towards longer periods. The influence of seawater causes the unsafe

segments of the onshore design spectra to shift towards the middle

and long period ranges.
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3.5 Influence of water depth

Taking the typical deep borehole ZK-11 site profile as an

example, layered seabed site models with different overlying

seawater depths (5 m, 20 m, 40 m, 60 m, and 80 m) were

established to investigate the influence of overlying seawater

depth on the seismic response of the seabed site. The information

for borehole ZK-11 information is shown in Figure 5A.
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Figure 12 illustrates the variations of peak ground acceleration

(PGA) and the influence coefficient Q obtained from the seawater-

soil column model and the soil column calculation for different

seawater depths. It can be observed that, when considering only the

static water pressure of seawater, the initial stress field of the seabed

site increases with increasing seawater static pressure, resulting in

enhanced resistance to disturbances in the soil, leading to a gradual

decrease in both horizontal and vertical PGA. The dynamic water
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pressure of seawater induced by seismic events suppresses the

horizontal and vertical seismic motion at the seabed site, and this

suppression effect becomes more pronounced with the increase in

the depth of the seawater layer. The influence coefficient Q,

representing the effect of seawater on peak ground acceleration,

increases with the depth of the seawater layer. Under the seismic

excitations of MYGH10 and FKSH10, the average values of

horizontal influence coefficient (QH) are 0.12 and 0.29,

respectively, while the average values of vertical influence

coefficient (QV) are 0.39 and 0.41, respectively. Seawater exerts a

greater inhibitory effect on vertical seismic motion compared to the

horizontal motion, and the variations in vertical seismic motion are

more pronounced with changes in water depth.

Figure 13 illustrates the normalized spectral accelerations (b
spectra at 5% damping) of the seabed surface obtained from the

seawater-soil column model under different seawater depths.

It can be observed that, as the seawater depth increases, the

influence of seawater on the horizontal and vertical b spectra of the

seabed surface shows similar patterns, regardless of whether the

input seismic records are fromMYGH10 or FKSH10. This indicates

that the effect of seawater is less correlated with the characteristics of

the input bedrock seismic motion. For the horizontal b spectra of

the seabed surface, there is a gradual reduction in short-period

responses and an increase in long-period responses with increasing

seawater depth. The dominant spectral peak for the horizontal

direction shifts to around 2.5 s. On the other hand, the vertical b
spectra of the seabed surface show suppression across the entire

frequency range, with a higher degree of suppression observed in

short-period responses. The dominant period of the vertical b
spectra shifts towards longer periods.

4 Conclusions

By conducting seismic response analysis of four typical borehole

profiles along the proposed underwater tunnel route in the

Qiongzhou Strait, this study provides a comparison between the

seawater-soil column model, considering the influence of overlying

seawater dynamic water pressure and seawater-seabed interaction,
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and the soil column model without considering dynamic water

pressure. The main conclusions are as follows:
(1) The seawater suppresses the seismic motion at the seabed

surface, leading to a decrease in both horizontal and vertical

peak ground accelerations and the effective seismic

duration. Additionally, the vertical seismic motion is

more significantly suppressed compared to the horizontal

direction.

(2) The differences in seismic response between horizontal-

only and bidirectional seismic actions for the seabed site

highlight the presence of bidirectional coupled seismic

effects. Traditional one-dimensional site analysis methods

can potentially miscalculate the seismic response of the site.

Seawater directly influences the vertical seismic response of

horizontally layered seabed sites and, through bidirectional

coupled seismic effects, subsequently influences the

horizontal seismic response of such sites.

(3) The influence of seawater on the seismic response of the

seabed is mainly characterized by the suppression of high-

frequency seismic responses, which is related to the P-wave

resonance frequency of seawater. On the other hand, the

low-frequency amplification phenomenon observed at the

seabed surface is attributed to the seismic-induced dynamic

water pressure in seawater. The seismic wave propagation

response within the seabed site is influenced by a

combination of factors, including seawater effects and the

distribution of soft sediment layers in the seabed.

(4) The impact of seawater on the seismic motion of the seabed

site is mainly pronounced in the shallow sediment layers (<

50 m), where the vertical seismic response of the seabed site

significantly decreases. The influence of seawater causes the

mean curves of horizontal and vertical acceleration b
spectra to exceed the values of the onshore design

response spectra, respectively, within the corresponding

periods of 0.75 s - 1.5 s and 0.1 s - 0.15 s. Therefore, the

adverse effects of seawater on seismic resistance of marine

engineering should be taken into consideration.
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Fron
(5) The inhibitory effect of seawater on the seismic motion at

the seabed surface and the frequency response

phenomenon of ‘high-frequency suppression, low-

frequency amplification’ in seismic response are positively

correlated with the depth of seawater.
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