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A lightweight deep learning
model for ocean eddy detection
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1College of Marine Technology, Faculty of Information Science and Engineering, Ocean University of
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Ocean eddies are typical oceanic mesoscale phenomena that are numerous,

widely distributed and have high energy. Traditional eddy detection methods are

mainly based on physical mechanisms with high accuracy. However, the large

number of steps and complex parameter settings limit their applicability for most

users. With the rapid development of deep learning techniques, object detection

models have been broadly used in the field of ocean remote sensing. This paper

proposes a lightweight eddy detection model, ghost eddy detection YOLO

(GED-YOLO), based on sea level anomaly data and the “You Only Look Once”

(YOLO) series models. The proposed model used ECA+GhostNet as the

backbone network and an atrous spatial pyramid pooling network as the

feature enhancement network. The ghost eddy detection path aggregation

network was proposed for feature fusion, which reduced the number of model

parameters and improved the detection performance. The experimental results

showed that GED-YOLO achieved better detection precision and smaller

parameter size. Its mAP was 95.11% and the parameter size was 22.56 MB. In

addition, the test experiment results showed that GED-YOLO had similar eddy

detection performance and faster detection speed compared to the traditional

physical method.

KEYWORDS
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YOLO (GED-YOLO)
1 Introduction

Ocean eddies are important oceanic mesoscale phenomena that present irregular egg-

like shapes in the ocean (Chen et al., 2021a). Their spatial size can reach tens to hundreds of

kilometers, and their lifetimes can last tens to hundreds of days (McWilliams, 2008;

Morrow and Le Traon, 2012). Ocean eddies greatly influence heat exchange, material

transport, sea–air interactions, and atmospheric systems (Wunsch, 1999; Roemmich and

Gilson, 2001; Frenger et al., 2013; Cabrera et al., 2022), and are of great research value in the

fields of ocean meteorology, ocean hydrology, and ocean acoustics (Falkowski et al., 1991;
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Le Sommer et al., 2011). At present, ocean eddy detection methods

are mainly based on satellite remote sensing data, which have the

advantages of being all-weather, large-scale, and time-continuous

(Faghmous et al., 2015). This type of data can provide

comprehensive data sources for eddy detection, including sea

surface temperature data, altimeter data, and flow velocity data.

And the methods for detecting ocean eddies are usually classified

into traditional physical methods and machine learning methods

(Chen et al., 2021b).

Traditional physical detection methods are mainly based on

three principal ideas: temperature anomaly detection, geometric

flow velocity algorithms, and sea surface closed profiles. Among

them, temperature anomaly detection methods detect ocean eddies

by screening and evaluating anomalies in sea surface temperature

data (D’Alimonte, 2009; Karoui et al., 2010; Dong et al., 2011).

Geometric flow velocity algorithms detect eddies based on the

geometric features of the flow fields of ocean eddies (Chaigneau

et al., 2008; Nencioli et al., 2010; Williams et al., 2011). Sea surface

closed profile detection methods detect ocean eddies based on the

closed profile of the altimeter data (Chelton et al., 2007). Isern-

Fontanet et al. (2003) proposed the Okubo-Weiss (OW) algorithm,

which used sea surface height (SSH) data and applied OW

parameters to detect ocean eddies. Chelton et al. (2011) proposed

a method for ocean eddy detection based on SSH data. This method

used the extreme value in the SSH data as the eddy center and the

outermost closed contour as the eddy boundary. And Mason et al.

(2014) proposed a new method for ocean eddy detection and

tracking based on sea level anomaly (SLA) data. Pegliasco et al.

(2022) comprehensively upgraded the Py-Eddy-Tracker (PET)

algorithm, which greatly improved the accuracy of ocean

eddy detection.

With the rapid development of artificial intelligence, deep

learning techniques have been widely used in the field of ocean

remote sensing (Li et al., 2020), and many scholars have detected

ocean eddies using deep learning models. For instance, Lguensat

et al. (2018) applied the U-Net network structure to extract eddy

features and established the EddyNet model. Sun et al. (2021)

established a new deep learning network for detecting and

tracking ocean eddies. And Xu et al. (2021) used three deep

learning methods to detect ocean eddies. Saida et al. (2023)

proposed a new semantic segmentation model for ocean eddy

detection. However, semantic segmentation models have several

shortcomings, such as a large number of parameters, slow operation

speed, and time-consuming annotation processes; thus, some

scholars have started to use object detection models to detect

ocean eddies. Duo et al. (2019) proposed the ocean eddy

detection network (OEDNet), an automatic method for detecting

and locating ocean eddies. Bai et al. (2019) proposed the

streampath-based region convolutional neural network (SP-

RCNN) model for eddy detection based on the features of the

eddy flow field. And Wang et al. (2022b) combined flow velocity

data with SLA data and used the Data-Attention-YOLO (DAY)

model to detect ocean eddies. In the same year, Xia et al. (2022) used

the context and edge association network (CEA-Net) for

submesoscale eddy detection in SAR images.
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Most of the above network models have the advantage of high

accuracy, but compared with the currently lightweight models,

these models have problems such as many model parameters and

complex calculation processes. Therefore, a lightweight ocean eddy

detection model, ghost eddy detection YOLO (GED-YOLO), was

proposed in this paper. GED-YOLO used sea level anomaly data as

data samples and consisted of four parts: backbone network, feature

enhancement network, feature fusion network, and YOLO head.

For the backbone network, ECA+GhostNet was constructed, which

incorporated a new lightweight attention network, the efficient

channel attention plus network (ECA+Net), into GhostNet (Han

et al., 2020). For the feature enhancement network, a small-target

atrous spatial pyramid pooling (ASPP) (Chen et al., 2017) network

was used to reduce the loss of eddy feature information. To better

integrate the eddy features, the ghost eddy detection path

aggregation network (GED-PANet) was proposed based on the

path aggregation network (PANet) (Liu et al., 2018). The GED-

PANet used depthwise separable convolutions (Chollet, 2017) and

transposed convolutions (Dumoulin and Visin, 2016) for eddy

feature fusion, and depthwise separable convolutions and the

Ghost module for eddy feature extraction. To evaluate the

detection performance of GED-YOLO, we compared the model’s

evaluation indices with those of 15 other deep learning models. And

we conducted generalization and uncertainty experiments to check

the robustness and the generalizability of the GED-YOLO. The

usefulness of the proposed model was also assessed through

detection and test experiments. The test experiments were

conducted in the Indian Ocean area, the Atlantic Ocean area, the

Pacific Ocean area, and at a global scale.

In summary, the main contributions of our work are:
• We constructed an ocean eddy dataset based on SLA data in

10°N–30°N, 120°E–150°E. The dataset spanned 2017–2020

and was labeled by experts based on SLA images.

• We proposed a lightweight ocean eddy detection model,

GED-YOLO, which consists of ECA+GhostNet, ASPP,

GED-PANet, and YOLO head. Compared to other deep

learning models, the proposed model was lighter and more

efficient. And the results of eddy detection were also better

than other state-of-the-art models.

• Comparing the eddy detection results of GED-YOLO with

those of the traditional physical method, it is found that the

detection performance of both was similar, and GED-

YOLO had a faster detection speed.
This paper is structured as follows: Section 2 presents a detailed

description of the GED-YOLO structure, including the overall

model structure, each module’s structure, and the loss function.

Section 3 describes the experimental preparation, including the

dataset, the evaluation indices, and the experimental device and

software. The experiments and analyses are described in Section 4,

including ablation experiments, comparison experiments,

generalization experiments, uncertainty experiments, detection

experiments, and test experiments. Finally, Section 5 presents the

conclusions of this paper.
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2 Methods

2.1 Overall structure

Figure 1 shows the overall structure of GED-YOLO, which is

divided into four main parts: backbone network, feature

enhancement network, feature fusion network, and YOLO head.

First, 640 × 640 × 3 images are input into ECA+GhostNet, and

multiple Ghost bottlenecks are used to extract ocean eddy features.

The output of the eddy feature extraction process in the backbone

network is three feature layers of size (80, 80, 40), (40, 40, 112), and

(20, 20, 160). Among them, the feature layer with 160 channels is

input into the ASPP network for eddy feature enhancement, and the

remaining two feature layers are directly input into GED-PANet for

eddy feature fusion. The GED-PANet uses depthwise separable

convolutions, transposed convolutions, and Ghost modules for

eddy feature extraction and eddy feature fusion. And the YOLO

heads receive the eddy feature layers output by the GED-PANet

model with sizes of 20 × 20, 40 × 40, and 80 × 80, then use

depthwise separable convolutions for feature integration and

channel adjustment. Finally, the model is trained using the loss

function consisting of two binary cross-entropy losses (BCELoss)

and a complete intersection over union (CIoU) (Zheng et al., 2020).
2.2 ECA+GhostNet

The regular convolutions produce many similar feature maps

during feature extraction, which are usually considered as

redundant information. This redundant information increases the

model’s parameters and reduces the model’s efficiency. GhostNet

greatly alleviates the feature redundancy issue by using Ghost

modules instead of regular convolutions. The process for the
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Ghost module can be divided into three parts: (1) Use a 1 × 1

convolution for feature integration to build the necessary

concentration feature layer; (2) use multiple depth-wise

convolutions to generate more Ghost feature layers; and

(3) concatenate the feature layers created in the first two stages

and output the concatenated result. The structure of the Ghost

module is shown in Figure 2A.

The Ghost bottleneck is the basic component of GhostNet and can

be used as a reusable feature extraction module. Similar to the basic

residual block in ResNet (He et al., 2016), the Ghost bottleneck also has

the residual module, as shown in Figure 2B. The first Ghost module is

used as an extension layer to increase the number of network channels

and obtain more feature information. The second Ghost module is the

concatenate layer, which reduces channel numbers and contacts with

the shortcut’s feature layer. The Ghost bottlenecks with different strides

are constructed by using depth-wise convolutions to change the size of

the feature layer. And the GhostNet is stacked by multiple Ghost

bottlenecks with different strides.

In GhostNet, there are several attention networks to help the

network perform feature extraction, but the original attention

network has many parameters and is inefficient. This paper

introduces the Efficient Channel Attention network (ECA-Net)

(Wang et al., 2020), which is lighter and more efficient than the

original Squeeze-and-Excitation network (SENet) (Hu et al., 2018).

The ECA-Net uses 1D convolutions to learn channel feature

information. Moreover, ECA-Net uses each channel and its K

nearest neighbor channels to obtain local cross-channel

interaction information. Using this attention network can

improve network efficiency and accelerate network operations.

The adaptive-size convolution kernel K is calculated as follows.

K =
log2 C + b

g

����
����odd (1)
FIGURE 1

Structure of the GED-YOLO model.
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In this formula, C represents the total number of input channels,

|x|odd represents the nearest odd number to x, g is set to 2, and b is set
to 1. Then, the obtained feature layer is activated through the sigmoid

function and multiplied by the original feature layers, as shown in

Figure 3A. The sigmoid activation function is formulated as follows.

Sigmoid(x) =
1

1 + e−x
(2)

ECA-Net is both lightweight and efficient; however, the network

still misses some eddy information when extracting the channel

feature information. Accordingly, a new attention network, ECA

+Net, is proposed, which can obtain more comprehensive channel

feature information than the original network. ECA+Net processes

the input feature layers with average pooling and maximum
Frontiers in Marine Science 04
pooling, learns channel feature information separately by 1D

convolutions, sums the learning results, and activates the feature

layers through the sigmoid function, as shown in Figure 3B. And the

structure of ECA+GhostNet is shown in Table 1.

2.3 ASPP

With the development of new object detection methods, the

backbone network has become increasingly deeper. However, the

increase in the network depth increases the network’s receptive

field, which may lead to a loss of feature information for small-scale

eddies. This paper uses the dilated convolution (Chen et al., 2018)

with small dilation rates to enhance the small-scale eddy features.

This convolution method can obtain more ocean eddy feature
BA

FIGURE 2

(A) Structure of the Ghost module. (B) Structure of the Ghost bottleneck.
B

A

FIGURE 3

(A) Structure of the ECA-Net. (B) Structure of the ECA+Net.
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information by expanding the interval between the convolution

kernels. According to the ocean eddy size, convolutions with

dilation rates of 1, 2, and 3 are selected to construct the small-

target ASPP network.

The ASPP network consists of five modules: a convolution

block, three dilated convolution blocks, and a global average

pooling block. Among them, the convolution block and dilated

convolution blocks are constructed with the convolution + batch

normalization + ReLU6 activation function (CBR) modules. The

convolution kernel size of the convolution block is 1 × 1, and the

convolution kernel size of the dilated convolution blocks is 3 × 3.

Moreover, to prevent the loss of ocean eddy feature information

caused by large-span convolutions, this ASPP network removes the

convolution module and directly outputs the 5 channels’ feature

layers. This operation simplifies the network operation process and

reduces the loss of eddy feature information.
2.4 GED-PANet

To address the insufficient eddy feature extraction performance

of existing lightweight backbone networks, a new feature fusion

network, GED-PANet, is proposed based on the PANet. This

network integrates the eddy features by repeatedly extracting and

concatenating the feature layers that are output by the backbone

network and the feature enhancement network. The structure of

GED-PANet is shown in Figure 4.
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In the bidirectional feature pyramid network (BiFPN) (Tan

et al., 2020), skip connections between different feature layers are

used to improve the feature fusion results. Therefore, in the GED-

PANet, we also use skip connections to improve small-scale and

medium-scale eddy feature layers, as shown by the green lines in

Figure 4. To enhance the feature correlation between ocean eddies

in different layers, the network uses transposed convolutions and

depthwise separable convolutions for cross-layer feature fusion, as

shown by the blue and red lines in Figure 4. Using these cross-layer

sampling methods leads to more diverse eddy features, thus

improving the network performance. And due to the effect of

checkerboard artifacts (Odena et al., 2016), the transposed

convolution with a kernel size of 4 × 4 and a step size of 2 is selected.

The problem of feature fusion clutter is alleviated by adding a

transition layer, as shown by the dotted line region in Figure 4. This

transition layer consists of ECA+Nets, convolution modules, and

Ghost modules. When the network integrates eddy features, the

attention networks produce weights that can be used to determine

the features’ contributions. Then, the network accurately integrates

the eddy features according to the weighted contributions.

Additionally, to reduce the number of network parameters,

GED-PANet uses Ghost modules and depthwise separable

convolutions instead of regular convolutions. The 3 (or 5)

convolution blocks are changed into one 1×1 convolution block

with 2 (or 4) Ghost modules. The 1×1 convolution block is used to

adjust the number of channels, and the Ghost modules are used for

feature fusion and feature extraction.
TABLE 1 Structure of the ECA+GhostNet.

Input Operation Expansion size Output channel ECA+Net Stride

6402 × 3 Focus – 16 – –

3202 × 16 Ghost bottleneck 16 16 – 1

3202 × 16 Ghost bottleneck 48 24 – 2

1602 × 24 Ghost bottleneck 72 24 – 1

1602 × 24 Ghost bottleneck 72 40 1 2

802 × 40 Ghost bottleneck 120 40 1 1

802 × 40 Ghost bottleneck 240 80 – 2

402 × 80 Ghost bottleneck 200 80 – 1

402 × 80 Ghost bottleneck 184 80 – 1

402 × 80 Ghost bottleneck 184 80 – 1

402 × 80 Ghost bottleneck 480 112 1 1

402 × 112 Ghost bottleneck 672 112 1 1

402 × 112 Ghost bottleneck 672 160 1 2

202 × 160 Ghost bottleneck 960 160 – 1

202 × 160 Ghost bottleneck 960 160 1 1

202 × 160 Ghost bottleneck 960 160 – 1

202 × 160 Ghost bottleneck 960 160 1 1
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2.5 Loss function

The loss function of GED-YOLO consists of Classes loss,

Confidence loss, and Location loss. Among them, Classes loss and

Confidence loss use the BCELoss. Classes loss is used to calculate

the classification loss for samples, while Confidence loss is used to

measure the objectness score and the background score. And

Location loss uses the CIoU function to calculate the difference

between the predicted box and the ground truth box. The loss

function for GED-YOLO is as follows, in the formula, Lcls is the

Classes loss, Lconf is the Confidence loss, Llocc is the Location loss,

and l is the weighting factor.

Loss = l1Lcls + l2Lconf + l3Lloc (3)

The BCELoss function is a classical classification loss function

that can effectively classify data samples, and is calculated as follows.

p is the prediction result of GED-YOLO, and y is the ground truth.

BCELoss(p, y) = −½y · log p + (1 − y) · log (1 − p)� (4)

The CIOU, as an excellent regression loss function, takes the

distance between the target and the anchor, the overlap rate, the

scale, and the penalty term as the discriminating standards, which

makes the target box regression more stable, and does not have the

problems such as dispersion during the training process like the IoU

and the GIoU. The calculation formulas are as follows.

LossCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (5)

IoU =
A ∩  Bj j
A ∪  Bj j (6)

a =
v

1 − IoU + v
(7)

v =
4
p2 ( arctan  

wgt

hgt
− arctan  

w
h
)2 (8)
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In the above formulas, IoU is the ratio of the intersection over

the union between the predicted box and the ground truth box,

which can be used to judge the quality of the prediction results. b

and bgt represent the center points of the prediction box and the

ground truth box, respectively, r2 is the Euclidean distance between

the two center points, and c is the diagonal distance of the smallest

enclosed area that contains both the prediction box and the ground

truth box. And av is the predicted box aspect ratio fitting the aspect

ratio of the ground truth box. Among them, a is a balancing

parameter and v is a parameter used to measure the consistency of

the aspect ratio.
3 Experimental preparation

3.1 Dataset

The data used in this paper is Level 4 SLA data published by the

Copernicus Marine Environment Monitoring Service (CMEMS)

(https://marine.copernicus.eu/), which is a global product from

multiple satellite altimeter data fusion. The spatial resolution of

the data is 0.25°, the temporal resolution is one day, and the data

format is NetCDF.

The sea area of 10°N–30°N, 120°E–150°E, which is in the

northwest Pacific Ocean, was selected as the dataset area, as

shown in Figure 5. And the SLA data from 2017–2020 were

selected as the experimental data. This data contains SLA

information for different years, seasons, and months. It can well

reflect the shape characteristics of ocean eddies and has good time

coherence and data complexity. We also plotted the contours of the

data to highlight the eddy shape features. Then, we manually labeled

the dataset using labelImg software, labeling cyclonic eddies as CE

and anticyclonic eddies as AE. LabelImg is a common image

annotation tool for object detection, which is written in Python

and uses Qt as the graphical interface. The software can store

labeled eddies as XML files to support subsequent model training.

In addition, to ensure the accuracy of the ocean eddy annotations,
FIGURE 4

Structure of the GED-PANet.
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we asked experts to review and validate the manual annotations. As

for the labeling criterion of the eddies in the dataset, the experts

made a comprehensive decision by combining the flow velocity data

of the labeled area with the eddy detected by the PET method. Then,

the eddies that were wrongly labeled by the human eye were

manually eliminated to ensure the accuracy of the eddy dataset.

After the experts’ validation, we divided the dataset into the

training part, validation part, and testing part. Training part: data

used for model training. Validation part: data used for model hyper-

parameter tuning. Testing part: data used for model generalizability

judgment. The ratio of the training part to the validation part was

9:1, and the ratio of the training samples (training and validation

parts) to the testing part was also 9:1. Finally, 1182 training images,

132 validation images, and 147 testing images were obtained.
3.2 Evaluation indices

This paper used Precision, Recall, F1 score, Average Precision

(AP), and mean Average Precision (mAP) as the evaluation indices.

The Precision is the proportion of correct model-identified samples

among all model-identified samples. The Recall is the proportion of

correct model-identified samples among all correct samples. The F1

score is the harmonic average of precision and recall. The AP refers

to the area under the precision-recall (P-R) curve, which can be

used to evaluate the robustness and generalizability of the training

results. The mAP is the average of the APs for each class. The

calculation formulas for the evaluation indices are as follows.

Precision =
TP

TP + FP
(9)
Frontiers in Marine Science 07
Recall =
TP

TP + FN
(10)

F1 Score = 2� P � R
P + R

(11)

AP =
Z 1

0
P(R) dR (12)

mAP = o
N
1 AP

N
(13)

In these formulas, TP is the number of correct samples

identified as correct, FP is the number of incorrect samples

identified as correct, FN is the number of correct samples

identified as incorrect, P is the precision, R is the recall, and N is

the number of sample classes. In addition, we calculate the GFLOPS

values for each model. GFLOPS means Giga Floating-point

Operations Per Second, which can be used to measure the

model’s computational complexity.
3.3 Experimental device and software

The experimental algorithms in this paper were built using

Python 3.7 and Pytorch 1.7.1 framework. The program used the

Anaconda3 virtual environment and the CUDA version was 11.0.

As for the software packages, we used Scipy version 1.2.1, Numpy

version 1.17.0, and Matplotlib version 3.1.2. For hardware, the CPU

of the experimental computer is AMD Ryzen 7 5800X8-Core

processor, the memory of the experimental computer is 32 GB,

and the graphics card is NVIDIA GeForce RTX 3080 12G.
FIGURE 5

The dataset area (10°N–30°N, 120°E–150°E).
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4 Experiments and analysis

4.1 Ablation experiments and analysis

To evaluate the impact of each improvement on the proposed

model, we conducted step-by-step ablation experiments based on the

original GhostNet-YOLO model (Chen et al., 2022). Due to the small

size of the eddies relative to the dataset images, this experiment

belongs to small and medium target detection. To better extract the

image features of the eddies, the large patch size of 640 × 640 was

chosen in this experiment. During model training, if the batch size is

too small, it will cause the flat minimizers, which in turn will lead to

the loss function oscillating without converging the ladder, and if the

batch size is too large, it will cause the sharp minimizers, which in

turn will lead to the poor model generalization ability (Keskar et al.,

2016). GPUs can perform better with batch sizes that are powers of 2.

Considering the size of the dataset and the computer hardware, the

batch size was set to 16. In this experiment, the initial learning rate

was set to 0.01, the optimizer was the Adam optimizer, and the

momentum parameter was 0.9. During the training process, we set

the weights to be saved every 5 epochs of training, used the Mosaic

data enhancement method, used the Cosine Annealing Learning

Rate, used single-GPU training mode, did not parallelize the

computation, and set the total epoch to 50. Finally, the training

took 3 hours and 16 minutes. The loss change image of the training

process is shown in the Supplementary Material.

Table 2 shows the changes inmAP for the ablation experiments,

and it can be seen that the use of ECA+GhostNet increased themAP

by 0.7%. The small-target ASPP network enhanced the model’s

ability to extract ocean eddy features, and the addition of this

network increased the mAP by 0.26%. Using the GED-PANet

significantly improved the eddy detection performance, increasing

the mAP by 1.52%. Overall, compared to the mAP of the original

model, the mAP of GED-YOLO increased by 2.48%.
4.2 Comparison experiments and analysis

To evaluate the eddy detection performance of GED-YOLO, we

compared our model to other models. Due to the large differences in

the detection principles of different structure models, some limitations

are imposed on themodels’ quantitative analysis. For example, the two-

stage object detection model generates 9 priority bounding boxes

during the prediction process, while the one-stage model only

generates 3 priority bounding boxes, which creates some limitations
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in analyzing the same modules in different models. Therefore, in this

experiment, we used the YOLO framework’s model as the baseline

model and selected a lot of YOLO models for experiments. The results

of the comparison experiments are shown in Table 3.

First, GED-YOLO had the highest AP values of 94.56% and

95.66% among all models. Compared to YOLOv7 (Wang et al.,

2022a), the AP value of GED-YOLO was 0.39% higher for

anticyclonic eddies and 0.78% higher for cyclonic eddies. Second,

GED-YOLO and YOLOX (Ge et al., 2021) had the highest F1 scores

among all models. Both had F1 scores of 0.87 for anticyclonic eddies

and 0.88 for cyclonic eddies. CenterNet (Duan et al., 2019) had the

highest precision of 95.25% for anticyclonic eddies, and GED-

YOLO had the highest precision of 95.58% for cyclonic eddies.

And the average value of GED-YOLO’s precision is 0.25% higher

than CenterNet’s. YOLOX had the highest recall scores of 83.19%

and 87.03%. However, the difference in the recall between

anticyclonic eddies and cyclonic eddies was 3.84%, which might

lead to an imbalance in the detection of different classes of eddies.

Furthermore, GED-YOLO had the highest mAP among the

comparison models, with an mAP of 95.11%. The model

parameter size of GED-YOLO was 22.56 MB, which was

significantly lighter than traditional models. Although the

parameter size of GED-YOLO was 0.14 MB larger than that of

YOLOv4-tiny, its detection performance was significantly better.

The GFLOPS values of GED-YOLO, YOLOv7-tiny, YOLOv5-s, and

YOLOv4-tiny were significantly lower than those of the traditional

large-scale models. This indicated that these lightweight models had

low computational complexity. And among these lightweight

models, GED-YOLO had a higher mAP value. In addition, the

result of the graphical visualization of the different models’

complexity and mAP is presented in the Supplementary Material.

Figure 6 shows the eddy detection results on January 1, 2017, for

different models. In the figure, the red boxes represent anticyclonic

eddies and the blue boxes represent cyclonic eddies. It can be seen

that the eddies detected by GED-YOLO, YOLOX-S, and YOLOv7

were in high consistency with the eddies in the ground truth.

Overall, the eddy detection performance of GED-YOLO was

better than the other structural models, including CenterNet, SSD

(Liu et al., 2016), and RetinaNet (Lin et al., 2017). GED-YOLO also

had better training results than the other YOLO series models, such

as YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy

et al., 2020), and YOLOv5-s. Moreover, GED-YOLO extracted eddy

features better than DenseNet (Huang et al., 2017), EfficientNet

(Tan and Le, 2019), and MobileNet series (Howard et al., 2017;

Sandler et al., 2018; Howard et al., 2019) models. And compared
TABLE 2 Results of the ablation experiments.

Method ECA+GhostNet ASPP GED-PANet mAP(%)

GhostNet-YOLO – – – 92.63

GhostNet-YOLO ✓ – – 93.33

GhostNet-YOLO ✓ ✓ – 93.59

GhostNet-YOLO ✓ ✓ ✓ 95.11
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with other lightweight models, such as YOLOv4-tiny and YOLOv7-

tiny, GED-YOLO did show better eddy detection performance.
4.3 Generalization experiments
and analysis

For a more comprehensive analysis of GED-YOLO’s eddy

detection performance, we carried out generalization experiments.

We calculated and plotted the graphical visualization of GED-

YOLO eddy detection performance, as shown in Figure 7.

We geometrically computed the GED-YOLO predictions in the

testing part to obtain the coordinates (X, Y) of the eddy centers.

After that, the predicted X-values and Y-values were compared with

the center points calculated by Ground truth, and the A and B

graphs were obtained. It can be seen in Figure 7A that there were

significantly fewer points in the range of X-values from 0 to 160

than in the other ranges. This was because the dataset had land in

that range. And in Figure 7B, the points in the range of 0 to 320 were

less than those in the range of 320 to 640. This was because the

range of 0 to 320 was located in the sea area of 10°N to 20°N, and

the number of eddies near the equator was less than that in the

higher latitudes.

As can be seen from C and D in Figure 7, GED-YOLO

performed well in precision and recall and had a good balance in

eddy detection. E and F in Figure 7 are the F1 Score and score

threshold curves. These two curves showed that GED-YOLO was
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stable in the eddy detection. Therefore, GED-YOLO showed good

performance in eddy detection and index parameters evaluation.
4.4 Uncertainty experiments and analysis

Currently, deep learning models have been fully applied in

various fields, but the models still have some uncertainty in the

process of prediction (Gawlikowski et al. 2023). Therefore, to

sufficiently test the robustness and generalizability of the model,

we carried out model uncertainty experiments on the GED-YOLO.

Firstly, we carried out the uncertainty experiment of the

experimental data. We first added noise to the images of 2017

and 2019 in the dataset and mixed them with the original 2018 and

2020 images to produce a dataset with 50% noise content. And we

added noise to the images of 2018 and 2020 to make a dataset with

100% noise content. Then, we obtained three datasets with 0%, 50%,

and 100% noise content and retrained these datasets separately

using GED-YOLO. The mAP values of GED-YOLO on 0%, 50%,

and 100% were 95.11%, 95.14%, and 95.04%, respectively. The

detection results for each dataset are shown in Figure 8. It can be

seen that the detection performance of GED-YOLO on the same

dataset for original and noisy images was stable, and the eddy

detection results were highly consistent. As shown in Figures 8A

and D, the GED-YOLO trained on the dataset with 0% noise

content had the same eddy detection results on both images.

However, there was still uncertainty in GED-YOLO for training
TABLE 3 Results of the comparison experiments.

Method AP
(%)

F1 score Precision
(%)

Recall
(%)

mAP Param
size

GFLOPS

AE CE AE CE AE CE AE CE (%) (MB) (G)

CenterNet 89.31 88.54 0.76 0.75 95.25 94.05 63.33 63.05 88.92 124.60 54.83

RetinaNet 89.30 87.43 0.81 0.80 92.38 90.79 71.87 71.13 88.37 137.04 95.71

SSD 86.77 86.69 0.70 0.66 93.04 92.86 56.06 51.48 86.73 90.58 137.03

YOLOv3 88.69 89.99 0.81 0.83 89.77 86.53 73.26 80.35 89.34 234.71 77.64

YOLOv4 91.97 92.59 0.85 0.85 90.76 91.42 80.49 79.35 92.28 243.92 70.96

YOLOv4-tiny 86.36 85.89 0.81 0.83 89.34 88.58 74.14 77.65 86.12 22.42 8.09

DenseNet-YOLO 91.08 91.54 0.82 0.78 91.24 94.29 74.11 67.04 91.31 168.91 53.35

EfficientNet-YOLO 92.98 93.54 0.86 0.87 89.95 89.92 82.65 83.94 93.26 154.23 29.44

MobileNetv1-YOLO 91.23 93.62 0.83 0.86 91.55 94.35 75.91 78.92 92.42 154.62 34.51

MobileNetv2-YOLO 92.95 91.78 0.87 0.85 93.37 91.26 81.22 79.48 92.36 147.41 31.71

MobileNetv3-YOLO 92.32 92.82 0.86 0.86 92.69 92.64 80.49 80.35 92.57 150.95 31.01

YOLOv5-s 92.91 92.22 0.86 0.85 92.22 91.12 80.63 80.05 92.56 26.80 8.80

YOLOX-s 92.83 93.21 0.87 0.88 90.84 89.53 83.19 87.03 93.02 34.10 13.38

YOLOv7 94.17 94.88 0.87 0.87 94.12 94.35 81.17 79.96 94.52 141.91 52.57

YOLOv7-tiny 91.92 90.88 0.85 0.82 90.72 88.48 79.45 77.10 91.40 22.95 7.27

GED-YOLO 94.56 95.66 0.87 0.88 94.22 95.58 81.33 82.07 95.11 22.56 7.38
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on different datasets. As can be seen from A, B, and C in Figure 8,

there were still small differences in eddy detection by GED-YOLO

for the different datasets. And it can be found from the figure that

there were subtle differences in the prediction of the eddy size by the

GED-YOLO model. To better balance the uncertainty, we

calculated the average value and sample standard deviation of the

mAP for different datasets. Ultimately, the mAP of the data

uncertainty experiment was 95.10%, and the sample standard

deviation of the mAPs was 0.0513.

Secondly, we carried out the model uncertainty experiment for

GED-YOLO. We perturbed the model weights by loading the pre-

trained weights. Before the experiment, we trained the VOC 2012

dataset and our dataset to produce the pre-trained weights.

Different from the direct training model, loading the pre-trained

weights can make the original model weights perturbed and make

the model weights more orderly in training. We conducted

uncertainty experiments using the model without loaded pre-

trained weights, the model loaded with VOC 2012 pre-trained

weights, and the model loaded with our dataset’s pre-trained

weights. And we observed the model uncertainty by comparing
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the training results with different weights. It can be seen in Table 4

that the pre-trained weights of the VOC 2012 dataset and our

dataset slightly improved the training results. And the mAP of the

freeze training model is smaller than that of the unfreeze training

model. This was because the weight of the backbone network didn’t

change during the freezing training, resulting in a slower increase in

themAP. The averagemAP of the freeze training result was 94.87%,

and the sample standard deviation was 0.0346. The average mAP of

the unfreeze training result was 95.13%, and the sample standard

deviation was 0.0208.

We also conducted the distributional uncertainty experiment.

In this experiment, we divided the training samples and the testing

part according to the ratios of 9:1, 8:2, and 7:3. To make the data of

training samples and testing part interchangeable, we redivided the

dataset. Specifically, we redistributed data from the training samples

to the testing part and retrained the model. We analyzed the

uncertainty by training on datasets of different scales and

divisions. As can be seen in Table 5, the training results with a

ratio of 9:1 were better than those with a ratio of 8:2, while the

training results with a ratio of 8:2 were better than those with a ratio
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FIGURE 6

The detection visualization results of comparison experiments on January 1, 2017. (A) Ground truth. (B) CenterNet. (C) RetinaNet. (D) SSD.
(E) YOLOv3. (F) YOLOv4. (G) YOLOv4-tiny. (H) DenseNet-YOLO. (I) EfficientNet-YOLO. (J) MobileNetv1-YOLO. (K) MobileNetv2-YOLO.
(L) MobileNetv3-YOLO. (M) YOLOv5-s. (N) YOLOX-s. (O) YOLOv7. (P) YOLOv7-tiny. (Q) GED-YOLO.
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of 7:3. In addition, we found that redividing the dataset caused

uncertainty in GED-YOLO. So we calculated mAP average values

and sample standard deviations as experimental results for datasets

with ratios of 9:1, 8:2, and 7:3. The mAPs of the distributional

uncertainty experiments were 95.10%, 94.24%, and 93.56%, and the

sample standard deviations were 0.0208, 0.0351, and

0.0404, respectively.
4.5 Detection experiments and analysis

In this paper, we also conducted detection experiments to test

the usefulness of GED-YOLO. We selected four different deep

learning models, CenterNet, YOLOv4, YOLOX-s, and GED-
Frontiers in Marine Science 11
YOLO, for detection experiments. And the data for the area of

10°N–30°N, 120°E–150°E in 2021 were selected as experimental

data. We used data that were not in the dataset for these

experiments to better test the usefulness of the models. The

detection results for different periods are shown in Figure 9. The

results show that GED-YOLO and YOLOX-s detected more ocean

eddies than YOLOv4 and CenterNet, and the detection confidences

of GED-YOLO and YOLOv4 were higher than those of YOLOX-s

and CenterNet.

Figure 10 presents the eddy statistics detected by the four

methods based on 2021 data. YOLOX-s and GED-YOLO detected

more ocean eddies than YOLOv4 and CenterNet. However,

compared with the results of the other three models, the

detection results of YOLOX-s showed large anomalous
B

C D
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FIGURE 7

The Graphical visualization of GED-YOLO detection performance. (A) Predicted results for the eddies center points coordinate X. (B) Predicted
results for the eddies center points coordinate Y. (C) Results of AP graphical visualization of anticyclonic eddies. (D) Results of AP graphical
visualization of cyclonic eddies. (E) Results of F1 graphical visualization of anticyclonic eddies. (F) Results of F1 graphical visualization of cyclonic
eddies.
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fluctuations from July to November. Furthermore, the proportion

of different classes of eddies detected by YOLOX-s differed by

approximately 2.4% from the results of the other models, as shown

in Table 6. The main reason for this anomaly was the large

divergence in the recall of YOLOX-s for different classes of

eddies. In contrast, the eddy detection results of the other three

models were more stable. In general, GED-YOLO had good

detection performance, suggesting that GED-YOLO could be used

as a reliable deep learning ocean eddy detection model.

4.6 Test experiments and analysis

4.6.1 Regional test experiments
To test the accuracy of GED-YOLO in detecting eddies, this

study compared the detection results of GED-YOLO with those of

the physical-based method. The criterion for GED-YOLO to detect

ocean eddies is the geometric features of the closed contours of the

SLA data, which belongs to the category of Eulerian eddy detection.

Therefore, for a better quantitative comparison, we chose the PET

method, which detects ocean eddies also by the sea surface closed

profiles, for experiments. In addition, to evaluate the experiment

results, we manually examined the different detected eddies by the

geostrophic flow.
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The detection results for the Indian Ocean area (30°S–45°S,

100°E–120°E) on December 1, 2021, are shown in Figure 11. In this

figure, the black dotted line areas are the areas detected by GED-

YOLO but not by the PET, the black solid line areas are the areas

detected incorrectly by GED-YOLO, the green dotted line areas are

the areas detected by the PET but not by GED-YOLO, and the green

solid line areas are the areas detected incorrectly by the PET.

The figure shows that the boundary detection performance of

GED-YOLO was better than that of PET, as shown in regions 1

and 4 in Figure 11. However, due to insufficient contour drawings,

GED-YOLO had poor detection performance for small-amplitude

eddies. As shown in region 3 in Figure 11, the image failed to draw

a closed contour feature for the eddy in this area, resulting in the

loss of eddy detection. In addition, GED-YOLO had eddy

detection errors in areas near the mainland. The errors in the

regions were caused by the impact of the coastline and seafloor

topography, causing sea surface anomalies and creating pseudo-

eddies, which eventually led to eddy detection errors. As shown in

region 2 in Figure 11, the complex coastline led to the formation of

strong opposite currents that produced sea surface anomalies

similar to eddies, resulting in eddy detection errors. In the open

ocean, GED-YOLO could remove the pseudo-eddies, as shown in

region 5 in Figure 11. In terms of the eddy detection speed, PET
B C
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FIGURE 8

Detection results of data uncertainty experiments. (A) Results of detecting the original image with 0% noise dataset. (B) Results of detecting the
original image with 50% noise dataset. (C) Results of detecting the original image with 100% noise dataset. (D) Results of detecting the noisy image
with 0% noise dataset. (E) Results of detecting the noisy image with 50% noise dataset. (F) Results of detecting the noisy image with 100% noise
dataset.
TABLE 4 Experimental results of the model uncertainty.

Method Freeze training weight loading APAE(%) APCE(%) mAP(%)

GED-YOLO – – 94.56 95.66 95.11

GED-YOLO – VOC 2012 94.75 95.55 95.15

GED-YOLO – Our dataset 94.65 95.63 95.14

GED-YOLO ✓ - 94.37 95.29 94.83

GED-YOLO ✓ VOC 2012 94.50 95.28 94.89

GED-YOLO ✓ Our dataset 94.42 95.36 94.89
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needed 2–3 seconds to detect ocean eddies for one day, while

GED-YOLO only needed 0.14 seconds. We also counted the

detection results of these two methods for December 2021 and

calculated the correlation coefficient. The correlation coefficient is

calculated as follows.
Frontiers in Marine Science 13
corr(x, y) = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − �y)2
q (14)

The statistical results are shown in Figure 12. The number of

ocean eddies detected by the two methods was highly consistent.
TABLE 5 Experimental results of the distributional uncertainty.

Method Training samples: Testing part Redivision APAE(%) APCE(%) mAP(%)

GED-YOLO 7:3 – 93.15 93.89 93.52

GED-YOLO 7:3 ✓ 93.25 93.95 93.60

GED-YOLO 7:3 ✓ 93.32 93.82 93.57

GED-YOLO 8:2 – 93.89 94.51 94.20

GED-YOLO 8:2 ✓ 93.79 94.75 94.27

GED-YOLO 8:2 ✓ 93.76 94.72 94.24

GED-YOLO 9:1 – 94.56 95.66 95.11

GED-YOLO 9:1 ✓ 94.65 95.59 95.12

GED-YOLO 9:1 ✓ 94.68 94.47 95.08
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FIGURE 9

The detection results of four models. (A) CenterNet. (B) YOLOv4. (C) YOLOX-s. (D) GED-YOLO.
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And the correlation coefficient between GED-YOLO and PET was

0.93, which means that the two methods had a strong correlation.

For the Atlantic Ocean area (30°N–50°N, 10°W–40°W) and the

Pacific Ocean area (20°N–40°N, 120°W–150°W), GED-YOLO also

showed good ocean eddy detection performance, and results of the

test on December 1, 2021, are shown in Figure 13. As in the Indian

Ocean test experiment, in Figure 13, the solid line areas indicate the

areas that were incorrectly detected by the two methods, and the

dotted line areas indicate the areas in which one method detected

more eddies than the other method. In the open ocean, the

detection performance of these two methods was similar, and in

the boundary areas, GED-YOLO had a better detection

performance than PET. The detection speed of GED-YOLO was

0.14 seconds for one day of data, which was much faster than the 2–

3 seconds needed by PET for the same amount of data. However,

the ability of GED-YOLO to detect small-amplitude eddies was still

poor due to insufficient contour drawing.

In addition, we also carried out experiments for the eddy

detection method based on another physical principle. The

Lagrangian eddy detection method (Haller and Beron-Vera, 2013)

is one of the most trustworthy methods for eddy detection based on

the rotating flow field characteristics of eddies. We compared the

detection results of the Lagrangian, PET, and GED-YOLO, as

shown in Figure 14. It can be seen in the figure that the

Lagrangian method detected eddies with smoother boundaries
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than PET, and the size of the detected eddies is relatively smaller.

Although the number of eddies detected by the Lagrangian method

was less than that of PET and GED-YOLO, the accuracy of eddy

detection was higher. As shown in region 1 of the figure, both PET

and GED-YOLO showed errors in eddy detection. This was due to

the sea surface anomalies caused by the complex currents in the

region, which produced a pseudo-eddy. And this pseudo-eddy

behaved the same as normal eddy in the SLA data, which in turn

led to the detection error of PET and GED-YOLO. Moreover, the

Lagrangian method was more rigorous in confirming the eddy

boundary. As shown in region 2 and region 3, the Lagrangian

method could detect the eddy boundaries accurately based on the

flow velocity data, while the boundaries detected by the PET

method were not appropriate enough. And GED-YOLO did not

detect eddies in these two regions. In the boundary region, the

detection performance of GED-YOLO was better than that of

Lagrangian and PET. As shown in region 4 of Figure 14C, GED-

YOLO detected the eddy, while the other two methods did not. This

was due to eddies in the boundary region, some of their data being

outside the experimental area, which made the computation of the

physically-based models incomplete, leading to missing detections.

GED-YOLO detected ocean eddy based on the eddy feature in the

images, so it did not necessarily require complete eddy data.

Therefore, in future work, we will fuse SLA data with velocity

data to detect ocean eddies more accurately.

4.6.2 Global test experiments
To adequately assess the model’s accuracy and usefulness, we

conducted test experiments on a global scale. We divided the global

data for January 1, 2022, into 108 regions based on different sea

areas, detected the eddies separately, and combined the detection

results. The detection results are shown in Figure 15. PET detected

2289 anticyclonic eddies and 2387 cyclonic eddies, while GED-

YOLO detected 2371 anticyclonic eddies and 2456 cyclonic eddies.
FIGURE 10

Statistical chart of eddy detection results in 2021.
TABLE 6 Statistical table of the total number of detected eddies in 2021.

Method AE CE All

CenterNet 4032 (46.57%) 4626 (53.43%) 8658

YOLOv4 4428 (47.44%) 4905 (52.56%) 9333

YOLOX-s 4876 (44.76%) 6017 (55.24%) 10893

GED-YOLO 5178 (47.35%) 5757 (52.65%) 10935
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Among them, 1902 anticyclonic eddies and 1956 cyclonic eddies

were detected by both methods, demonstrating consistency rates of

81.63% and 80.78%, respectively.

It can be seen in Figure 15 that the eddy detection performance

of GED-YOLO was better than that of PET in the area of

10°S–10°N. And GED-YOLO detected the 108 areas in 15

seconds, which was much faster than the PET’s. In addition, PET

required complex calculations, such as high-pass filtering and

automatic interpolation, to detect ocean eddies. Due to these

computational limitations, PET was unstable and often unusable.

While GED-YOLO solved this shortcoming well, it could detect

ocean eddies quickly and stably.
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5 Conclusion

In this study, GED-YOLO, a lightweight and efficient deep

learning ocean eddy detection model, was proposed. This model

used ECA+GhostNet as the backbone network, a small-target ASPP

model as the feature enhancement network, and GED-PANet as the

feature fusion network. The SLA data acquired in the region of

10°N–30°N, 120°E–150°E from 2017–2020 were selected as the

dataset. The experimental results showed that the mAP of GED-

YOLO reached 95.11%, and the model parameter size was 22.56

MB. Compared with other deep learning models, GED-YOLO had

better detection performance and lighter model parameter size. And
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FIGURE 11

Test results in the Indian Ocean area. (A) GED-YOLO. (B) PET. (C) Geostrophic flow. (D) Regional geostrophic flow.
FIGURE 12

Statistical chart of test results in the Indian Ocean area.
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the robustness and the generalizability of the model were also

confirmed well by generalization and uncertainty experiments. In

test experiments, GED-YOLO showed good eddy detection

performance in other areas, including the Indian Ocean area, the

Atlantic Ocean area, the Pacific Ocean area, and a global scale.
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Therefore, GED-YOLO could be applied as a lightweight and

reliable deep learning model for ocean eddy detection.

Although GED-YOLO could quickly and stably detect ocean

eddies, the model still had shortcomings in small-amplitude eddy

detection and eddy boundary determination. Therefore, the
B
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FIGURE 14

The eddy detection results of the Lagrangian method, the PET method, and the GED-YOLO method. (A) Results of the Lagrangian method.
(B) Results of the PET method. (C) Results of the GED-YOLO method. (D) Regional geostrophic flow.
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FIGURE 13

Test results in the Atlantic Ocean area and the Pacific Ocean area. (A) GED-YOLO. (B) PET. (C) Regional geostrophic flow.
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development of a more accurate and comprehensive deep learning

model for detecting ocean eddies has become the focus of our future

research. In future work, we will produce a more detailed eddy

dataset to highlight the features of small-amplitude eddies. Then, we

will attempt to extract the boundaries of eddies by using instance

segmentation models. In addition, we will attempt to fuse

multisource and multitype data to detect ocean eddies

more accurately.
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