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This study examined the spatial distribution of mature albacore tuna (Thunnus

alalunga) in the Indian Ocean between 1998 and 2016 (October to March) using

environmental factors and logbook fishery data from Taiwanese longliners. We

collected the albacore tuna fishery data, including fishing location, fishing effort,

number of catch, fishing duration, and fish weight. The optimal limits for oxygen,

temperature, salinity, and sea surface height for mature albacore tuna, as

determined by generalized additive modeling, were 5–5.3 mL/L, 25–29°C,

34.85–35.55 PSU, and 0.5–0.7 m, respectively. The optimal models were

determined to be a geometric mean–derived habitat suitability–based model

constructed with oxygen, temperature, and salinity and a generalized additive

model constructed with oxygen, temperature, salinity, and sea surface height.

FromOctober to March, mature albacore tuna remained between 10°S and 30°S.

Our study concurs with previous studies on albacore tuna in the region that

suggest that the spawning area is located between 10-25˚S, and that spawning

occurs primarily between November and January. This study reveals the spatial

patterns and environmental preferences of mature albacore tuna in the Indian

Ocean which may help put in place better management practices for this fishery.
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1 Introduction

Assessing the impact of environmental variability on any marine species distribution

requires high-resolution spatiotemporal oceanographic data. The Moderate Resolution

Imaging Spectroradiometer (Mondal et al., 2021), Copernicus-based tools (Mondal et al.,

2022), and Advanced Very High-Resolution Radiometer (Lan et al., 2018) can acquire such

data. Many oceanographic data have been collected by multi-satellite detection since 1978.

The analysis of these data has provided significant assistance to the fields of oceanography

and fisheries management (Chang et al., 2019; and Chen et al., 2010) due to its colossal

scale. This has increased our understanding of fish and associated species habitat

parameters (Zainuddin et al., 2004; Majkowski, 2007; Lehodey et al., 2008; Xu et al.,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1258535/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1258535/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1258535/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1258535&domain=pdf&date_stamp=2023-10-05
mailto:malee@mail.ntou.edu.tw
https://doi.org/10.3389/fmars.2023.1258535
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1258535
https://www.frontiersin.org/journals/marine-science


Mondal and Lee 10.3389/fmars.2023.1258535
2017; Zainuddin et al., 2008). More accurate detection data can

improve fisheries management, statistical modeling, and angler fuel

conservation when locating fishing sites (Klemas, 2012).

The albacore tuna (Thunnus alalunga), a carnivorous fish

belonging to the Scombridae family, is known for its extensive

migratory behavior (Nikolic et al., 2017) and is found in the

temperate and tropical waters of the Indian, Pacific, and Atlantic

oceans (Khedkar and Jadhao, 2003; Fernandez-Polanco and

Llorente, 2016). Indian Ocean albacore tuna has a length at first

maturity of 80–90 cm (Dhurmeea et al., 2016; Cronin et al., 2022;

Cronin et al., 2023a; Cronin et al., 2023b) and mature individuals

have an average weight of more than 14 kg (Chen et al., 2005),

occurring mostly between latitudes 10-30°S. Albacore tuna has an

age at 50% maturity at around 4-5 years and can live up to 9-10

years in the Indian Ocean (Lee and Liu, 1992; Gopalakrishna Pillai

and Satheeshkumar, 2012; Farley et al., 2013; Wells et al., 2013).

Slow-growing, long-lived, late-maturing albacore tuna with low

natural mortality are less resilient than other tuna species from

other oceans (Mugo et al., 2010; Arrizabalaga et al., 2015; Zainuddin

et al., 2017) and more likely to collapse due to overfishing (Murua

et al., 2017). Research on mature albacore habitat preferences in the

Indian Ocean is crucial for fisheries management, conservation,

ecosystem health, scientific research, and environmental

monitoring. This knowledge will inform responsible Indian

Ocean albacore tuna management and help preserve resources for

future generations.

To investigate habitat patterns and preferences, it is necessary to

understand how oceanographic parameters influence albacore tuna.

Due to mechanisms of body temperature regulation and heat loss,

sea surface temperature (SST) is a crucial predictor for reproduction

and relative abundance of albacore tuna in surface waters (Chen

et al., 2005; Arrizabalaga et al., 2010; Sagarminaga and Arrizabalaga,

2010; Phillips et al., 2014). SST is also correlated with distribution

limits, and the spatial distribution of food within these limits is

correlated with SST (Dufour et al., 2010; Arrizabalaga et al., 2015;

Lan et al., 2018; Lee et al., 2020). Sea surface chlorophyll (SSC) is an

indicator of phytoplankton abundance, and phytoplankton is at the

base of the marine food web of predators such as albacore tuna

(Chen et al., 2009; Kumari et al., 2009; Vayghan et al., 2020).

Through maintaining body osmotic pressure, salinity plays a crucial

role in the osmoregulation of albacore tuna (Telesh et al., 2013;

Dueri et al., 2014; Lignot and Charmantier, 2015). Considerable

deviations from optimal salinity ranges can disrupt this process. In

addition, higher salinity makes seawater more dense, which can

affect the speed of the current. Water current is crucial for highly

migratory species like albacore tuna (Khan et al., 2020; Vayghan

et al., 2020). The SST influences the mixed layer depth (MLD) and

sea surface height (SSH) in certain regions. Cooling of the SST can

cause a decrease in SSH, which increases the MLD due to

convection (De Boyer Montégut et al., 2004). This expands the

diving corridor for deep-diving species seeking prey, such as tunas.

Arrizabalaga et al. (2015) concluded that temperate tunas such as

albacore prefer greater MLD than the tropical tunas. Numerous
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additional oceanic variables, such as oxygen and primary

productivity, can influence patterns of albacore distribution.

Previous studies of Pacific (Chang et al., 2021) and Atlantic

(Vayghan et al., 2020) Ocean albacore tuna have discussed the

significance of the parameters above. Thus, knowledge of

oceanographic parameters and their effect on species distribution

patterns is crucial, and high-quality data derived from various

satellite data assimilation model instruments are in high demand.

The most prevalent tools for evaluating species habitat patterns

using oceanographic parameters are species distribution models

(SDMs), also known as habitat models, ecological niche models,

bioclimatic envelopes, and resource selection functions (Elith and

Graham, 2009; Zimmermann et al., 2010; Duan et al., 2014). Habitat

models algorithmically predict species distribution based on

mathematical representations of their known distribution in

environmental space (Austin, 2007). Historically, habitat suitability

index (HSI)-based models, such as arithmetic mean models (AMMs)

and geometric meanmodels (GMMs) (Lee et al., 2020; Vayghan et al.,

2020), have been utilised. Technological advances have led to the use

of regression models, such as generalized linear models (GLMs) (Yan

et al., 2015) and generalized additive models (GAMs) (Chang et al.,

2021). Species distribution models (SDMs) use catch-per-unit effort

(CPUE) to predict the abundance of a given species based on

oceanographic parameters. CPUE is a reliable proxy for relative

abundance in fisheries (Chang et al., 2021). CPUE can be “hyper-

stable” (i.e., less sensitive to rapid changes in abundance) (Harley

et al., 2001), making it problematic for use as an index of abundance

(Hilborn, 1992; Maunder et al., 2006). Changes in fishing location,

strategy, season, or pattern can result in CPUE variations

independent of relative abundance (Bishop, 2006; Ye and Dennis,

2009). Before CPUE is applied to a habitat model, standardization is

performed to prevent such bias (Bentley et al., 2012).

Albacore tuna is a commercially important species; it contributes

up to 6% in weight to total global tuna catches (McCluney et al.,

2019). Whilst the literature now contains more information on

albacore biology in the Indian Ocean, there is still a notable gap

regarding the habitat of mature albacore tuna in this region,

specifically concerning the utilization of remote sensing

oceanography data and SDMs. It is worth noting that previous

research by Mondal et al. (2021) has focused on the distribution of

immature albacore tuna habitat. Chen et al. (2005) analyzed mature

albacore habitat in their study. However, their analysis was limited to

using Principal Component Analysis (PCA), which only extended

until 2004. The present study focused on utilizing the SDM approach

to accurately determine the habitat of mature albacore tuna in the

Indian Ocean based on conventional (GAM) and regression (HSI)

models. The hypothesis under investigation in this study was whether

oceanographic variables influence the distribution pattern of mature

albacore in the Indian Ocean. This study is the first to use SDMs to

elucidate the habitat patterns of mature albacore tuna in the Indian

Ocean. This investigation aimed to gain insights into the habitat

preferences of mature albacore tuna in the Indian Ocean, particularly

concerning variations in the oceanographic environment.
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2 Materials and method

2.1 Data collection

2.1.1 Albacore tuna fishery data
Mature albacore tuna fishery data from October to March

1998–2016 were obtained from a Taiwanese large-scale (deep

water fishing, >100 gross register tonnage and >24 m in length)

long-line fishing logbook (Logbook title – Taiwanese long-liner

logbook data) supplied by the Overseas Fisheries Development

Council of Taiwan. Small-scale (mainly coastal water fishing,<100

gross register tonnage and<24 m in length) data were not used

because of data unavailability for the period. Spatial coverage of the

data was from 0°S–45°S and 20°E–120°E with a spatial resolution of

1° × 1°. The logbook contained data on number of individuals

caught, number of hooks used, hooks per basket (not available for

all years), and total whole fresh fish weight (wet weight) in one

spatial location for a given date (month and year) and region

(latitude and longitude). Average weight (≥14 kg) of all the

individuals in one spatial location was used to separate mature

and immature fish following Chen et al. (2005). Data pertaining to

soaking time, hook depth, and operation time were unavailable.

(Source of dataset cannot be revealed as theses datasets are used for

academic purpose of students and researchers). Figure 1 depicts the

weight distribution of mature Indian Ocean albacore tuna during

the study period.

2.1.2 Oceanographic data
Data for the following ten oceanographic parameters were

collected from various satellites (Table 1) and sources: SST, sea

surface dissolved oxygen (OXY), sea surface salinity (SSS), MLD,

SSH, sea surface zonal and meridional current (U, V), sea surface

eddy kinetic energy (EKE), SSC (0–2 month lag), net primary

productivity (NPP), rainfall (RF), and wind speed (SSW). These

ten parameters are crucial for investigating albacore habitat

patterns. SST regulates the body metabolism of albacore tuna.

OXY is necessary for the maintenance of physiological processes.

SSS is involved in marine species osmoregulation, and MLD and
Frontiers in Marine Science 03
SSH are positively and negatively associated with SST, respectively.

Ocean current speed is a key parameter for fast swimming fish such

as tunas. SSC is important because it attracts secondary consumers,

on which tuna feed. SSC productivity, the rate at which solar energy

is captured in sugar molecules during photosynthesis (Lee et al.,

2015), is an indicator of primary productivity. NPP, or the

production of plant biomass, is equal to all of the carbon

produced by vegetation through photosynthesis minus the carbon

that is used for respiration (Lee et al., 2015); both SSC and NPP

were considered in the present study. Finally, RF is inversely related

to SST and was measured to investigate its potential effect on the

distribution of mature albacore tuna. Spatial coverage of the data

was from 0°S–45°S and 20°E–120°E with different spatial

resolutions. All data collected from 1998–2016 for October to

March correspond to the large-scale mature albacore tuna fishery

data. Some of the environmental data were not available with spatial

coverage of 1° × 1° and were interpolated to a 1° × 1° spatial grid

because the spatial resolution of the fishery data was 1° × 1°;

MATLAB version 2019a (Math Works, Natick, MA, USA) was

used for this. All data were obtained on February 2, 2022.
1. MODIS = Moderate Resolution Imaging Spectroradiometer

(https://www.ncei.noaa.gov/erddap/index.html).

2. COP = Copernicus (https://resources.marine.copernicus.

eu/products).

3. AVISO = Archiving, Validation and Interpretation of

Satellite Oceanographic data (https://coastwatch.pfeg.

noaa.gov/erddap/griddap/erdTAssh1day.html).
EKE was calculated as EKE = 0.5 (U2 + V2) m2s−2.

A brief experimental flowchart is presented in Figure 2.
2.2 Standardization of nominal CPUE

Mature albacore relative abundance was indexed as nominal

CPUE (N.CPUE). N.CPUE (per 1000 hooks) was calculated using
FIGURE 1

Weight distribution of mature albacore tuna in the Indian Ocean based on large-scale Taiwanese long-liner data from 1998 to 2016. AW indicates
the average weight. Bigger and smaller circles indicate average weight of more or equal and less than 14 kg, respectively.
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the following formula:

N: CPUE =
No: of  albacore caught
No: of  hooks used

The standardization of CPUE is a crucial practice in the fields of

fisheries and ecological research. The process of standardizing the

CPUE entails making adjustments to the original CPUE values in

order to mitigate any potential biases that could affect the outcomes

(Mercer et al., 2023). To reduce the biased effects of various spatial

(latitude, longitude) and temporal (year, month) factors, N.CPUE

was standardized using a conventional method, GLM, to obtain bias

filtered data (S.CPUE). Gear selectivity was not included in the
Frontiers in Marine Science 04
standardization method as only long-line catch data were used in

the present study. Consequently, vessel size was not included as

information about vessel size for all the catches was unavailable. A

stepwise GLMmodel (Lee et al., 2020; Vayghan et al., 2020; Mondal

et al., 2021) was constructed with one to six factors in R studio

version 3.6.0 using the mgcv package. In total, six models were

compared and the optimal model was based on the lowest Akaike

information criterion (AIC), the highest deviance explained (%),

and the highest correlation (R2) values selected for standardization.

The GLM models were constructed as follows.

GLMn : Log   (N :  CPUE + c)  ∼   a1 +   a2   +   a3 +…:   an +   μ + €
FIGURE 2

Experimental flowchart. Step by step methodology is illustrated.
TABLE 1 Source of different oceanographic data.

Environmental data Abb. Unit Source Spatial resolution Temporal resolution

Temperature SST °C MODIS
1° × 1°

Monthly

Dissolved oxygen OXY mL/L WOA

Chlorophyll (0–2 months lag) SSC0-2 mgm−3 MODIS 9 km × 9 km

Salinity SSS psu COP

0.08° × 0.08°
U-velocity U ms−1 COP

V-velocity V ms−1 COP

Eddie kinetic energy EKE m2s−2 = 0.5 (U2 + V2)

Wind speed SSW m2s−2 AVISO 2.5° × 2.5°
Daily

Rainfall RF mm day−1 AVISO 1° × 1°

Net primary productivity NPP mgm−3day−1 COP 0.25° × 0.25°
Monthly

Mixed layer depth MLD meter COP
0.08° × 0.08°

Sea surface height above geoid SSH meter COP Daily
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where c is a constant equal to 0.1, n is the number of variables,

GLMn refers to the model with n factors, μ is the intercept (Year ×

Lat, Year × Lon, and Lat × Lon), and € is a normally distributed

variable with a mean of 0.
2.3 Environmental parameters selection for
the model construction

GAMwas used for parameter selection, and each parameter was

ranked according to AIC and correlation (R2) value. Only the

parameters that had correlation values of greater than 0.3 (a

strong enough correlation per a shaky linear rule) were selected

for model construction (Ratner, 2009). Collinearity among the

selected parameters was assessed using R studio version 3.6.0.

Correlation values greater than 0.6 (Chang et al., 2021) indicated

collinearity among the parameter pairs.
2.4 Construction of suitability index curves

Suitability index (SI) curves were plotted for each selected

parameter using summed mature albacore S.CPUE and

smoothing spline regression to determine the relationship

between mature albacore relative abundance (S.CPUE) and

environmental variables (Lee et al., 2020; Vayghan et al., 2020;

Mondal et al., 2021). In this analysis, S.CPUE was included as the

dependent variable, and all selected environmental parameters were

included as explanatory variables. The SI for mature albacore was

established by applying S.CPUE and all environmental variables

and was then normalized as follows (Austin, 2007).

SI =
Y − Ymin

Ymax − Ymin

where Ymax and Ymin, respectively, are the maximum and

minimum number of observations of the S.CPUE or

environmental variables, and Y is the simulated (predicted) value

from Ymax to Ymin; thus, SI values can range only from 0 to 1.

The SI value was calculated using the summed frequency

distribution of the S.CPUE of each class, and SI values were

assumed to be between 0 and 1. The mid-points of each

environmental variable class interval were used as observed values

to fit the SI models. Finally, the relationship between the SI and

environmental variables was calculated using the following formula

(Chen et al., 2010; Lan et al., 2018).

SI =   ea(m+b)2

where m denotes the response variable (environmental

parameters), and a and b are fixed by applying the nonlinear least

squares estimate to minimize the residuals between SI observation and

SI function.
Frontiers in Marine Science 05
2.5 Approaches to habitat modeling

Conventional models, such as AMM and GMM and regression

models, such as GAM, were used in this study. The main advantage

of these types of models is their amenability to nonlinear prediction;

these models thus realistically reflect the relationship between

habitat preference (Mondal et al., 2021) and environmental

factors. Thus, the habitat of mature albacore can be described

easily based on environmental ranges. The simple AMM method

algorithm yields the ratio of the sum of all observations to the total

number of observations. The GMM method algorithm proceeds by

multiplying all numbers and computing the nth root of these

multiplicative products, where n is the total number of data

points. The AMM and GMM algorithms are described using the

following equations.

AMMn :  Log(S :CPUE)∼ (a1 +   a2   +   a3 +…:   +   an)=n

GMMn : Log(S :CPUE)∼ (a1   x   a2   x   a3   x…:x   an)
(1=n)

Where a1, a2, a3 are different observations and n is the

nth observation.

The GAM model was as follows.

GAMn : Log (S :CPUE)  ∼   s(a1) +   s(a2)   +s(a3)   +…:   + s (an)

where S.CPUE is the standardized CPUE of the long-line catch

data, s is a smoothing function of each model covariate, and an is the

nth oceanographic parameter.
2.6 Model selection and validation

One candidate model was chosen from each modelling method,

namely conventional and regression, based on various indices,

including Pearson correlation (R2) (with a preference for higher

values; GAM, HSI) and AIC (with a preference for lower values;

GAM, HSI). A total of two candidate models, one from the GAM

and one from the HSI, were chosen for subsequent analysis.

Initially, the fishing dataset was partitioned into two random

subsets, with a distribution ratio of 70% and 30%, respectively,

utilizing the “Split” package and validation was conducted using

the tidyverse and caret packages in R version 3.6.0. To assess the

validity of the chosen GAM model, three coefficients were

computed for both the training and testing datasets: R2, RMSE

(root mean square error), and MAE (mean absolute error). In

order to validate the chosen model from HSI, only the R2 was

computed for both the training and testing datasets. Any model

with the smallest discrepancies in R2, RMSE, and MAE values

between training and testing datasets, exhibited superior model

performance characterized by reduced bias.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1258535
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mondal and Lee 10.3389/fmars.2023.1258535
2.7 Prediction

The final two selected candidate models were then used for

prediction if the validation method had better model performance

with no significant bias. The predicted values for each point of the

study area from the final model were then placed on a 1° × 1° spatial

grid using ArcGIS software (version 10.2). The selected candidate

model from GAM was used to predict CPUE (P.CPUE); this was

used as a proxy for relative abundance. The selected candidate

model from HSI was used to predict habitat suitability index

(P.HSI) which indicated the suitable habitat zone in the range of

0-1.
3 Results

3.1 Standardization of nominal CPUE data

Among the stepwise GLM models constructed, the full GLM

model (Model 5) had the lowest AIC value (184,070) and highest R2

value (0.58; Table S1). The results on model performance in data

standardization are depicted in Figure 3. The quantile–quantile

(QQ) plot and histogram of the model (Figure S1) used for

standardization exhibited an almost normal distribution.

Therefore, the selected model was used for the standardization of

mature albacore N.CPUE. The N.CPUE ranged from 0.1 to 2,700

individuals (monthly summed CPUE; Figure 3). After

standardization was performed, the monthly summed CPUE

decreased to within 0.1–1,700 individuals. The S.CPUE was used

for the subsequent analyses for mature albacore tuna.
Frontiers in Marine Science 06
3.2 Environmental parameter selection for
model construction

Table 2 presents the environmental parameters obtained using

different selection techniques. For the GAM method, OXY, SST,

SSS, and SSH had correlation values greater than 0.3 in relation to

S.CPUE; the correlation value for OXY was the largest at 0.793. The

generalized cross-validation (GCV) index was also the lowest for

OXY. Thus, only OXY, SST, SSS, and SSH were used for the final

model construction. No collinearity was observed among the

selected parameters (Table S2).
3.3 Construction of SI curves

SI curves were constructed for mature albacore tuna against all

the selected parameters (Figure 4), and the habitat SI was calculated.

The optimal ranges of SST, SSS, OXY, and SSH were 25–29°C,

34.85–35.55 psu, 5–5.3 mL L−1, and 0.5–0.7 m, respectively, at SI

values >0.6. The sum of the S.CPUE of mature albacore in the

Indian Ocean from October to March was around the SST, SSS,

OXY, and SSH values of 27.5°C, 35.05 psu, 5.1 mL L−1, and 0.55 m,

respectively, at SI values >0.6 (Figure 4).
3.4 Analysis of habitat model and
model selection

Table S3A presents the performance results of the GAMmodels

with all possible combinations of the selected parameters. Model 10
FIGURE 3

Nominal catch per unit effort (N.CPUE) and standardized catch per unit effort (S.CPUE) determined using the selected GLM model for mature
albacore tuna.
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TABLE 2 Environmental parameter selection for model construction using GAM for mature albacore tuna.

Parameter AIC R2 Dev. Exp. (%)

OXY 1356.223 0.793 79.3

SST 1469.896 0.548 54.8

SSS 1589.369 0.396 39.6

SSH 1621.021 0.354 35.4

RF 2231.127 0.214 21.4

SSC0 2374.564 0.208 20.8

SSC1 2456.635 0.183 18.3

SSC2 2489.596 0.165 16.5

MLD 2375.456 0.207 20.7

EKE 2289.125 0.19 19

U 2381.005 0.189 18.9

NPP 2443.375 0.133 13.3

V 2897.148 0.046 4.7

SSW 3256.221 0.004 0.4
F
rontiers in Marine Science
 07
MThe parameters selected are in bold.
FIGURE 4

Suitability index (SI) curves of selected environmental variables for mature albacore tuna plotted using smoothing spline regression. Black bars, black
dotted lines, and red solid lines indicate the summed standardized catch per unit effort (S.CPUE), SI with a cutoff value of >0.6, and SI curve,
respectively. The intersection of the horizontal dotted line and SI curve indicates the optimal environmental range for each parameter.
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with OXY, SST, SSS, and SSH performed better than the other GAM

models. It had the lowest AIC (80,008.57) and GCV (0.339) values

with the highest adjusted R2 (0.839) and percentage variance

(83.9%).Thus, model 10 was selected as the optimal GAM model.

Table S3B presents the performances of AMM based HSI

models with selected parameters in all possible combinations.

Model 2 with OXY, and SSS indicated better performance than

other AMM models. It indicated the lowest AIC value of 14.240

with the highest adjusted R2 of 0.845. Thus, model 2 was selected as

the optimal AMM model. Table S3B also indicated the

performances of GMM based HSI models with selected

parameters in all possible combinations. Model 7 with OXY, SST,

and SSS indicated better performance than other GMM models. It

indicated the lowest AIC value of 18.943 with the highest adjusted

R2 of 0.87. Thus, model 7 was selected as the optimal GMM model.

After comparing the selected AMM and GMM model, the GMM

based HSI model was determined to be optimal based on

correlation values (Figure 5).
3.5 Validation of the selected models
and prediction

For GAM, results obtained using the random split validation

technique indicated that the difference between the coefficient

values (R2, RMSE, and MAE) of the split datasets (70:30) were

minimal; this entailed the absence of significant bias for the

predictive performance of the selected GAM model (Table 3).

Therefore, Model 10 of GAM was used for the final prediction of

CPUE for all points of the study location. The selected HSI based
Frontiers in Marine Science 08
habitat model also indicated that the difference between the R2 of

the split datasets (70:30) was minimal; this entailed the absence of

significant bias for the predictive performance of the selected GMM

model (Table 2). Therefore, Model 7 of GMMwas used for final HSI

prediction for all points of the study location.

In the month of October, the higher S.CPUE values had a scattered

distribution (Figure 6). From November to January, higher mature

albacore S.CPUE were primarily observed between 10°S–25°S. From

February, a southward shift of S.CPUE towards areas below 30˚S could

be observed which then became clearer in March with a high S.CPUE

zone noted in areas along 35°S. Areas with lower S.CPUE values were

mainly present towards north of 10°S of and south of 25°S throughout

the study period. P.CPUE and P.HSI also followed a similar trend as

S.CPUE with the higher observation approximately at 15°S–25°S

(Figure 7) during the study period. Longitudinally, this area extended

towards the east up to 100°E in the month of March. Based on P.HSI,

suitable habitat zones were observed mainly between 10–25°S from

October to March.
4 Discussion

Management of the Indian Ocean albacore tuna fishery is

crucial for future sustainability. Thus, practical tools must be used

to enhance our understanding of key oceanographic parameters

that affect albacore tuna distribution in the Indian Ocean. Based on

the long-term Taiwanese fisheries long-line data, the study provides

some key insights on the spatial distribution pattern of mature

albacore tuna in the Indian Ocean and the influence of the marine

environment on their distribution.
FIGURE 5

Comparison between the selected habitat suitability index models for mature albacore tuna.
TABLE 3 Validation outcome selected models for mature albacore tuna before CPUE and HSI prediction.

Method
70% 30%

R2 RMSE MAE R2 RMSE MAE

GAM 0.887 0.415 0.295 0.879 0.419 0.297

HSI 0.845 – – 0.839 – –
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FIGURE 6

Monthly spatial distribution of the average standardized catch per unit effort (S.CPUE) of mature albacore tuna mapped on monthly predicted catch
per unit effort (P.CPUE) in the Indian Ocean from 1998 to 2016.
FIGURE 7

Monthly spatial distribution of the average standardized catch per unit effort (S.CPUE) of mature albacore tuna mapped on monthly predicted habitat
suitability index (P.HSI) in the Indian Ocean from 1998 to 2016.
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4.1 Environmental preferences

Environmental parameters are crucial for describing the

distribution of any tuna species in the world’s oceans.

Throughout the study period, mature albacore tuna tended to

have a higher distribution in the 25–29°C range, particularly at

27.5°C in the Indian Ocean. This indicates the predominance of

Indian Ocean mature albacore tuna in the warmer waters. One

possible reason is that warmer water is suitable for spawning (Farley

et al., 2013). SST is a significant environmental determinant that

exerts influence on fish spawning, thereby impacting both the

timing and success of this reproductive process. Additionally, SST

during the spawning period affects the egg or larval development

and survival of any species (Dhurmeea et al., 2016; Nikolic et al.,

2017). Moreover, metabolism and reproduction are deeply

connected to each other (Fontana and Della Torre, 2016). The

acceleration of metabolic activity with increasing temperature

suggests a slower metabolism in relatively cooler water. A

sluggish metabolic rate can hinder the process and consequently

reproduction. The influence of SST on the timing, success, and

behaviors related to fish spawning is of utmost importance in the

field of ocean studies. In addition, it exerts influence on various

aspects such as egg development, larval survival, metabolic rates,

mating rituals, and habitat. Furthermore, albacore may also remain

in warm waters of the Indian Ocean to avoid being in direct

competition for prey with juvenile albacore which tend to stay in

cooler waters south of 30˚S in the Indian Ocean (Dhurmeea et al.,

2016). Whilst the warm tropical waters of the Indian Ocean are

oligotrophic, there are however regions of high productivity in

specific areas (i.e. upwelling regions) at specific times of the year

(Veldhuis et al., 1997). Thus, these factors may be the most plausible

explanations for why mature albacore in the Indian Ocean were

found to occupy warmer water in the current study. Mature

albacore tuna in the Indian Ocean has also previously been found

to have a SST range of 24–27°C during October to March (Chen

et al., 2005), which supports the result of the present study.

Mature albacore tuna tended to have a higher distribution

during the course of the study between 34.85 and 35.55 psu

salinity, particularly around 35.05 psu in the Indian Ocean. The

importance of SSS on albacore tuna distribution has been addressed

in previous studies (Goñi et al., 2015; Novianto and Susilo, 2016).

The effect of SSS on albacore tuna may be a proxy for other

underlying processes (Mondal et al., 2022). Reglero et al. (2017)’s

hypothesis, which proposed that salinity serves as an indirect

predictor of oceanic conditions, provided evidence in favor of this

assertion. Salinity may have an impact on a fish’s standard

metabolic rate, food intake, food conversion, and endocrine

regulation (Brett and Groves, 1979; Bœuf and Payan, 2001).

Moreover, changes in sea surface salinity are directly connected

with changes in water density (Biescas et al., 2014). The optimal

density range will subsequently change as the preferred sea surface

salinity range of any species changes. As water density falls outside

of the preferred range, which results in energy loss, lower salinity

can make swimming difficult (Bœuf and Payan, 2001). Increased

salinity outside of the desired range might affect the cost of
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osmoregulatory regulation, requiring more energy (Urbina and

Glover, 2015). Thus, salinity may have an impact on mature

albacore distribution through habitat preference, with mature

albacore being more common in areas with ideal salinity and less

common in areas with more extreme salinity levels (Goñi et al.,

2015). Proper salinity levels are essential for successful egg

development, fertilization, larval survival, and the overall

reproductive success of fish (Ruiz-Jarabo et al., 2022). Similarly,

Chen et al. (2005) found that mature albacore tuna in the Indian

Ocean have a SSS preference range of 35.01-35.32 psu, which

supports the result of the present study.

Throughout the duration of the investigation, mature albacore

tuna tended to have a higher distribution with OXY between 5-5.3

mL L-1, particularly at around 5.1 mL-1in the Indian Ocean. Oxygen

intake naturally rises during swimming. Due to its high metabolism,

albacore has a high oxygen requirement (Lehodey et al., 2015) with

concentrations of at least 2 mL L-1 generally required (Collette and

Nauen, 1983). OXY levels can thus limit albacore tuna vertical

distribution (Wang et al., 2023). The present investigation revealed

a greater OXY range, which may be explained by the mature

albacore tuna’s demand for higher metabolic activity during

spawning (Karamushko and Christiansen, 2002). In addition, an

optimal rate can result in greater food conversion and enhance

larval or juvenile growth (Mallya, 2007). Moreover, decreased

oxygen levels outside of the desired range can cause behavioral

alterations such as shifts in horizontal or vertical distribution,

adjustments to swimming activity, or breathing issues (Brill,

1994). More stress is indicated by a low concentration of OXY

from the preferred value. OXY level below 2 mL L-1 can result in

mortality of fish (Keller et al., 2015). The area with higher

distribution in the present study has higher concentration of

OXY. The presence of multiple ocean currents, such as the South

Equatorial Current, South Indian Ocean Countercurrent,

Madagascar Current, and Agulhas Current, contributes to this

phenomenon. Ocean currents in this region facilitate the

thorough mixing and ventilation of water through the upwelling

process. This phenomenon impacts the mixing and transportation

of oxygen-rich waters, forming oxygen-rich areas and affecting the

overall biological productivity of mature albacore in the study area

(McCreary et al., 2013). Mature albacore tuna in the Indian Ocean

has an OXY preference range of 5.09-5.75 mL L-1, according to

Chen et al. (2005), which supports the result of the present study.
4.2 Spatial distribution pattern

During October, high S.CPUE regions were distributed in a

scattered manner. From November to January, higher mature

albacore distribution was mainly observed between 10°S–25°S.

From February, a southward shift was observed, and a higher

mature albacore distribution zone was observed at approximately

35°S. In March, this shift was clearer. During March, P.HSI does not

show the peak in values at around 35°S, whereas the P.CPUE does

show high values in this more temperate zone. HSI represents the

habitat suitability, whereas CPUE represents the relative
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abundance. Mature albacore tuna showed a southward shift after

February and so a significant abundance near 35°S though habitat

was still suitable for mature albacore near 18-25°S. The habitat

suitability may be impacted by the life cycle of albacore tuna, that is,

the tropical area between 10-25˚S is suitable mainly for spawning,

especially during November to January, while the temperate areas

(35˚S) are mainly for foraging by juvenile and adult albacore after

the spawning season (Dhurmeea et al., 2016). The temperate waters

of the Indian Ocean are considerably cooler than the tropical and

subtropical waters, which can be favorable for the higher prey

concentration (Chen et al., 2005). Cooler waters can promote the

growth of greater phytoplankton blooms than warmer waters

(O’Dowd et al., 2015). Increased nutrient availability and

favorable light conditions for photosynthesis can cause these

blooms (Trombetta et a l . , 2019) . The abundance of

phytoplankton can attract herbivorous zooplankton, thereby

increasing the concentration of prey for predatory fish such as

tunas. This is one plausible explanation for why mature albacore

tuna shifted southward in temperate waters even though the models

indicated favorable habitat suitability at 18-25°S. Mature albacore

tuna spatial distribution patterns can be attributed to several

possible reasons. The first one is the presence of preferred

optimal environmental ranges. A 27.5°C SST isotherm line’s

presence can be linked to the distribution pattern of mature

albacore in the Indian Ocean. Between October and March, a

southward shift in the direction of the 27.5°C SST isotherm line

was seen (Figure 8). The monthly movement of the aforementioned

isotherm line may thus be one explanation for the shift in mature
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albacore tuna spatial distribution. The relationship between the

adult albacore tuna’s geographical distribution pattern and

environmental factors like SSS and OXY can be explained by the

SST. SST was negatively correlated to both SSS and OXY. Hence, the

spatial location of the ideal SSS and OXY will also be impacted by

the 27.5°C SST isotherm line’s migration southward. The

distribution range of mature albacore tuna is expected to undergo

a spatial shift due to alterations in the optimal SST zone.

Because subtropical gyres between 10–30°S move water,

salinity, and nutrients essential to marine ecosystems over great

distances (Visser et al., 2015), they may also play a significant role in

the high quantity of mature albacore tuna (Romanov et al., 2020) in

the area from October to March. On Madagascar’s south-east coast

(especially, 16°S–22°S, and 52°E–90°E), the subtropical gyre induces

upwelling, which raises the productivity of the oceanic zone there

(Romanov et al., 2020) and creates favorable conditions for mature

albacore tuna. However, the Indian Ocean subtropical gyre is

typically associated with low upwelling compared to some other

oceanic regions (Visser et al., 2015; Chinni and Singh, 2022).

Distribution of albacore tuna can be still higher in this region,

because this kind of water exhibits less competition (due to limited

nutrients) for mature albacore with other species due to spawning

purposes as explained above. Spawning in less productive waters

may be a strategy used to reduce the risk of predation of eggs and

larvae by pelagic predators which are usually abundant in high

productivity areas (Johannes, 1978). In addition, it is commonly

observed that oligotrophic sub-tropical gyres exhibit a strong

correlation with expansive oceanic currents. The currents above
FIGURE 8

Locations of 27.5°C SST isotherm during the study months.
FIGURE 9

Average fishing effort (number of hooks) based on the mature albacore tuna data from October to March.
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can effectively transport a wide range of substances, including

nutrients, food particles, and larvae, across extensive distances.

The reallocation of resources can enhance food availability and

support the development of albacore larvae. A minor amount of

mature albacore tuna may still remain in the area between 10-30˚S

for foraging purposes outside the spawning season (i.e. the

study period).

The final cause can be the influence of fishing activity on

S.CPUE. From October to March, the S.CPUE was between 10°S–

30°S (Figure 9). A strong correlation was observed between

N.CPUE and the number of hooks; the correlation value was

0.632 for mature albacore tuna. A strong correlation was also

observed between N.CPUE and albacore quantity; the correlation

value was 0.621 (mature from October to March). This strongly

implied that S.CPUE was affected by fishing activity.
4.3 Potential implications for
albacore fisheries

The primary objective of this study was to contribute to a toolkit

for policymakers and managers who are considering climate

adaptation for marine fisheries management. Habitat models can

facilitate the search for productive fishing locations or new fishing

grounds, saving time, money, and fuel. Nonetheless, the potential

ease of overfishing as a result of the increased accessibility of fishing

areas highlights the critical importance of sustainable development

goals (SDGs). The SDGs aim to address ocean health issues such as

overfishing and global warming. Understanding the distribution of

mature albacore tuna in the Indian Ocean can facilitate long-term

care and conservation initiatives. SDG 14.4 aims to maintain

biologically sustainable fish stocks, whereas SDG 14.5 protects

coastal and marine environments. After understanding the

current status of habitats or identifying new fishing grounds,

achieving these SDGs is straightforward. Modeling the locations

or habitats of species can therefore be the first step in sustainability

research. To maintain biologically appropriate levels of this species,

it is essential to comprehend spatial and environmental habitat

preferences of mature albacore tuna. The results of this study have

the potential to develop adaptation techniques for the management

of albacore tuna fisheries in the Indian Ocean and other oceans

as well.
4.4 Study limitations and future
research directions

Although the findings of this study are valuable for resource

management and strategy evaluation, the present study also has

limitations. Results on the habitat preferences of mature albacore

could also be affected by the species habitat model algorithm and

vertical behavior. Adopting various advanced habitat model

techniques, assembling longer time-series fisheries data, and using

available vertical oceanographic data can yield more robust insights
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into howmature albacore respond to various environmental factors.

Moreover, the study is based solely on the catch of Taiwanese

longliners and the areas of the Indian Ocean covered by these

vessels. Future studies should aim to incorporate available albacore

fisheries data from vessels from other countries and to also examine

the effects of vertical changes in the environment on mature

albacore distribution.
5 Conclusion

This study employed two empirical HSI models (AMM &

GMM) and GAM model to describe the distribution of mature

albacore tuna in the Indian Ocean during their spawning season

(October to March). Higher mature albacore abundance was

primarily observed from October to December. For the mature

albacore tuna from October to March, the optimal ranges of

temperature, salinity, oxygen, and SSH were 25–29°C, 34.85–

35.55 psu, 5–5.3 mL L−1, and 0.5–0.7 m, respectively. Mature

albacore tuna tended to remain between 10–30°S from October to

March. The suitable habitat zone for the mature albacore tuna from

October to March was identified mainly at 15°S–25°S.
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