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Introduction: The collapse of macroalgal habitats is altering the structure of

benthic communities on rocky shores globally. Nonetheless, how the loss of

canopy-forming macroalgae influences the structure of epilithic microbial

communities is yet to be explored.

Methods: Here, we used experimental field manipulations and 16S-rRNA-gene

amplicon sequencing to determine the effects of macroalgal loss on the

understory bacterial communities and their relationship with epiphytic bacteria

on macroalgae. Beds of the fucoid Hormosira banksii were exposed to different

levels of disturbance resulting in five treatments: (i) 100% removal of Hormosira

individuals, (ii) 50% removal, (iii) no removal, (iv) a procedural control that

mimicked the removal process, but no Hormosira was removed and (v)

adjacent bare rock. Canopy cover, bacterial communities (epilithic and

epiphytic) and benthic macroorganisms were monitored for 16 months.

Results: Results showed that reductions in canopy cover rapidly altered

understory bacterial diversity and composition. Hormosira canopies in 50%

and 100% removal plots showed signs of recovery over time, but understory

epilithic bacterial communities remained distinct throughout the experiment in

plots that experienced fullHormosira removal. Changes in bacterial communities

were not related to changes in other benthic macroorganisms.

Discussion: These results demonstrate that understory epilithic bacterial

communities respond rapidly to environmental disturbances at small scales

and these changes can be long-lasting. A deeper knowledge of the ecological

role of understory epilithic microbial communities is needed to better

understand potential cascading effects of disturbances on the functioning of

macroalgal-dominated systems.
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1 Introduction

Disturbances play an important role in shaping and

maintaining ecological community structure and diversity (Pickett

and White, 1985; Fraterrigo & Rusak, 2008; Peters et al., 2011).

Terrestrial and marine ecosystems are facing substantial challenges

as a result of the recent increase in the frequency and intensity of

disturbance events, causing changes in resource availability (Wilson

and Tilman, 1993; Peters et al., 2011), genetic diversity (Banks et al.,

2013; Coleman et al., 2020) and local environmental conditions

(Castorani et al., 2018). In particular, disturbances affecting

dominant habitat-forming species can trigger detrimental

cascading effects on associated assemblages of species (e.g.

understory species) that benefit from the resources and

environmental conditions they provide (Brooker et al., 2008;

Takolander et al., 2017; Castorani et al., 2018; Narwani et al.,

2019). These changes may, in turn, generate stabilizing feedback,

negatively affecting the recovery of habitat-formers and, hence,

locking the system into an alternative degraded state (Bever et al.,

1997; Folke et al., 2004; Hamman and Hawkes, 2013; van der Putten

et al., 2013).

On rocky shores, declines of habitat-forming macroalgae due to

natural or human disturbances (e.g., decrease in water quality,

increased herbivore pressure, storms or trampling) can lead to

drastic changes to understory benthic community structure and

ecological interactions (Witman, 1987; Benedetti-Cecchi et al.,

2001; Marzinelli et al., 2012; Crowe et al., 2013 and Castorani

et al., 2018). In particular, nutrient loading and sedimentation rates

(Strain et al., 2014) have been demonstrated to promote the shift in

dominance from canopy- to turf-forming or invasive algal species

(Valentine & Johnson, 2003; Gorman et al., 2009). Over-

exploitation of high trophic-level species can also facilitate the

formation of barren grounds dominated by encrusting coralline

or turfing algae through the release of herbivores from predation

(Poore et al., 2012; Filbee-Dexter and Scheibling, 2014; Ling et al.,

2015; Coleman & Kennelly, 2019). In many circumstances, these

changes are seemingly ‘locked in’ (i.e. achieve hysteresis), though

the mechanisms behind this are largely unknown. Bacterial

communities are a largely ignored component of understory

biotic communities that may be affected by the decline of canopy-

forming macroalgae and may, in turn, facilitate such impacts.

On intertidal rocky shores, epilithic bacterial communities grow

in dense biopolymer extracellular biofilms that can extend across

large areas or as associated epiphytic communities on

macroorganisms (Flemming & Wuertz, 2019). Biofilms provide

microorganisms an active area of nutrient exchange and suitable

environmental conditions (Flemming et al., 2016) and play an

important role in resource acquisition (e.g., CO2, NO3
-, and

prokaryotic-derived vitamins), defence against fouling (Rao et al.,

2007), morphological development and recruitment of

invertebrates and macroalgae (Joint et al., 2002; Patel et al., 2003;

Hadfield, 2011; Pedicini et al., 2023). They also fuel rocky shore

food webs (Hawkins and Hartnoll, 1983) by directly supporting

grazing species (e.g., gastropods) (Underwood, 1978). Changes in

grazer assemblages, in turn, can determine the recruitment, growth

and survival rates of macroalgae (Hawkins, 1981 and Coleman
Frontiers in Marine Science 02
et al., 2006). However, changes in the abundance of grazing

macrobenthic organisms (Arboleda-Baena et al., 2022), shifts in

the availability of biogenic settlement surfaces (e.g., calcified

structures or understory algal turfs, Bulleri et al., 2018; Roush &

Garcia-Pichel, 2020) and antibacterial activities (Iguchi et al., 1982)

may also play an important role in shaping epilithic bacterial

biofilms. Canopy forming-macroalgae can also directly influence

the adjacent epilithic bacterial community through the provision of

resources (e.g., DOC, Elsherbini et al., 2023), protection against

environmental factors (Pocklington et al., 2019), release of

secondary metabolites (Egan et al., 2013) or a direct transfer of

free-living bacteria to the substrata (Bulleri et al., 2018). Thus,

changes to understory epilithic bacterial biofilms may have

substantial direct and/or indirect impacts on the biodiversity and

functioning of intertidal rocky shores.

Hormosira banksii (Turner, Decaisne, 1842; hereafter

Hormosira) is a perennial fucoid macroalga that is often the

dominant habitat-forming species on intertidal rocky shores of

temperate Australasia (Kain et al, 2015; Lilley & Schiel, 2006).

Hormosira forms a dense monotypic canopy of several hundred

individuals per square meter (Schiel & Taylor, 1999) and directly

influences the presence of other algae and invertebrates through the

amelioration of environmental variables such as temperature and

desiccation (Keough and Quinn, 1998; Schiel and Lilley, 2007).

Although Hormosira can tolerate fluctuations in temperature and

desiccation (Kain, 2015), it is susceptible to natural and

anthropogenic disturbances such as severe storms (Underwood,

1998), poor water quality (Fairweather, 1990; Bellgrove et al., 2010;

Cameron et al., 2021), sedimentation and trampling (Povey and

Keough, 1991; Keough and Quinn, 1998; Schiel and Taylor, 1999).

The recovery of Hormosira following such disturbances is often

slow (Bellgrove et al., 2010; Lewis et al., 2021) and dependent on the

extent of canopy damage (Underwood, 1998) and subsequent

competitive exclusion by coralline turfs (Bellgrove et al., 2010). It

is unclear, however, how canopy disturbance influences understory

epilithic bacterial communities and, in turn, how such changes

regulate macroalgal recovery. Recent studies have shown that

human disturbances such as urbanisation and the addition

of nutrients alter the structure of epilithic bacterial communities

underneath intertidal and subtidal macroalgal canopies (Elsherbini

et al., 2023) and, indirectly, macroalgal recruitment (Pedicini

et al., 2023).

Here, we performed a manipulative experiment to test the

effects of Hormosira canopy disturbance on the understory

epilithic bacterial communities. We manipulated the density of

Hormosira in the field, resulting in five treatments: (i) 100%

removal of Hormosira individuals, (ii) 50% removal, (iii) no

removal, (iv) a procedural control that mimicked the removal

process, but no Hormosira was removed and (v) adjacent bare

rock. We characterised the bacterial communities and benthic

understory macroorganisms, and quantified canopy cover over

1.5 years. We examined the recovery of the canopy and changes

over time in the structure of microbial, invertebrate and macroalgal

communities to test the following hypotheses: (i) that understory

epilithic bacterial communities would change after canopy

disturbance relative to controls, (ii) that the magnitude of change
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and rate of recovery would depend on the level of disturbance, with

the greatest changes and slowest recovery for assemblages under the

full canopy removal treatment. In addition, (iii) we also determined

whether observed changes in epilithic bacterial communities were

influenced by shifts in other understory macroorganisms such as

grazers or sessile species (i.e., coralline algae or algal understory and

turfs). Finally, iv) we assessed whether Hormosira plays an

important role in the establishment and structuring of the

understory epilithic bacterial community via transfer of taxa from

its surface.
2 Materials and methods

2.1 Experimental manipulation of
Hormosira

This study was carried out on an east-facing flat rocky platform

at Coalcliff, New South Wales, Australia (-34.248°, 150.978°) and

lasted for 16 months. At this site, thalli ofHormosira were ~15cm in

length, forming a bed of 100% canopy cover in interspersed patches

of ~150m2. The experiment was setup in October 2018 and

consisted of 25 randomly selected 50x50cm plots, ~3m apart,

randomly assigned to five experimental treatments that were

spatially interspersed on the rocky platform. Disturbance

treatments included plots where Hormosira canopy was 1)

completely (100% removal, zero density of Hormosira) or 2)

partially removed (50% removal and 43.5 ± 3.2 ind/m2 SE of

Hormosira density), 3) undisturbed Hormosira control plots (0%

removal), 4) procedural control plots where the canopy was

disturbed through physically handling and shaking H. bansksii,

simulating the manual disturbance done in the disturbance

treatments, but not removed (PC, both control treatments with

Hormosira density of 87 ± 6.4 ind/m2 SE), and 5) plots with bare

rock where Hormosira was not present (n=5 for each treatment).

The epilithic microbial community was sampled during low

tides, two (Time 1: 6/11/2018), three (Time 2: 26/11/2018), twenty-

eight (Time 3: 19/5/2019) and sixty-one weeks (Time 4: 8/1/2020)

after the initial disturbance. Sampling times were chosen to

determine short (T1 and T2) and long term (T3 and T4)

responses of both Hormosira and the epilithic bacterial

community. Due to the harsh environmental conditions of the

intertidal, It was expected that monitoring at a short term would

provide us with valuable information on the immediate changes of

bacterial communities post-disturbance. Comparatively, long-term

sampling it was thought that due to Hormosira’s known slow

growth rate, potential recovery to produce new canopy cover

would only occur after approximately ~ 1 year post disturbance

(as seen in Pocklington et al., 2019; Cameron et al., 2021). At each

time, an epilithic bacterial sample was taken by swabbing the

substratum within a 5x5 cm quadrat at each plot for 30 seconds

using a sterile cotton swab (Marzinelli et al., 2015). To ensure that

the swabbed area of the substratum was only sampled once during

the experiment, each plot was divided into four quarters using the

diagonals and the 5x5cm quadrat was placed in each quarter once.

In plots where Hormosira was not removed (i.e., control and
Frontiers in Marine Science 03
procedural control) or was only partially removed (50% cover), a

second bacterial swab sample was also taken from the surface of

Hormosira laminae (similar area as above) to compare understory

epilithic and host-associated epiphytic bacterial communities. Prior

to swabbing, benthic or algal surfaces were rinsed with 0.22 µm

filtered seawater to remove any unattached epibionts. Swabs were

stored immediately inside sterile cryogenic tubes and liquid

nitrogen, transported to the University of New South Wales,

Sydney; and kept at -80°C until DNA extractions were performed.

Unsuccessful processing during molecular analysis, due to

contamination during DNA extractions and/or low PCR

amplification, resulted in different number of samples among

times (epilithic: Time 1: n = 25; Time 2: n = 24; Time 3: n = 19;

Time 4: n = 19; and epiphytic: Time 1: n = 14; Time 2: n = 12; Time

3: n = 10; Time 4: n = 8).
2.2 Benthic macroorganisms

Following the initial disturbance, the i) percent canopy cover of

Hormosira and ii) organisms comprising the benthic understory

(i.e., the substratum area that was swabbed) in each plot were

monitored through photographic techniques at the same sampling

times as the microbial swabs. Hormosira canopy cover was

quantified (as plots with 50% density removal might still have

high canopy cover) via the online machine learning engine,

CoralNet, which performs a semiautomatic point annotation,

based on specified classifying labels (Beijbom et al., 2015). These

classifying labels were verified through the Collaborative and

Automated Tools for Analysis of Marine Imagery classification

scheme (CATAMI; v.1.2, Althaus et al., 2015) and included point

annotations for seven taxa/groups: Hormosira, calcareous

encrusting tube worms (TW), articulated calcareous red algae

(ACR), brown laminate macroalgae (BLM), turf algae (TA),

grazers (i.e., gastropods), calcareous crustose algae (CCA: healthy

and BCCA: bleached) and two abiotic variables, sand and rock

(examples of each category can be seen in Figure S1).
2.3 DNA processing and bioinformatics

DNA was randomly extracted from each swab sample using the

Powersoil DNA Isolation Kit (Mo Bio Laboratories #12888-100)

following the manufacturer guidelines. DNA extracts were stored in

a freezer at -20°C until PCR amplification with primers 341F (5’

-CCTACGGGNGGCWGCAG- 3’) and 805R (5’ -GACTACHV

GGGTATCTAATCC- 3’) which target the V3-V4 regions of the

16S rRNA gene (Klindworth et al., 2013). Agarose gel

electrophoresis, Nanodrop 1000 and the Qubit 2.0 fluorometer

(Thermo Fisher Scientific) were used to check the quality and

quantity of the amplicons before being sent for sequencing in an

Illumina MiSeq 2000 Platform at the Ramaccioti Centre

for Genomics.

Gene sequence reads were quality filtered without specified

maximum expected errors (as suggested by Prodan et al., 2020) and

maximum truncation lengths assigned to forward and reverse reads
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independently. Trimming parameters for maximum truncation

were decided upon inspection of the quality error plots of both

reads with any base pairs with a median Q score below 30 removed.

Using the untrimmed sequences, the maximum error rates were

calculated and included in the DADA2 denoising model. Sample

inference was performed using the DADA2 denoising algorithm

and all resulting denoised paired reads were merged to form unique

amplicon sequence variants (ASV). These unique ASV sequences

were used to construct an abundance per sample table and

subsequently used to detect and remove chimeric sequences

(consensus method; Callahan et al., 2016). An initial taxonomic

assignment to the ASV table without chimeric sequences was done

using SILVA v. 138.1 (Quast et al., 2013) to increase the detection of

chloroplasts and mitochondrial ASV. These were removed from the

ASV table, and a second taxonomic assignment was done using the

Genome Taxonomy Database, which provides a higher taxonomic

resolution (GTDB, Parks et al., 2022). The DADA2 pipeline was

performed using R v.4.1.1 and the dada2 package v.1.26 (Callahan

et al., 2016). An average of 76.3%± 0.65 SE of total reads was kept at

the end of the bioinformatic pipeline.

Two separate data subsets were created from the original

bacterial ASV table: (1) samples taken exclusively from biofilms

in the benthic substrate (hereafter Dataset 1, 87 samples in five

disturbance treatment levels) and (2) samples taken from host-

associated epiphytic bacterial communities on the surface of

Hormosira and samples from the nearby understory epilithic

bacterial community within the same plot (hereafter Dataset 2, 44

samples from treatments only including 50% and 0% Hormosira

removal treatments). Statistical analyses of each of the two data

subsets were performed separately. Singletons and sequences with

low abundance (i.e., <0.01% of the total) were removed and data sets

were normalized independently using DESeq2’s median of rations

method to account for heterogeneous library sizes (DESeq2,

package phyloseq v.1.40.1; Love et al., 2014). Abundance tables for

both analyses were independently square-root transformed before

statistical analyses (Swift et al., 2023). An ASV accumulation curve

was also constructed for each data subset to evaluate the sampling

effort to effectively describe the overall bacterial community in the

experiment (package vegan v.2.6-4, Oksanen et al., 2013).
2.4 Statistical analyses

2.4.1 Bacterial communities
Alpha diversity indices assessing observed bacterial richness

(number of ASV), diversity (Shannon-Wiener index) and evenness

(Pielou index) were calculated using the R package phyloseq v.1.44;

(Mcmurdie and Holmes, 2013) and analyzed using linear mixed

models (LMM). One model, testing for the effects of the different

intensity of Hormosira canopy removal included ‘disturbance’ (fixed, 5

levels) and ‘sampling times’ (fixed, crossed, 4 levels) as fixed effects. Plot

was included as a random effect in the models to account for repeated

measures taken from plots throughout the experiment.

A second model, fitted to examine differences in bacterial

communities between the understory and Hormosira surfaces,

included ‘disturbance’ (fixed, 2 levels, only including control,
Frontiers in Marine Science 04
undisturbed treatments) and ‘sampling times’ (fixed, crossed, 4

levels) and ‘substratum type’ (fixed, 2 levels: substratum vs

Hormosira) and their interaction as fixed effects and the plot as a

random effect. All assumptions including linearity, homogeneity of

variance and normality were validated suing the R package

performance 0.10.4 (Lüdecke et al., 2021). P-values for each model

term were calculated using the Anova function in R package car

v.3.1-2 using a Satterthwaite approximation method (Luke, 2017)

and random effects were inferred through a likelihood ratio test

(alpha<0.05; package lmerTest 3.1-3, Kuznetsova et al., 2017). If

significant differences in the alpha diversity indices were detected

between the fixed factors, post hoc contrasts were calculated (i.e.,

Tukey HSD; R package emmeans v.1.8.6; Russell, 2022). To further

assess the effects of Hormosira removal treatments on the microbial

compartment, we also tested for associations between epilithic

bacterial alpha diversity indices and Hormosira percentage

canopy cover using Pearson’s correlations (R package corrplot

v.0.92, Wei and Simko 2021 only for Dataset 1).

Bacterial community composition was visualised using non-

metric multidimensional scaling (NMDS) ordination (package

vegan; Oksanen et al., 2013). Differences in bacterial community

composition were determined through a Permutational Analysis of

Variance using Bray-Curtis dissimilarities among samples

(PERMANOVA+ v.1.0.5 and Primer-e v.6.1.15) and including the

same fixed and random factors as above for both datasets.

Multivariate post hoc pairwise tests were performed if significant

structural differences were found. Assumptions of equal variance

among groups were checked using a permutational analysis of

multivariate dispersion using the same program as above.

Comparative analysis of abundance was performed by fitting

two multivariate generalized linear models, assuming a negative-

binomial distribution (R package mvabund v.4.2.1, Wang et al.,

2012) to test the 1) effects of the Hormosira removal treatments

across time on the abundance (total abundance: counts) of specific

epilithic bacterial ASVs (only Dataset 1), and 2) differences between

bacterial communities associated with the surface of Hormosira and

understory substrate (Dataset 2, including the fixed factor:

‘substratum type’). For each of the two models, univariate tests

were used to identify ASVs that significantly differed in abundance

among treatments (R package mvabund, adjusted method for

univariate tests; Wang et al., 2012). In some analyses, several

dozens of ASVs were found to differ among treatments, so, we

focused on bacterial ASVs with the highest average relative

abundance and topmost prevalence across all samples in further

analyses. For each identified ASV, linear general mixed models and

post hoc tests (where significant main effects were found) were

performed to determine differences in the relative abundance across

fixed factor levels. All model validation, model inferences and

multiple pairwise comparisons were done similarly to the alpha

diversity index analysis above.

2.4.2 Hormosira canopy cover and other
benthic macroorganisms

To determine differences in the canopy cover of Hormosira and

other macrobenthic components, a linear model was fitted with

these factors: ‘disturbance’ (fixed, 5 levels), ‘sampling times’ (fixed,
frontiersin.org
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crossed, 4 levels) and ‘plot’ (random, 28 levels). Model assumptions

of normality, homogeneity of variance and influential observations

as well as post-hoc contrasts were validated and calculated as above.

A distance-based redundancy analysis (dbRDA) was also

included to explore linear relationships between the structure of

the biofilm community (i.e., Bray-Curtis dissimilarity indices from

the understory epilithic bacterial dataset) and the percentage cover

of Hormosira and other macrobenthic components such as

calcareous encrusting tube worms, articulate crustose red algae,

brown laminate macroalgae, turf algae, grazers, calcareous crustose

algae (package vegan, Oksanen et al., 2013). A stepwise model

selection based on Akaike information criteria (AIC) was used to

determine the best-performing model and predictor variables,

which were then added to ordinations to determine linear trends

between these predictors and bacterial communities (function

envfit, package vegan, Oksanen et al., 2013). Marginal tests were

also done to examine relationships with single predictor variables.

For these tests, all predictor variables were transformed to reduce

skewness (i.e., arcsine transformation) and normalized. No

multicollinearity was found between any of the predictor variables

(Variance Inflation Factor <2).
3 Results

3.1 Response of epilithic bacterial
communities to Hormosira removal

A total of 6,418 microbial ASVs across 81 samples were included

in the analysis and sampling effort was found to be adequate for this

community (Figure S2A). All alpha diversity indices show a

significant effect of disturbance treatment, independent of sampling

time (Figure 1 and Table S1, Richness, F4,76 = 15.68, p<0.001;

Shannon-Wiener diversity: F4,76 = 24.2, p<0.001; evenness:

F4,76 = 20.95, p<0.001). Control plots (0% removal and PC) had

higher bacterial diversity (p<0.032) and evenness values (p<0.010)

compared to plots where Hormosira had been completely cleared.

However, there was no difference between these controls and the 50%

removal treatments (see post hoc tests in Table S2). Bacterial richness

(decrease of 59 ± 2.7% SE; p<0.008), diversity (decrease of 27 ± 2.2%

SE; p<0.001) and evenness (decrease of 15 ± 1.8% SE; p<0.023) was

lower in bare rock plots compared to all other disturbance treatments

(Figure 1 and post hoc tests in Table S2). Bacterial richness, diversity

and evenness were positively correlated with canopy cover of

Hormosira (Figure 2).

There was an interaction between disturbance and sampling

time on the structure (i.e. composition and relative abundance of

ASVs) of understory epilithic bacterial communities (Figure 3 and

Table S3, PERMANOVA, F12,69 = 1.22, p<0.001). Structural

intragroup variability among disturbance treatments was found

(PERMDISP, Table S3: F4,76 = 3.35m, p=0.035), but only between

the procedural controls and other disturbance treatments (see post

hoc tests Table S4). Thus, this structural intragroup variability was

not found to be a driver of the differences found with the

PERMANOVA. The epilithic bacterial community structure on

bare rock plots consistently differed from all other treatments at all
Frontiers in Marine Science 05
sampling times, except T3, when they did not differ from plots with

50% removal and procedural controls (Figure 3 and Table S5).

Bacterial community structure in 100% Hormosira removal plots

was distinct from those on bare rock and other treatments at most

sampling times (Figure 3, post hoc tests in Table S5), except for T3

when they did not differ from 50% removal and controls (p>0.09).

No differences in epilithic bacterial community structure were

found at any time point between control and 50% removal plots

(Figure 3 and Table S5).

A differential abundance analysis was used to identify epilithic

bacterial ASVs that differed in abundance between Hormosira

disturbance treatments and across time. For this first model, 40

bacterial ASV were identified to be affected by these factors, but

only the 10 most abundant (0.06%< and >0.005%) and prevalent

ASVs (>34% present across all samples) were selected. Results from

this analysis show that soon after the removal of Hormosira (T1,

November 2018-1), treatments with bare rock and 100% removal

had similar abundances of bacter ia l groups such as

Verrucomicrobiae (i.e., genus Rubritalea) and Bacteroidia (i.e.,

genera Winogradskyella, Olleya and an unidentified ASV of the

family Flavobacteriaceae), but with lower relative abundance

compared to other treatments (Figure S3). After T1, all of these

ASV decreased in abundance across the following sampling times

regardless of the Hormosira disturbance treatment, while other

groups had a more complex temporal abundance pattern. For

example, one ASV assigned to the genus Vibrio and one to

unidentified Pirellulales, had a higher abundance in the control

group compared to other removal treatments, but this pattern was

not constant through time (Figure S4). Comparatively, another

ASV assigned to the genus Vibrio, a Cetobacterium and an

unidentified Phormidiaceae (Cyanobacteria), had a higher

abundance in 100% Hormosira removal plots than in those

assigned to other treatments, but only at some sampling times

(Figure S5).

There were differences in epilithic bacterial community

structure over time for treatments with 0% and 50% removal, as

well as procedural controls (PERMANOVA, Table S3 and post hoc

tests, Table S7). The differential abundance analysis focusing on the

most prevalent ASV, showed a similar pattern with some groups

increasing in the last two sampling times across all treatments,

except bare rock (e.g., Unidentified genus of Pirelullales, Figure S4)

while other ASV decreased substantially in the latter time points

(e.g., genus Olleya, unidentified genus of Flavobacteriales, genus

UBA9320 and one Vibrio, Figures S3–5). Relative abundances of the

ten selected ASV remained constant through time and generally

with lower abundances in bare rock compared to other Hormosira

removal treatments.
3.2 Relationships between experimentally
induced changes in Hormosira cover,
invertebrate abundance and epilithic
bacterial communities

The effect of the experimental disturbance to the canopy

Hormosira changes through time (Figure S6 and Table S8;
frontiersin.org

https://doi.org/10.3389/fmars.2023.1264797
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Vadillo Gonzalez et al. 10.3389/fmars.2023.1264797
interaction, F12,76 = 19.79, p<0.001). After the initial disturbance, a

lower canopy cover was predictably found in the plots with

complete removal of Hormosira and bare rock compared to other

disturbance treatments, a trend that continued throughout the

experiment (Figure S6A and see post hoc tests in Table S9, overall

t ratio<-3.04, p<0.03). However, treatments with complete removal

ofHormosira experienced a rapid recovery inHormosira cover from

the time of disturbance to the end of the experiment (increase of

68 ± 8% cover from T1) (Figure S6B and post hoc tests in Table

S10B, t ratio< -4.47, p<0.001). No differences in canopy cover were

found between plots with 50% removal and both control treatments

at any stage of the experiment (Figure S5A and Tables S9–10).
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There were no significant differences in the covers of other

understory macrobenthic components across disturbance

treatments, although values of most groups (BLM, ACR, TW, TA

and CCA) were generally lower in bare rock plots (Figures S7–9).

The exception to this pattern were grazers, which were observed to

have higher coverage values in bare rock plots compared to other

treatments, and the amount of sand coverage which was higher in

plots with 50% and 0% Hormosira removal compared to bare rock

(Figures S7A–B). The dbRDA, marginal test and vector fit

determined that Hormosira canopy cover was the main and most

consistent driver of the structure of the understory epilithic

bacterial communities across all sampling times albeit explaining
A

B

C

FIGURE 1

Effect of Hormosira disturbance treatments (Bare rock (n=18), 100% removal (n=17), 50% removal (n=18) and undisturbed control (0% removal,
n=20), and procedural control (n=14)) on benthic epilithic bacterial alpha diversity indices (mean ± SE) including bacterial (A) richness, (B) diversity
(Shannon-Wiener Index) and (C) evenness (Pielou Index). Sampling times (T1-T4) were pooled within disturbance treatment levels for each alpha
diversity metric as the interaction term was not significant (sampling time x disturbance treatment, F4,76 = 1.76, p>0.081, Table S1). Different letters
indicate significant differences between treatments obtained from post hoc tests (p<0.05).
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A B C

FIGURE 2

Relationship of % of Hormosira canopy cover on benthic bacterial alpha diversity indices including bacterial (A) richness, (B) diversity (Shannon-
Wiener Index) and (C) evenness (Pielou Index); and evaluated across disturbance treatments (bare rock [n=18], 100% removal [n=17], 50% removal
[n=18] and undisturbed control [0% removal, n=20], and procedural control [n=14]) and including all sampling times. Grey area represents the
calculated confidence interval for each correlation (95%).
FIGURE 3

NMDS ordination of understory epilithic bacterial community structure calculated from Bray-Curtis dissimilarities (stress, T1 = 0.06, T2 = 0.09,
T3 = 0.08 and T4 = 0.08) across all treatments for each time point. Ellipses shows the standard error of the centroids calculated from the mean
centroid of each treatment category. PC, Procedural control.
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a small amount of the total variation (Figure 4, and Table S11;

marginal tests: p<0.015; envfit: r2 >0.82). Other understory benthic

components such as rocky substrate, turfing algae, grazers, tube

worms, brown laminate macroalgae, bleached and unbleached

CCA, were found to influence the overall structure of the epilithic

bacterial community across more than one sampling time (marginal

tests: p<0.040) but to a lesser magnitude (Table S11, envfit: r2<0.43,

p<0.006) or limited to specific sampling times (e.g., CCA, T3:May

2019, marginal tests: p=0.001 and envfit: r2 = 0.86, p=0.02).
3.3 Comparison between epilithic and
epiphytic bacterial biofilms

A total of 4519 bacterial ASVs across 44 samples were included

in the second dataset that focused on a comparison between host

associated epiphytic bacteria in Hormosira and the understory
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epilithic bacterial communities. These ASVs provided a robust

representation of the sampled communities (Figure S2B).

There was a significant interaction among disturbance,

sampling time and substratum type on bacterial richness (Figure

S10A and Table S12, F3,40 = 3.13, p=0.05). Pairwise contrasts

showed that bacterial richness was higher on rocky substrata than

on the surface ofHormosira, consistently across sampling times and

disturbance levels (summary of pairwise comparisons in Table S13).

Likewise, bacterial diversity (F1,42 = 116.33, p< 0.001) and evenness

(F1,42 = 67.35, p<0.001) were higher on rocky substrata than on

Hormosira (Figures S10B, C and Table S12), but they did not vary

with time or disturbance level.

Disturbance (F1,42 = 1.45, p<0.001), sampling time (F3,40 = 3.08,

p<0.001) and substratum type (F1,42 = 31.26, p<0.001)

independently influenced the structure of the whole bacterial

community (PERMANOVA, Figure 5 and Table S14), despite

variability among samples within each substratum types (Figure 5
FIGURE 4

Distance-based redundancy analysis (dbRDA) ordination showing the relationship between the percent canopy cover and the benthic communities
(Grazers, tubeworms [TW], crustose coralline algae [CCA], bleached crustose coralline algae [BCCA], sand, rock, turf algae [TA], brown laminate
macroalgae [BLM] and articulate crustose red algae [ACR]), and the structure of the understory epilithic bacterial community (Bray-Curtis
dissimilarities based on sqrt-transformed data). Ellipses shows the standard error of the centroids calculated from the mean centroid each treatment
category. Arrows represent the linear relationship between each predictor variable and the community structure. Significant marginal tests are
shown in red.
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and Table S14, PERMIDISP, F=66.76, df=1 and p=0.001). A total of

630 ASVs were found to differ significantly in relative abundance

between the understory substrata and Hormosira surface samples.

Analysis of the most abundant and prevalent bacterial ASVs

revealed that the surface of Hormosira had higher relative

abundances of the classes Bacteroidia (i.e., identified genera:

Maribacter, Haliscomenobacter, Unidentified Saprospiraceae and

Unidentified Bacteroidia), Verrucomicrobiae (i.e., genus

Rubritalea), Alphaproteobacteria (i.e., genera Sulfitobacter and

Octadecabacter), Gammaproteobacteria (i.e., Unidentified genus)

and Aciidomicrobia (i.e., MedAcidi-G1) compared to the adjacent

understory substrata (Figure S11). A full list of bacterial genera that

differed between rocky substrata and Hormosira samples is

presented in Table S15.
4 Discussion

4.1 Disturbance of the canopy alters
understory epilithic bacterial communities

Understory epilithic microbial communities are key components

of biodiversity in seaweed-dominated systems, influencing the

recruitment of seaweeds, invertebrates and regulating species

interactions (Underwood, 1978; Pedicini et al., 2023; and Hawkins &

Hartnoll, 1983). Understanding how and under which conditions these

microbial changes may cascade through the system is critical to better

predict andmanage responses to environmental disturbances. Here, we

found that bacterial changes were not related with the assemblage of

understory macroorganisms, suggesting a direct effect of the

macroalgae canopy removal.

Full, but not partial, removal of the habitat-forming seaweed

Hormosira banksii had a strong impact on canopy cover and caused
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changes in the understory epilithic bacterial communities that

persisted for ~1.5 years, despite the appearance of new Hormosira

recruits. These fully cleared plots had the lowest bacterial richness

(20-30% lower), diversity (10-14% lower), evenness (7-10% lower)

and a different community structure compared to partially cleared

(50% density) or undisturbed plots. Hormosira may facilitate the

recruitment and development of macroalgae, including

conspecifics, and other benthic macroorganisms through stress

amelioration and a nursery effect given by its canopy cover

(Cameron et al., 2021; Lewis et al., 2021), and likely have a

similar effect on the bacterial communities beneath them.

Complete removal of canopies may have influenced the structure

of the epilithic bacterial community through a variety of

mechanisms including through changes on the transfer rates of

nutrients (e.g.DOC, labile sugars or hydrophobic molecules),

allelochemical agents (e.g. antibacterial agents) or free-living

microorganisms from the diffusive boundary layer of the blade or

holdfast to the understory substratum (Pfister et al., 2019;

Elsherbini et al., 2023).

In contrast to fully cleared plots, partial reductions of

Hormosira density (i.e., 50% removal) had little effect on the

understory epilithic bacterial communities. In these plots, canopy

cover was still relatively high throughout the experiment (above

73% of cover) and probably offered a similar benthic understory

environment to the canopy on undisturbed plots. Thus, a moderate

thinning of canopies would have limited effects on the structure of

the epilithic bacterial community since it would not significantly

modify their chemically mediated effects nor their influence on

environmental conditions. As shown in other systems (e.g., Cline

et al., 2014 or Butitta et al., 2017), shifts between alternative states

are often regulated by critical thresholds. Although very few studies

have investigated transitions between alternative states on intertidal

rocky shores, Rindi et al. (2018) showed that the shift in dominance

from canopy to turf-forming macroalgae on a Mediterranean rocky

shore was initiated by exceeding a reduction of 75% of the canopy

cover. The responses of the microbial community to the total and

50% removal of Hormosira, generating covers of ~10% and ~73%,

respectively, may suggest that the decline of Hormosira could cause

marked changes to epilithic bacterial communities only when

exceeding a critical threshold of cover.

Most of the epilithic bacterial groups on understory substrata

are common in coastal waters (Freitas et al., 2012; Handley & Lloyd,

2013), sediments (e.g. genus Rubritalea, Lee et al., 2016) and below

macroalgal canopies in temperate rocky systems (e.g. class

Bacteroidia, Elsherbini et al., 2023). Fully cleared plots were

characterized by an overall decrease in the relative abundance of

ASVs assigned to the class Bacteroidia (i.e., genera from the family

Flavobacteriaceae including Winogradskyella, Olleya, and an

unidentified genus), Verrucomicrobiae (genus Rubritalea),

Planctomycetes (unidentified genus of the order Pirellulales) and

Gammaproteobacteria (genus Vibrio) to values more similar to

those found in bare rock plots. The only exceptions to this pattern

were the higher relative abundances of a Vibrio (three weeks post-

disturbance) and a Cyanobacteria (seven months post-disturbance;

ASV assigned to the family Phormidiaceae) and the lower

abundance of a Cetobacterium in fully cleared plots compared to
FIGURE 5

NMDS ordination comparing the epiphytic bacterial community
structure associated to the surface of Hormosira and the understory
epilithic biofilms. Ordination includes only data from treatments with 0%
and 50% Hormosira removal and were calculated from Bray-Curtis
dissimilarities (stress = 0.09). Ellipses shows the standard error of the
centroids calculated from the mean centroid each treatment category.
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bare rocks. However, the fluctuations in relative abundance among

predominant epilithic bacterial groups were not consistent over

time. This can be attributed to the influence of seasonal

environmental factors, such as temperature and nutrient

concentration, which likely exert their effects with a certain

degree of stochasticity (Antunes et al., 2019; and Caruso, 2020).

The functional relevance of prevalent bacterial groups that had

lower relative abundances in cleared plots throughout the

experiment is still understudied (Dogs et al., 2017). However, it is

likely that most of these groups play an important role in carbon

cycling as copiothrophic bacteria (e.g., family Flavobacteriaceae;

Elsherbini et al., 2023 or the genus Vibrio, Nelson et al., 2013) and

their abundance may be reflective of the organic enrichment

produced by Hormosira on the understory substratum (Anderson,

2016). Future research is needed to further understand the

functional implications that the loss these macroalgae may have

on intertidal rocky systems.
4.2 Canopy recovery and understory
bacterial communities

Changes in the bacterial communities caused by the

experimental reduction of Hormosira density and cover did not

appear to affect the subsequent recovery of the macroalgae, which

occurred through the recruitment of juveniles. Indeed, Hormosira

cover in fully cleared plots increased to an average of 83 ± SE 2.7%

after ~16 months since the start of the experiment (Figure S6, a total

increase of 75 ± SE 6% of coverage across all 0% density plots), but

the space in the plots was mainly occupied by juvenile individuals

which did not form a true canopy. The relatively slow recovery of a

full canopy by Hormosira post-disturbance is consistent with other

experimental studies, with recovery to full adult size (>80 mm)

expected to occur within 2 to 5 years although this is tightly linked

to the type and magnitude of the disturbance (Keough and Quinn,

1998; Underwood, 1998; Schiel and Taylor, 1999; Lilley and Schiel,

2006; Pocklington et al., 2019; Cameron et al., 2021; Lewis et al.,

2021). This may explain why bacterial communities in these plots

remained different throughout the entire experiment. However, it

could also be predicted that the nursery effects of Hormosira will be

restored following the growth of these juvenile sporophytes,

possibly facilitating the recovery of the structure of the original

microbial biofilm (Park et al., 2011).

Recent studies on epilithic bacterial communities have shown

strong effects of urbanisation on their composition, which in turn

negatively influenced recruitment of habitat-forming macroalgae

(Pedicini et al., 2023). In our study, however, Hormosira

recruitment was observed across all cleared plots suggesting that

observed changes in the understory bacteria did not affect

recruitment of Hormosira. This could be due to the persistence of

a potentially “core” component of the microbial community in the

remnant biofilm which may play a critical role in influencing the

rate of Hormosira recruitment. A list of the most prevalent bacterial

ASVs (frequency> 95%) across disturbance treatments (0, 50 and

100%Hormosira removal) and sampling times is given in Table S16.

These prevalent bacterial taxa could potentially represent a part of
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this “core” bacterial community; however, this finding still remains

speculative. The prevalence of these taxa might not be directly

linked to a functional role that is essential toHormosira recruitment

or survival after a disturbance, but rather, a process of colonization

occurring homogenously across the intertidal rocky habitat (Burke

et al., 2011 and discussed further below).
4.3 Differences between epiphytic and
epilithic bacterial biofilms

Little is known about the mechanisms and factors that influence

the establishment and structure of understory epilithic bacterial

communities, for example whether bacteria that colonize the

substratum are sourced from the water column or from nearby

macro-organisms such as the canopy-forming macroalgae. Here,

Hormosira-associated epiphytic bacterial communities were found

to be mostly distinct and less diverse compared to understory

epilithic bacterial communities, suggesting that few components

of the understory microbial communities are supplied by

Hormosira. Many recent studies have found that epiphytic

microbes associated with macroalgae differ from the surrounding

environment such as water and rocks (Lachnit et al., 2011; Roth-

Schulze et al., 2016; Weigel et al., 2022). Genera such as Rubritalea,

Maribacter, Octadecabacter and Haliscomenobacter were enriched

on Hormosira and have also been found associated with other

subtidal and intertidal macroalgae where they play an important

role in algal growth, nutrition and resistance to stress (Lin et al.,

2018; Quigley et al., 2018; Samo et al., 2018; Capistrant-Fossa et al.,

2021) The structure of epyphtic bacterial communities could thus

be determined by selective processes driven by Hormosira (e.g.,

production of secondary metabolites by Hormosira, Egan et al.,

2013 and Roth-Schulze et al., 2016) It has also been suggested that

the key level at which to address the assembly of bacterial

communities may not be at a taxonomic (i.e., ASV) level but

rather at the level of core functional genes (Burke et al., 2011). In

this model, bacterial communities may originate from the water

column (e.g., via local colonization by incoming tidal waterflows)

and communities are subsequently shaped by neutral/random

processes and competition with other microbes, retaining a core

residual function independent of taxa (e.g. competitive lottery

model, Burke et al., 2011). Functional genes associated with

macroalgal recruitment have been found in many bacterial taxa,

for example the N-acylhomoserine lactone gene (AHL) that has

been associated with enhanced settlement of Ulva zoospores

through quorum sensing (Joint et al., 2002). Characterisation of

core functional genes in the epiphytic versus epilithic communities

may thus provide an interesting avenue for future research.
5 Conclusion

Disturbances and declines of macroalgal canopies occurring

globally are likely to have consequences for benthic epilithic

bacterial communities (Pedicini et al., 2023). In this study, we

were able to determine strong effects of Hormosira canopy removal
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on bacterial communities associated with the understory substrata,

but little evidence that other macrobenthic components, including

macroalgae and mobile invertebrates, played an important role in

shaping these communities. Plots with complete removal of

Hormosira maintained a distinct bacterial community from that

found on adjacent bare rock and could provide a suitable biofilm

that supports new algal recruitment and development. However,

macroalgal recovery after disruption can be slow, as it may rely

upon extant biofilms and nursing effects of nearby or regrowing

canopy cover to produce favourable conditions. Whether larger-

scale or subsequent disturbances would further impact this ability to

recover remains to be explored. Future work needs to focus on how

long changes in the understory bacterial community remain after

disruption of canopies by major disturbance events and whether

induced changes in specific bacterial taxa translate into functional

changes that could substantially impair the resilience of the system.
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