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Tamito Kajiyama2, Jenni Attila3 and Thomas Schroeder4
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The Baltic Sea is characterized by large gradients in salinity, high concentrations

of colored dissolved organic matter, and a phytoplankton phenology with two

seasonal blooms. Satellite retrievals of chlorophyll-a concentration (chl-a) are

hindered by the optical complexity of this basin and the reduced performance of

the atmospheric correction in its highly absorbing waters. Within the

development of a regional ocean color operational processing chain for the

Baltic Sea based on Sentinel-3 Ocean and Land Colour Instrument (OLCI) full-

resolution data, the performance of four atmospheric correction processors for

the retrieval of remote-sensing reflectance (Rrs) was analyzed. Assessments

based on three Aerosol Robotic Network-Ocean Color (AERONET-OC) sites

and shipborne hyperspectral radiometers show that POLYMER was the best-

performing processor in the visible spectral range, also providing a better spatial

coverage compared with the other processors. Hence, OLCI Rrs spectra

retrieved with POLYMER were chosen as input for a bio-optical ensemble

scheme that computes chl-a as a weighted sum of different regional multilayer

perceptron neural nets. This study also evaluated the operational Rrs and chl-a

datasets for the Baltic Sea based on OC-CCI v.6. The chl-a retrievals based on

OC-CCI v.6 and OLCI Rrs, assessed against in-situ chl-a measurements, yielded

similar results (OC-CCI v.6: R2 = 0.11, bias = −0.22; OLCI: R2 = 0.16, bias = −0.03)

using a common set of match-ups for the same period. Finally, an overall good

agreement was found between chl-a retrievals from OLCI and OC-CCI v.6

although differences between Rrs were amplified in terms of chl-a estimates.
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1 Introduction

The Baltic Sea (Figure 1) is a brackish shallow semi-enclosed

basin characterized by large inputs of pollutants and nutrients from

natural and anthropogenic sources combined with a limited water

exchange with the open ocean through the Danish Straits in the

southwest, causing large latitudinal gradients of salinity and

dissolved organic matter (Omstedt et al., 2004; Leppäranta and

Myrberg, 2009). As a consequence of the strong anthropogenic

pressure, pollution (HELCOM, 2018), eutrophication episodes

(Andersen et al., 2011; Fleming-Lehtinen et al., 2015; Heiskanen

et al., 2019), and/or phytoplankton blooms (Wasmund et al., 2011;

Kahru et al., 2018; Hjerne et al., 2019) threaten its fragile

ecosystems. Growing concern about the basin’s health is raised by

the Baltic Marine Environment Protection Commission (Helsinki

Commission, HELCOM) (HELCOM, 2007). The Baltic Sea is

characterized by high concentrations of colored dissolved organic

matter (CDOM). Rivers are the main CDOM source, which follows

a general dilution gradient from north to south with a large

spatiotemporal variability driven by processes such as ice melting,

rainfall, phytoplankton blooms, or photodegradation (Berthon and

Zibordi, 2010; Ylöstalo et al., 2016; Simis et al., 2017; Kratzer and

Moore, 2018).

Two seasonal phytoplankton blooms are usually observed in

most areas of the Baltic Sea (Wasmund et al., 2011; Kahru et al., 2018;

Brando et al., 2021). Firstly, a strong spring bloom dominated by
Frontiers in Marine Science 02
diatoms and dinoflagellates is responsible for most of the annual

primary production in the area (Simis et al., 2017; Zhang et al., 2018).

This spring bloom progresses from south to north due to light and

nitrogen limitation, and it can cause anoxia and hypoxia events in the

bottom layer because of the fast diatom sedimentation (Hjerne et al.,

2019). After a minimum production in early summer (May–June),

phosphorus excess and increasing surface water temperature lead to

the blooming of nitrogen-fixing cyanobacteria, causing extensive and

prolongated surface and near-surface accumulations of filamentous

species during calm weather periods in July and August (Kahru et al.,

1994; Finni et al., 2001; Kahru et al., 2007; Kahru et al., 2018).

Chlorophyll-a (chl-a) concentration (measured in mg m−3) is

one of the most relevant indicators for water quality monitoring

within the Baltic Sea Action Plan implemented by HELCOM, as it is

useful for assessing the eutrophication status and a good proxy for

phytoplankton blooms (HELCOM, 2017; HELCOM, 2019; Ahlman

et al., 2020). Compared with chl-a data from sampling stations, in-

situ platforms, or automated ship measurements, chl-a maps

derived from ocean color (OC) satellite images provide a synoptic

view of the phytoplankton spatial distribution. Although data

availability in terms of spatial coverage and temporal resolution is

limited by the cloud cover, it can be significantly enhanced by

merging data from different sensors (Groom et al., 2019; O’Reilly

and Werdell, 2019; Sathyendranath et al., 2019).

Accuracy and reliability of chl-a retrievals from OC data

depend on two related factors: 1) the optical characteristics of the
FIGURE 1

Study area showing the location of the in-situ measurements. The crosses identify the in-situ Alg@line chl-a data collected by the SYKE, whereas the
pluses are chl-a data extracted from the COMBINE database (red points: 1997–2015; blue points: OLCI period from 2016 to 2019) (Section 2.2.2).
The green dots mark the location of the AERONET-OC sites (GDT, Gustav Dalen Tower; HL, Helsinki Lighthouse; IL, Irbe Lighthouse; Section 2.2.1).
Gray lines show the trajectories of the ships during the collection of the Alg@line shipborne radiometry data by SYKE in 2016 (Section 2.2.1).
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water and 2) the performance of the atmospheric correction (AC)

algorithms converting the spectral top-of-atmosphere (TOA)

radiances measured by the satellite sensors to spectral remote-

sensing reflectance (Rrs, defined as the ratio of the water-leaving

radiance and the downwelling irradiance and measured in sr−1)

used as input in chl-a estimation algorithms (Brewin et al., 2015;

Sathyendranath et al., 2019). Despite the good results in open-ocean

and high-scattering coastal areas (Blondeau-Patissier et al., 2014;

O’Reilly and Werdell, 2019), retrieval of reliable OC products from

high-absorbing waters such as the Baltic Sea is a challenging task.

High absorption coefficients related to the high CDOM

concentrations (with aCDOM values exceeding 1.0 m−1 at 440

nm, Ylöstalo et al., 2016) in combination with relative low sun

elevation lead to low Rrs values, especially in the blue part of the

spectrum. Therefore, AC algorithms show a limited performance

producing inaccurate Rrs spectra with low and even negative values

(Attilla et al., 2013; Beltrán-Abaunza et al., 2014; Alikas et al., 2020;

Brando et al., 2021; Tilstone et al., 2022).

Regarding chl-a retrieval, standard blue-green band-ratio

algorithms have been reported as not suitable for the Baltic Sea

because they tend to a significant overestimation (Darecki and

Stramski, 2004; Odermatt et al., 2012; D’Alimonte et al., 2016;

Pitarch et al., 2016; Ligi et al., 2017; Kratzer and Moore, 2018).

Better results have been achieved with regionalized blue-green

ratios (Darecki and Stramski, 2004; Attilla et al., 2013; Ligi et al.,

2017), red-edge bands (Ligi et al., 2017), or neural network (NN)

algorithms based on different sets of Rrs values (Kratzer and

Vinterhav, 2010; Hieronymi et al., 2017; Toming et al., 2017;

Kyryliuk and Kratzer, 2019), although accuracy is still hampered

by the optical complexity of the basin and the low performance of

the AC processors.

Within the Copernicus Marine Service (CMEMS, Le Traon

et al., 2019; von Schuckmann et al., 2022), two operational chl-a

data streams are available for the Baltic Sea based on OLCI and on

merged multisensor time series. These data streams are based on

sensor merging to improve the daily spatial coverage at 300 m and 1

km resolutions to support the operational oceanography users and

environmental reporting needs (Le Traon et al., 2019;

Sathyendranath et al., 2019; von Schuckmann et al., 2022).

Brando et al. (2021) proposed a new ensemble approach based on

multilayer perceptron neural network (MLP) bio-optical algorithms

(ENS-MLP), with results outperforming those based on other methods

reported in the literature. This new approach was implemented in a fully

reprocessedmultisensor time series ofRrs and chl-a data at ~1 km spatial

resolution (OCEANCOLOUR_BAL_BGC_L3_MY_009_133, 2023).

This work documents the implementation of the new Rrs and

chl-a level-3 datasets for the Baltic Sea based on the complete

Sentinel-3 A and B OLCI time series (2016 to present) of OC images

at full resolution (300 m), using the same ENS-MLP approach for

chl-a retrievals. To this aim, the following steps were carried out: 1)

the selection of the best AC processor to obtain OLCI level-2 Rrs

from level-1 data, 2) the assessment of the new OLCI level-3 Rrs

dataset and comparison with the CMEMS multisensor dataset at 1

km resolution, and 3) the comparative validation analysis of the

multisensor and OLCI level-3 chl-a datasets based on the ENS-MLP

approach. The validation results were based on several in-situ data
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sources: automated radiometry from the Aerosol Robotic Network-

Ocean Color (AERONET-OC) sites in the Baltic Sea, shipborne

hyperspectral radiometry collected by the Finnish Environment

Institute (SYKE), and chl-a concentrations from Alg@line and

COMBINE datasets.

The remainder of this document is structured as follows:

Section 2 introduces the data and methods used in this work,

describing the validation exercises; the results presented in Section 3

include a match-up summary, validation results for level-2 OLCI

Rrs, level-3 Rrs and chl-a, and a comparison between CMEMS-

OLCI level-3 and OC-CCI v.6 datasets. The discussion and

concluding remarks are addressed in Sections 4 and 5, respectively.
2 Materials and methods

2.1 Satellite Rrs

2.1.1 Level-2 reflectance datasets
OLCI Rrs spectra were extracted from Sentinel-3 level-2

products processed by four different atmospheric correction

algorithms: OLCI level-2 Water Full Resolution (WFR),

POLYMER, Case 2 Regional CoastColour (C2RCC), and S3 FUB-

CSIRO Coastal Water Processor (hereafter S3 FUB-CSIRO). All the

level-2 products were derived from a set of Sentinel-3 level-1b Full

Resolution (FR) images at 300 m resolution acquired over the Baltic

Sea for both Sentinel-3A (between April 2016 and September 2022)

and Sentinel-3B (between May 2018 and September 2022) missions.

The OLCI WFR products were available from the Ocean Colour

baseline collection OL_L2M.003, processed by EUMETSAT using

the OLCI L2 processor IPF-OL-2 version 07 (EUMETSAT, 2021;

Zibordi et al., 2022). This product provides water-leaving

reflectance data at the OLCI spectral bands between 400 nm and

1,020 nm except those bands dedicated to atmospheric

measurements (Table 1). It also contains the pixel classification

band Water Quality and Science Flags (WQSFs), providing

information about invalid and/or suspicious pixels (Table 2).

POLYMER is a coupled ocean–atmosphere algorithm that

applies polynomial functions to model the (TOA) spectral

reflectance and sun glint, and it applies a forward bio-optical

model for the water component. It was originally developed for

MERIS from an atmospheric correction processor for case-1 waters

that is able to deal with sun glint (Steinmetz et al., 2011; Steinmetz

and Ramon, 2018). In this study, we applied POLYMERv.4.14

(https://forum.hygeos.com/viewtopic.php?f=5&t=155), which is

already adapted to OLCI, providing fully normalized water-

leaving reflectance data for 16 bands between 400 nm and 1,020.5

nm (Table 1), as well as a flag band (bitmask) with pixel

classification (Table 2).

C2RCC applies parametrized radiative transfer models based on

the successive order of scattering (SOS) technique to obtain a large

database of simulated TOA radiances, which is then used as input to

train a set of neural networks (NN) for the retrieval of water-leaving

reflectance as well as other water products (Doerffer and Schiller,

2007; Brockmann et al., 2016). In this work, we applied C2RCC v.2

(https://c2rcc.org/neural-nets/), providing, among other outputs,
frontiersin.org
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Rrs data for 16 OLCI bands between 400 nm and 1,020.5 nm

(Table 1) and two flag bands (c2rcc_flag and quality_flags) with

pixel identification information (Table 2).

The S3 FUB-CSIRO Coastal Water Processor is an ensemble

neural network inversion trained with extensive coupled ocean–

atmosphere radiative transfer simulations (Schroeder et al., 2022).

The algorithm was adapted to an approach previously developed by

Schroeder et al. (2007); Schroeder et al. (2003) forMERIS. The S3 FUB-

CSIRO processor version 1.0.0.0.5.3 used in this study, therefore, does

not provide outputs for OLCI bands at 400 nm, 673.75 nm, 681.25 nm,

and above 708.75 nm (Table 1). The algorithm performs a pixel-per-

pixel direct inversion of the TOA radiance signal into spectral remote

sensing reflectance at mean sea level and selected water quality

parameters. It also provides per-pixel sensor and inverse model

uncertainties, which were not further evaluated in this study. Quality

control was applied by using the flag band quality_flags for masking

(Table 2), which are based on the level-1b flags but not the additional

neural network-specific input/output out-of-range flags.
2.1.2 Level-3 reflectance datasets
Within CMEMS, two operational ocean color time series are

available for the Baltic Sea: merged OLCI (Sentinel-3A and
TABLE 2 Flag bands and flag lists implemented for each AC processor.

AC Flag band Flag list

WFR Wqsf

land, coastline, cloud1, cloud_ambiguous1,
cloud_margin1, invalid2, cosmetic,
saturated, suspect, hisolzen, highglint4,
snow_ice, ac_fail, whitecaps, adjac,
rwneg_o25, rwneg_o35, rwneg_o45,
rwneg_o55, rwneg_o65,
rwneg_o75, rwneg_o85

C2RCC c2rcc_flags tosa_OOR, Rhow_OOR, Cloud_risk1

C2RCC
S3
FUB-CSIRO

quality_flags

land, coastline, fresh_inland_water, bright3,
straylight_risk, invalid2, cosmetic,
sun_glint_risk4, dubious, saturated_OaXX
(with XX from 01 to 21).

POLYMER Bitmask

land, cloud_base1, l1_invalid2, negative_bb,
out_of_bounds6, exception, thick_aerosol6,
high_air_mass6, external_mass,
inconsistency6, anomaly_rwmod_blue6

IdePix pixel_classif_flags
land, coastline, invalid2, cloud1,
cloud_buffer1, cloud_shadow1, snow_ice,
bright3, white, mountain_shadow
IdePix was used for all the AC processors as a common flag framework. Subscript numbers
indicate the flag lists used for the outputs in Figure 3 (1CLOUD; 2INVALID; 3BRIGHT;
4SUNGLINT_RISK; 5RNEG; 6POLYMER).
TABLE 1 Available wavelengths from OLCI level-2 (*: OLCI WFR, C2RCC, and POLYMER) and level-3 products, multisensor OC-CCI products, and
AERONET-OC sites.

Satellite bands AERONET-OC bands

OLCI-level-2* S3 FUB-CSIRO CMEMS-OLCI OC-CCI v.6 OC-CCI v4.2 (chl-a) 2005–2018 2018–2022

400 400 400

412.5 412.5 412.5 412 412 412+ 412

442.5 442.5 442.5 443 443 443+ 443

490 490 490 490 490 490+ 490

510 510 510 510 510 510

532

560 560 560 560 555 551 +1 560

620 620 620 620

665 665 665 665 670 667+ 667

673.75 673.75

681.25 681.25

708.75 708.75 708.75

753.75

778.75 778.75 779

865 865 870 865

885

1,020.5 1,020 1,020
Bands available for validation during the OLCI period using data from AERONET-OC are shown in bold. Bands available for OC-CCI v.6 validation since 2005 until 2016 are indicated with the
superscript + (+1: 555 nm between 2005 and 2011).
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Sentinel-3B) at 300 m spatial resolution and merged multisensor at

1 km resolution.

The CMEMS-OLCI level-3 Rrs dataset for the Baltic Sea merges

OLCI level-2 Rrs spectra retrieved from level-1b FR images for both

Sentinel-3A and Sentinel-3B missions using POLYMERv.4.14. Rrs

values are remapped using the “nearest value” interpolation on an

equi-rectangular grid at 300 m resolution. As in the EUMETSAT

v.3.0.1 reprocessing the System Vicarious Calibration gains that have

been implemented by EUMETSAT for both sensors, Rrs values are

merged without any bias correction. The dataset has been produced

operationally by CNR as daily data since April 2016 to present for 11

OLCI bands between 400 nm and 708.74 nm (Table 1) and is

available at the Copernicus Marine Service in near real-time

(OCEANCOLOUR_BAL_BGC_L3_NRT_009_131, Baltic Sea

Ocean Colour Plankton, Reflectances, Transparency and Optics L3

NRT daily observations, 2023) and as a fully reprocessed multiyear

time series (OCEANCOLOUR_BAL_BGC_L3_MY_009_133, 2023).

The CMEMS multisensor level-3 Rrs dataset for the Baltic Sea is

derived from the Ocean Color (OC)-Climate Change Initiative

(CCI) v.6 processor (OC-CCI v.6) implemented by Plymouth

Marine Laboratory (PML) (Sathyendranath et al., 2019; OC-CCI,

2022; Sathyendranath et al., 2022). Data were obtained from

different sensors and processed with specific atmospheric

correction algorithms to obtain L2 Rrs spectra: NASA standard

atmospheric correction was applied to the SeaWiFS NASA R2018.0

reprocessed dataset, while POLYMER was selected for MERIS (ESA

4th reprocessing) MODIS-AQUA and VIIRS (NASA R2018.0,

included only until the end of 2019) and both OLCI sensors

(EUMETSAT v.3.0.1 reprocessing). Rrs output values from each

sensor were band-shifted using the inverse and direct application of

the Quasi-Analytical Algorithm (QAA) algorithm (Lee et al., 2014;

Mélin and Sclep, 2015) to six MERIS bands (Table 1) and then bias-

corrected and merged at 1 km resolution, providing a consistent

time series from 1997 to 2022.
2.2 In situ data for validation

2.2.1 In situ automated radiometry
For the validation of satellite-derived Rrs, this study relies on

two sources of in-situ automated above-water radiometry: the

AERONET-OC and the Alg@line hyperspectral datasets were

collected following the same above-water radiometry approach

(Zibordi et al., 2009; Simis and Olsson, 2013).

In-situ radiometry data were available from the automated

measurements collected by AERONET-OC at three sites in the

Baltic Sea: Gustav Dalen Tower (58.594°N, 17.467°E), with data

from 2005 to 2022; Helsinki Lighthouse (59°949°N, 24.925°E), from

2006 to 2019; and Irbe Lighthouse (57.751°N, 21.723°E), from 2018 to

2022. Due to the illumination conditions of the Baltic Sea, data are

usually available between May and September, with some single days

in March, April, or October. We used level-2 data available from the

AERONET-OC web page (https://aeronet.gsfc.nasa.gov), consisting

of quality-controlled measurements of normalized water-leaving

radiances (LwN) corrected for bidirectional effects and referred to

nadir (Zibordi et al., 2009, Zibordi et al., 2020). AERONET-OC
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provides multispectral data (Table 1): 8 bands between 412 nm and

1,020 nm until 2018 (adapted to MERIS) and 11 bands between 400

nm and 1,020 nm since 2019 when instruments were modified for

OLCI validation (Zibordi et al., 2009, 2020).

The Alg@line hyperspectral dataset was collected by SYKE within

the BONUS FerryScope project (Simis and Olsson, 2013; Simis et al.,

2021) from April to September 2016. Data were acquired every 15 ss

using a three-spectroradiometer system mounted approximately 7 m

from the sea surface on board the merchant vessels Finnmaid

(Finnlines) and Transpaper (Transatlantic). Downwelling irradiance

(Ed) was collected using a TriOS RAMSES-ACC unit with a cosine

collector, and sky (Ld) and water radiance (Ls) were measured with

RAMSES-ARC sensors with a 7° field of view. The dataset was filtered

to eliminate measurements with an obstructed view of the sea or

affected by underexposure or oversaturation. Rrs spectra were derived

by correcting for the reflection of sky radiance at the water surface

using Ed, Lt, and Ls measurements. More details about data collection,

processing, and quality control are available from Simis et al. (2021);

Qin et al. (2017), and Warren et al. (2019).

2.2.2 In situ chl-a datasets
We used two in-situ datasets in order to validate the chl-a

concentrations retrieved from satellite Rrs for the Baltic Sea: Alg@

line and COMBINE.

The Alg@line dataset is derived from a set of water samples

collected by SYKE from 1997 to 2017 using an acquisition system

installed on board ferries operating in the Helsinki–Travemünde,

Helsinki–Stockholm, and Kemi–Travemünde transects. Water

samples (from surface to 5 m depth) were filtered using glass fiber

filters (Whatman GF/F, 0.7-mm nominal pore size), chlorophyll-a was

extracted with ethanol, and concentrations were determined by

fluorometry using a Jasco FP-750 spectrofluorometer or a Perkin-

Elmer LS2-b fluorometer with an excitation wavelength of 413 nm and

emission wavelength of 668 nm (Fleming and Kaitala, 2006; Kaitala

et al., 2008).

The COMBINE dataset, available from the International

Council for the Exploration of the Sea (ICES) oceanographic

database, includes chl-a measurements gathered by several

institutions from the 1970s to the present within the HELCOM

marine monitoring program (HELCOM, 2017; HELCOM, 2019).

Chl-a concentrations were obtained using different analytical

protocols and techniques, from fluorimetry to spectrophotometry

and HLPC, but always meeting the quality requirements established

by the program. We excluded from the analysis data acquired in the

Skagerrak and Kattegat regions since these basins are characterized

by physical and optical water properties deemed different from the

actual Baltic Sea (Ligi et al., 2017; Simis et al., 2017).
2.3 Chl-a retrieval algorithm from
satellite Rrs

Retrieval of chl-a concentrations from satellite Rrs in the Baltic

Sea was based on the methodological approach proposed by Brando

et al. (2021). It builds on a bio-optical ensemble scheme in which

chl-a concentrations are estimated as a weighted sum of the outputs
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of different regional multilayer perceptron neural net (MLP) bio-

optical algorithms developed using in-situ data available from the

JRC/EC BiOMaP program (D’Alimonte et al., 2011; Zibordi et al.,

2011). Weights defining the contribution of each individual MLP

algorithm are dynamically established through the novelty index

(D’Alimonte et al., 2014; Kajiyama et al., 2019; Brando et al., 2021).

Each MLP bio-optical algorithm uses as input Rrs values at a

different subset of wavelengths, considering all the SeaWiFS bands

implemented in the OC-CCI v4.2 product (Table 1): chl-aMLP6b

(Rrs values at 412, 443, 490, 510, 555, and 670 nm), chl-aMLP_5b

(Rrs values at 443, 490, 510, 555, and 670 nm), chl-aMLP_4b (Rrs

values at 490, 510, 555, and 670 nm), and chl-aMLP_3b (Rrs values

at 490, 510, and 555 nm).

Brando et al. (2021) tested two ensemble solutions based on

four (chl-aENS4: chl-aMLP_6b, chl-aMLP_5b, chl-aMLP_4b, chl-

aMLP_3b) and three (chl-aENS3: chl-aMLP_5b, chl-aMLP_4b, chl-

aMLP_3b) MLP algorithms, evaluating their performance through

a match-up analysis of chl-a retrievals from OC-CCI v4.2 time

series against in-situ chl-a concentrations. Results showed that both

ensemble solutions outperformed all the band-ratio regression

algorithms based on Rrs spectral slopes instead of Rrs values at

different bands and that chl-aENS3 outperformed chl-aENS4.

In this work, the performance of both chl-aENS3 and chl-aENS4

was evaluated through a match-up analysis of chl-a retrievals from

satellite Rrs extracted from the CMEMS-OLCI level-3 Rrs dataset

and OC-CCI v.6 datasets (see Section 2.1.2), against in-situ chl-a

measurements from Alg@Line and COMBINE datasets (see Section

2.2.2). Only results for the best-performing solution, i.e., chl-aENS3,

are shown in this document.

Chl-aENS3 was also the selected algorithm for the

implementation of the new CMEMS-OLCI level-3 chl-a dataset for

the Baltic Sea (OCEANCOLOUR_BAL_BGC_L3_MY_009_133,

2023; OCEANCOLOUR_BAL_BGC_L3_NRT_009_131, 2023), in

which chl-a concentrations are retrieved from the CMEMS-OLCI

level-3 Rrs dataset merging Rrs outputs from POLYMERv.4.14 (see

Section 2.2.1). The new dataset was produced by CNR for the

complete OLCI time series (from April 2016 to the present).

As chl-aENS3 was developed considering the SeaWiFS spectral

bands available in the OC-CCI v.4.2 product, in this work, chl-a

retrievals using Rrs values from CMEMS-OLCI or OC-CCI v.6

required a previous band shift to the SeaWiFS spectral bands. The

band shift was performed through the inverse and direct application

of the QAA algorithm (Mélin and Sclep, 2015; Lee et al., 2009)

modified to ensure non-negative phytoplankton at any band

(Brando et al., 2021).
2.4 Validation exercises

2.4.1 Workflow
Figure 2 summarizes the workflow for the validation exercises

carried out in this work, all of them implemented using a Match-up

Database File (MDB) infrastructure (EUMETSAT, 2019; González

Vilas et al., submitted; González Vilas et al., 2023).

The top panel (Figure 2A) depicts the steps for a round-robin

comparison of four AC algorithms (i.e., WFR, C2RCC, POLYMER,
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and S3 FUB-CSIRO) to select the best processor for deriving OLCI

level-2 Rrs spectra from level-1 data. In-situ radiometry data for this

comparative validation exercise were available from both the

AERONET-OC and Alg@line hyperspectral datasets. The bottom

panel of Figure 2B shows the validation procedure for the Rrs and

chl-a level-3 datasets, comparing the new CMEMS-OLCI and OC-

CCI v.6 datasets. In this case, only radiometric data from

AERONET-OC were used for Rrs validation.

We also run the Identification of Pixels Properties (IdePix) to

obtain a common flag band for all the processors. IdePix is a

multisensor pixel identification tool available as a plugin for

Sentinel Application Platform (SNAP) implementing pixel

identification algorithms for different sensors including Sentinel-3

(https://www.brockmann-consult.de/portfolio/idepix/). It classifies

pixels certainly or ambiguously affected by clouds and provides also

other flags as white or bright (Table 2).

The main steps are the following ones (note that some steps are

common for both analyses):
a) Trimming: With the aim of reducing the AC computational

time, level-1b FR images were first trimmed into

microgranules keeping the OLCI data format (SENTINEL-

SAFE). In the case of AERONET-OC or chl-ameasurements,

microgranules cover an area of 2° by 2° around the site

location. For shipborne radiometry, granules were trimmed

to cover the daily transect. The same protocol was also adopted

for trimming the level-2 WFR and level-3 files.

b) Atmospheric correction (Figure 2A): POLYMER, C2RCC,

S3 FUB-CSIRO, and IdePix were run on the level-1b

microgranules using default options. POLYMER is

available from the HYGEOS website, and it is run directly

in Python. C2RCC and IdePix are available as SNAP, while

the S3 FUB-CSIRO processor is available as a Python/C

plugin for SNAP at https://github.com/s3tbx-fub-csiro/

s3tbx-fub-csiro.git. C2RCC, IdePix, and S3 FUB-CSIRO

were processed using the SNAP Graph Processing

Tool (GPT).

c) Chl-a processing (Figure 2B): Satellite chl-a was retrieved

from level-3 microgranules using the method proposed by

Brando et al. (2021) (Section 2.3).

d) Generation of satellite extract files: Level-2 extract files

(Figure 2A) were created for the Sentinel-3A or Sentinel-

3B mission and each AC processor (WFR, POLYMER,

C2RCC, and S3 FUB-CSIRO) starting from the

corresponding output microfiles. Each extract file

contains 25 × 25 pixels of satellite data centered at the

site location (for AERONET-OC) or transect point(s) (for

shipborne radiometry). These files include always Rrs for all

the available bands, geometry (zenith and azimuth

observation and sun angles), the flag band corresponding

to the processor (see Section 2.1.1), and the IdePix results. If

output values are defined as water-leaving reflectance

(WFR and POLYMER), they are converted to Rrs by

dividing by pi. The satellite overpass time and band

wavelengths are also included in the files.
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In the case of shipborne radiometry, to reduce the number of

extracts associated with a single satellite image, extract files were only

created if the time difference between the satellite overpass and the

transect points within a given central pixel was lower than 15 min.

Level-3 extract files (Figure 2B) produced from level-3

microfiles include a window of 25 × 25 pixels of Rrs for all the

bands around the AERONET-OC site or chl-a concentrations

around the measurement location. Unlike level-2 extract files, flag

bands are not required since invalid pixels were already masked in

the source datasets during the level-3 creation. Moreover, as data

with different acquisition times and observation geometries are

merged, satellite time is limited to the date, and geometry

information is not available.
Fron
e) Generation of MDB files: An MDB file is created as a

NetCDF file including all the potential match-ups, i.e.,

spatiotemporal collocations between satellite and in-situ

data, in this case, Rrs spectra or chl-a concentrations. MDB

files are built by associating the satellite data from each

extract file with the corresponding in-situ spectra or chl-a
tiers in Marine Science 07
measurements. For level-3 extracts merging sensors with

different acquisition times, satellite time is set to 9:30 UCT,

which is approximately the average overpass time in the

Baltic Sea considering all the sensors (Brando et al., 2021).

By default, the maximum time difference between satellite

and in-situ acquisitions is set to 3 h for AERONET-OC and

chl-a measurements and 15 min for shipborne radiometry

(see Section 2.4.3). Normalized water-leaving radiances

available in the AERONET-OC level-2 source files (see

Section 2.2.1) were transformed to Rrs by dividing by the

extra-solar irradiance spectrum and then band-shifted to

the OLCI or OC-CCI v.6 spectral wavelengths using inverse

and direct application of the QAA algorithm (Mélin and

Sclep, 2015; Lee et al., 2009). Shipborne radiometry data

(already available as Rrs) and chl-a concentrations (in mg

m−3) were incorporated directly into the MDB files.

f) Quality checking: Starting from the MDB file with all the

potential match-ups, we applied the quality control

protocols to obtain valid match-ups for the statistical

analysis (details are provided in Sections 2.4.2 and 2.4.3).
A

B

FIGURE 2

(A) Workflow for the comparative validation analysis of the four AC processors from OLCI level-1b to level-2 Rrs. (B) Workflow for the validation of
CMEMS-OLCI and OC-CCI v.6 level-3 Rrs and chl-a datasets.
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Fron
g) Statistical analysis: Plot generation and computation of

validation metrics (see Section 2.4.4) using the valid

match-ups.
2.4.2 Satellite quality control
Satellite quality control was based on the recommendations for

OLCI or other medium-resolution satellites (Concha et al., 2021;

Cazzaniga et al., 2022; Zibordi et al., 2022).

In this study, we used extraction windows of 3 × 3 pixels

centered on the site only with 100% of valid pixels (9 pixels).

Satellite Rrs for each band or chl-a concentrations were computed

as the mean excluding outliers, considering a single pixel as an

outlier if out of the range defined as the mean ± 1.5 standard

deviations (EUMETSAT, 2022).

Pixels were masked according to two flag bands: IdePix and the

specific flag band for each atmospheric correction algorithm. IdePix

is used as a common framework for obtaining a set of common

match-ups, whereas the specific flag band is useful for evaluating the

spatial coverage of each AC processor in case of being applied

operationally. Flag lists are summarized in Table 2.

Geometry was also considered for validation of level-2 Rrs,

masking pixels with an observation zenith angle greater than 60°

and a sun zenith angle greater than 70°.

We applied a spatial homogeneity test for Rrs validation by

excluding match-ups with a coefficient variation (CV) at 560 nm

higher than 20%. Note that CV is computed after the removal of

out-of-range pixels (defined as the mean ± 1.5 standard deviations).

2.4.3 In situ quality control
As AERONET-OC systems acquire spectral measurements

several times per day (usually every 20 min), MDB files can

include up to 30 in-situ valid spectra for each satellite acquisition

within the default 3-h time window. The validation was based on

the closest spectrum in time with respect to the satellite overpass

with a maximum time difference of 2 h.

For the Alg@line hyperspectral shipborne radiometry, the

number of spectra in the central pixel within the 15-min time

window varies from 1 to 3. Validation was also based on the closest

spectrum in time.

In the case of chl-a, measurements collected between 7:00 UTC

and 16 UTC on the same day as the satellite overpass were

considered for obtaining valid match-ups.

2.4.4 Validation metrics
As validation metrics, we used the determination coefficient

(R2), the absolute percent differences (APD), the root mean square

deviation (RMSD), the relative percent differences (RPD), and the

bias parameter between the in-situ (x) and satellite measurements

(expected y):

R2   =   oN
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1(xi − �x)2

q
 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − �y)2
q
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RMSD =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − xi)
2

N

s

APD =  
1
N
 o
N

i=1

yi − xij j
xi

 �   100%

RPD =  
1
N
 o
N

i=1

yi − xi
xi

 �   100%

bias =  
1
N
 o
N

i=1
yi − xi

The determination coefficient R2 (unitless) assesses the

agreement between both variables ranging from 0 (no agreement)

to 1 (perfect agreement). The bias (in Rrs units: sr−1, or chl-a units:

mg m−3) is useful for determining if there is overestimation

(positive values) or underestimation (negative values). RMSD and

APD (%) measure the absolute error in absolute units or percentage,

respectively. Likewise, RPD (%) is a measurement of the relative

error, but measured in percentage. In the case of chl-a, R2, RMSD,

and bias are computed on log-transformed data, whereas RPD and

APD are based on non-transformed values. As error measurement,

APD is preferred for the chl-a because RMSD is more difficult to

interpret since it is based on log-transformed data, where RMSD is

used for Rrs validation.
2.5 Comparison between CMEMS-OLCI
level-3 and OC-CCI v.6 datasets

As within CMEMS two operational Rrs and chl-a datasets are

available for the Baltic Sea, the consistency of the times series with

spatial resolutions at 300 m and 1 km was assessed. To this aim, the

CMEMS-OLCI level-3 and multisensor datasets were compared

through the extraction of a set of co-collocated data points. Values

were extracted from an image every 10 days from 1 May 2016 to 31

December 2022. These daily images were sampled based on a

regular grid of 10 km × 10 km (115 × 119 longitude–latitude

points), using the corresponding pixel value for the multisensor 1-

km dataset and the mean on a 3 × 3 window for OLCI (only cases

with 9 valid values were considered). The extraction was carried out

for the five Rrs bands involved in the chl-a retrieval (i.e., 443 nm,

490 nm, 510 nm, 555 nm, and 670 nm) and for the chl-a

concentration itself. Then, we obtained the scatter plots and

computed the validation metrics (Section 2.4.4).
3 Results

3.1 Match-up summary and
flagging analysis

Table 3 shows the number of total and valid match-ups

available for the validation of level-2 (OLCI) and level-3
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(CMEMS-OLCI and OC-CCI v.6) Rrs datasets, using both

AERONET-OC and SYKE data.

When considering in-situ data from AERONET-OC sites,

POLYMER is able to generate a higher number of valid match-

ups for OLCI level-2 Rrs validation as compared with other AC

processors (~65% of valid match-ups against ~45%), which show

comparable figures. The percentage of valid match-ups is lower

using SYKE data, but with a similar pattern: POLYMER shows the

highest validity rate (~60%), followed by WFR (~52%) and finally

C2RCC and S3 FUB-CSIRO (~35%).

Regarding the level-3 Rrs validation, both CMEMS-OLCI and

OC-CCI v.6 show similar numbers with percentages of valid match-

ups of approximately 70%, as expected considering that both

datasets are mainly based on POLYMER.

As for the distribution across the AERONET-OC sites, the number

of total (and valid) match-ups reveals the data availability, with more

match-ups from Gustav Dalen Tower (data from 2016 to 2022),

followed by Irbe Lighthouse (data from 2018 to 2022) and finally

Helsinki Lighthouse (data from 2016, 2017, and 2019). Temporally, the

number of match-ups has increased since 2018 (e.g., from 45

POLYMER valid match-ups in 2017 to 98 in 2018) with the launch

of Sentinel-3B, being 2019 the year with the highest number as in-situ

spectra were available from the three sites (e.g., 202 valid match-ups

using POLYMER). The number of match-ups was also smaller in 2020

because the instruments were operational for a limited period (mainly

between July and August) due to the COVID restrictions (56 valid

POLYMER match-ups against 150 in 2021 or 171 in 2022).

Validation results shown in the following sections are based on

common match-ups, i.e., those valid for all the AC processors in the

case of level-2 Rrs validation and for both datasets (OLCI and OC-

CCI v.6) in the case of level-3 Rrs validation.

Figure 3 shows a summary of the potential match-ups classified

as invalid because at least one pixel in the 3 × 3 extraction window

over the AERONET-OC sites was flagged using IdePix and/or other

specific flag bands (Table 2).

The number of match-ups affected by cloud cover varies from

150 to almost 300 match-ups, depending on the flag band specific to

each processor (Table 2). As in-situ data and potential match-ups
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are mainly available from April to September, cloud coverage

percentage is relatively low (between 10% and 30%) when

compared with sites located in mid-latitudes.

Sun glint risk was the most frequent flag based on quality_flags

(C2RCC and S3 FUB-CSIRO) with more than 330 match-ups,

although this number is limited to only 87 match-ups using

wqsf (WFR).

A common problem in the CDOM-dominated Baltic Sea waters

affecting more than 230 potential match-ups is the negative

reflectance retrievals (RNEGs), mainly in the blue part of the

spectrum, i.e., rneg_02 (412 nm) and rneg_03 (443 nm). Note that

rneg_ flags included in wqsf (WFR) allow negative values up to a

threshold (EUMETSAT, 2021) so that some valid match-ups could

include slightly negative reflectance values.

A remarkable number of match-ups were also flagged as invalid

(42 match-ups in all the flag bands) and bright (133 match-ups

using IdePix and quality_flags). Other flags (not shown in Figure 3)

were identified in a small number of match-ups (less than 5),

including the suspect, dubious, whitecaps, or ac_fail cases.

Approximately 100 match-ups were flagged by one of the flags in

POLYMER bitmask (out_of_bounds, thick_aerosol, high_air_mass,

external_mass, inconsistency, anomaly_rwmod_blue), joining to the

match-ups classified as cloud (cloud_base) or invalid (l1_invalid).

However, approximately 74 match-ups flagged as SUNGLINT_RISK

or 146 as RNEG are considered valid using bitmask or IdePix,

explaining the higher number of valid POLYMER match-ups as

compared with other AC processors.
3.2 Level-2 Rrs validation

This section reports the validation results for OLCI level-2 Rrs

processed using the four AC processors: WFR (standard AC),

C2RCC, POLYMER, and S3 FUB-CSIRO (see Section 2.1.1).

Satellite Rrs were validated against in-situ radiometric data from

AERONET-OC (Section 3.2.1) and Alg@line shipborne radiometry

(Section 3.2.2) based on common sets of 392 and 100 valid match-

ups, respectively (Table 3).
TABLE 3 Total and valid number of match-ups available for Rrs validation of OLCI level-2 and level-3 (CMEMS-OLCI and OC-CCI v.6) datasets.

OLCI level 2
Level 3

CMEMS-OLCI OC-CCI v.6

All
Valid

C.M. All Valid All Valid C.M.
WFR C2RCC POL. S3 FUB-CSIRO

A
E
R
O
N
E
T

Total 1,161 546 522 773 538 392 706 486 785 561 433

GDL 564 292 274 404 285 215 338 241 377 266 210

HLH 185 79 80 117 84 53 141 90 164 122 80

ILH 412 175 168 252 169 124 227 155 244 173 143

SYKE 348 182 114 207 117 110
frontie
AERONET-OC sites are Gustav Dalen Tower (GDL), Helsinki Lighthouse (HLH), and Irbe Lighthouse (ILH). C.M. indicates the number of common match-ups for both level-2 and level-3
datasets; POL.: POLYMER v.4.14.
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3.2.1 AERONET-OC
Figure 4 shows the comparison between in-situ Rrs spectra from

AERONET-OC sites and OLCI level-2 Rrs spectra processed using

the four AC processors. Note that in-situ data for OLCI bands

between 673.75 nm and 753.75 nm, as well as 885 nm, are not

available using the multispectral AERONET-OC radiometers, as we

limited the band shifting to a maximum of 5 nm (Table 2). Data for

1,020 nm were also excluded from the analysis because they are

affected by high uncertainties in these highly absorbing waters and

are not included in the OLCI level-3 dataset.

In the case of WFR, both in-situ and satellite median spectra

keep a similar shape across the whole range, with a remarkable

overlapping of the interquartile areas between 520 nm and 620 nm.

In other wavelengths, WFR tends to underestimate, showing high

negative deviations and higher variability in the 400–490-nm

spectral range. POLYMER also shows similar spectral shapes,

although it tends to overestimate across the whole spectra (except

at 865 nm), with higher positive deviations between 400 nm and 490

nm. Regarding C2RCC, although satellite and in-situ Rrs spectra

keep similar shapes, there is a substantial overestimation, even

without any overlapping between the interquartile areas at

wavelengths lower than 510 nm. Finally, despite the acceptable

overlapping, the main problem of S3 FUB-CSIRO is the spectral

shape, as it tends to overestimate at wavelengths lower than 510 nm

but shows negative deviations in the red part of the spectrum.

The match-up scatter plots between satellite and in-situ

AERONET-OC Rrs for nine OLCI bands (between 400 nm and

778.75 nm) grouped by AC processor are shown in Figure 5. The

results include all the available bands for validation using

AERONET-OC data except for 865 nm and 1,020 nm (Table 2).
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The number of valid match-ups is lower for bands 400 nm, 510 nm,

560 nm, 620 nm, and 778.75 nm as in-situ data at these spectral

bands were only available after 2018 (Table 2). Note also that the S3

FUB-CSIRO reflectance is not available at 400 nm and 778.75 nm.

In the blue bands (i.e., 400, 412.5, and 442.5 nm), POLYMER

displays a better agreement with the in-situ data than other AC

processors, which are affected by a marked deviation of their

regression lines from the identity line (1:1). At 490 nm and 510

nm, POLYMER and S3 FUB-CSIRO perform better, whereas

C2RCC and WFR tend to over- and underestimate, respectively.

A good agreement is obtained at 560 nm using all the ACs except

for C2RCC, which shows a positive bias. In the red part of the

spectrum (i.e., 620 nm, 665 nm), the POLYMER regression line in

agreement with the identity line is better than that of other ACs.

Finally, at 778.75 nm, there are higher uncertainties and none of the

AC processors seem to perform adequately. Nevertheless,

POLYMER seems to give the best results when limiting the

match-ups to low Rrs values (<0.5 10−3 sr−1).

Figure 6 shows the spectral variation of some validation metrics

per wavelength and AC algorithm, including also results in the

infrared (i.e., 865 nm and 1,020 nm). Metric values confirm the

tendencies observed in Figures 4, 5 in the visible spectral range. The

WFR performance in the blue spectral region is inadequate with

negative bias and RPD values and higher RMSD and lower

correlation coefficients compared with other processors. However,

statistical figures improve between 510 nm and 778.75 nm, being

the best-performing algorithm at 560 nm. Broadly speaking,

C2RCC performs worse than other AC algorithms clearly

overestimating the in-situ Rrs (Figures 4, 5). It shows higher

RMSD values, lower determination coefficients, and very high
FIGURE 3

Total number of invalid match-ups with at least one pixel flagged in the 3 × 3 extraction window over the AERONET-OC sites. Legend colors
indicate specific flag bands (IdePix: pixel_classif_flag; WQSF: wqsf; QF: quality_flags; POLYMER: bitmask). Specific flags defining each flag output are
indicated according to the subscripts of Table 2 (1: CLOUD; 2: INVALID; 3: BRIGHT; 4: SUNGLINT_RISK; 5: RNEG; 6: POLYMER).
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positive RPD and bias values (up to 0.002 sr−1), especially between

400 nm and 620 nm. On the other hand, POLYMER is the best-

performing AC processor: it provides the best fitting (higher R2)

and lower error (RMSD) values (except for 442.5 nm). As observed

in Figure 4, its main issue is the overestimation, showing positive

RPD and bias values (lower than 0.0005 sr−1 except for 442.5 nm)

across the visible spectral range. Finally, S3 FUB-CSIRO performs

well in terms of error (RMSD) and fitting, with determination

coefficients only lower than those obtained using POLYMER. Its

main drawback is the spectral shape (Figure 4), with bias and RPD

varying from positive to negative values with increasing

wavelengths. Overall, metrics in the infrared spectral region are

worse in comparison with those obtained for the visible spectral

range. At 865 nm, WFR provides better results, whereas C2RCC

performs better at 1,020.5 nm.

3.2.2 Shipborne radiometry
A comparison between in-situ Rrs spectra from Alg@line

shipborne radiometry and OLCI level-2 Rrs spectra processed

using the four AC processors is shown in Figure 7. In this case, as

the shipborne radiometric data are hyperspectral measurements, in-

situ data are available for all the OLCI bands. Although patterns are

similar to those observed in Figure 4, some differences exist.
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In detail, WFR can express well themedian spectral shape, but with

a higher negative bias across the bands and limited overlapping of the

interquartile areas between 400 nm and 442 nm. In the case of C2RCC,

it also shows extreme positive deviations for all the wavelengths, with

hardly any overlapping between both distributions. S3 FUB-CSIRO

follows the same pattern with a transition from positive to negative bias

toward the red, but with higher uncertainties and less overlapping in

the blue part of the spectrum.

Regarding POLYMER, the divergence from the reference data is

more pronounced than in Figure 4: it shows negative deviations at

400 nm and 412 nm and an anomalous spectral shape between

673.75 nm and 708 nm in the three bands that are acquired at

AERONET-OC sites (and hence not shown in Figure 4). For the

remaining bands, they display a spectral shape agreement with a

lower positive bias.

Figure 8 shows the match-up scatter plots between satellite and

in-situ shipborne Rrs grouped by AC processor for the same nine

OLCI bands between 400 nm and 778.75 nm shown in Figure 5.

Overall, the results are worse than those obtained with the

AERONET-OC sites, with the regression lines clearly deviating

from the identity line (1:1). This behavior could be due to the

presence of some in-situ spectra with very high Rrs values, possibly

unflagged glint.
FIGURE 4

Comparison between in-situ Rrs from AERONET-OC sites and OLCI level-2 Rrs obtained using four AC processors: WFR, C2RCC, POLYMER, and S3
FUB-CSIRO. Distribution is based on the set of common match-ups (N = 392). Lines and shadowed areas represent the median values and the
interquartile ranges, respectively.
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If we consider the distribution of the data points, POLYMER seems

to perform better with a higher density over the identity line for all the

wavelengths, although S3 FUB-CSIRO also shows good results,

especially in the central wavelengths. Like AERONET-OC validation

results, and as observed in Figure 7, WFR presents higher variability in

the blue (wavelengths lower than 490 nm) and a better agreement in

the green and red parts of the spectrum, whereas C2RCC tends to

overestimate with high positive deviations across the spectra.
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The spectral metrics for each processor (Figure 9) confirm the

patterns observed in Figures 7, 8, as well as the validation results based

on AERONET-OC in-situ Rrs. POLYMER is again the best-

performing processor in the visible spectral range in terms of error

(RMSD, RPD) and fitness (R2), showing a positive bias lower than

0.0005 sr−1 across the spectra (except for 400 nm). As observed in

Figure 7, performance is worse between 673.75 nm and 708.75 nm for

the bands not validated using AERONET-OC, with lower R2 and
FIGURE 5

Scatter plots of common match-ups between satellite (OLCI level-2) and in-situ (AERONET-OC) Rrs measurements for nine OLCI bands between
400 and 778.75 nm. Data points and regression lines are color-coded by AC. The dash line represents the identity line (1:1 ratio).
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higher bias values. WFR does not perform well in the blue part of the

spectrum, showing higher RMSD values and high negative bias

compared with POLYMER or S3 FUB-CSIRO. The S3 FUB-CSIRO

shows similar results to POLYMER between 560 nm and 708.75 nm,

even with a better agreement (higher R2 value) at 708.75 nm and a

lower RMSD at 560 nm. However, the results are worse in terms of

correlation and RMSD with wavelengths lower than 510 nm, and it

cannot match the spectral shape as indicated by the decreasing bias

(changing from positive to negative values) with increasing

wavelengths. C2RCC, as seen in Figures 7, 8, shows a high positive

bias across the whole spectra and high RMSD values with wavelengths

lower than 620 nm. Overall, it performs worse than other ACs at all the

wavelengths and metrics except for its higher determination

coefficients between 620 nm and 708 nm. Performance metrics in

the infrared (865 nm, 885 nm, and 1,020 nm) are worse than those

obtained for the visible range in terms of correlation and RPD,

although bias and RMSD show comparable values due to their lower

Rrs range. WFR appears as the best-performing AC in this spectral

range, with higher R2 and lower RPD values.
3.3 Level-3 Rrs validation

The OLCI level-3 Rrs dataset was processed by merging OLCI

level-2 Rrs obtained using POLYMER v.4.14, as it was the best-
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performing AC algorithm in the Baltic Sea according to the results

shown in Section 3.2. In this section, we summarize the validation

results of this dataset in comparison with the multisensor level-3 Rrs

dataset derived from OC-CCI v.6 (see Section 2.1.2) using in-situ

radiometric measurements from AERONET-OC as reference. In

addition to a common set of 433 match-ups acquired between 2016

and 2022, the results were obtained for the complete OC-CCI v.6

time series (2005–2022). Figure 10 shows the comparison between

satellite and in-situ spectra using all the datasets and including the

six bands available in OC-CCI v.6.

Using the complete time series (Figure 10A), OC-CC1 v.6

captures the spectral shape across the complete spectral range with

positive deviations for all the bands except for 665 nm. Similar results

are observed with data from the OLCI period (Figure 10B), although

the bias is close to zero or slightly negative at 560 nm with a larger

overlap of the interquartile regions. CMEMS-OLCI level 3 also

matches the spectral shape with positive deviations at all the bands

(including 665 nm) and a relatively higher bias value at 443 nm.

Scatter plots between satellite and AERONET-OC for the same

six bands comparing CMEMS-OLCI and OC-CCI v.6 (complete

time series and OLCI period) are shown in Figure 11. Overall, all the

datasets perform adequately in terms of fitting, especially between

490 nm and 560 nm.

As observed in Figure 10, all the datasets show positive

deviations with respect to the identity line between the 412-nm
A B

DC

FIGURE 6

Spectral variation of the validation metrics computed for each AC from match-ups of OLCI level-2 and AERONET-OC in-situ Rrs data. (A) RMSD (in
Rrs units: sr−1). (B) Relative percent differences (%). (C) Bias (in Rrs units: sr−1). (D) Determination coefficient (R2, unitless).
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and 490-nm spectral range, with an offset more remarkable at 443

nm. Although comparable regression fits were achieved from all the

datasets, CMEMS-OLCI seems to perform better at 412 nm and

665 nm.

Figure 12 shows the spectral variation of some metrics

computed from the match-ups between satellite level 3 and

AERONET-OC Rrs.

Overall, all the metrics using the complete time series for OC-

CCI v.6 are worse than those obtained only for the OLCI period,

and this may be due to the differences in satellite missions being

included in the OC-CCI v.6 time series and to differences related to

the data availability from the three AERONET-OC sites.

Comparing CMEMS-OLCI and OC-CCI v.6 based on the

metric computed with the common set of match-ups between

2016 and 2022, CMEMS-OLCI performs better at 412 nm and

OC-CCI v.6 in the 490–665-nm spectral range in terms of RMSD,

RPD, and bias, whereas the results are equivalent at 443 nm. In

terms of correlation, similar R2 values were obtained for all the

wavelengths except at 665 nm, with a higher R2 (0.84 vs. 0.77) for

OC-CCI v.6. In summary, both level-3 datasets perform

adequately in the 490–665-nm spectral range (R2: 0.75–0.95;

RMSD< 0.005) and acceptable results at 443 nm (R2 ~ 0.75;

RMSD< 0.007), whereas higher uncertainties are observed at 412

nm (Figure 12).
Frontiers in Marine Science 14
3.4 Chl-a validation

Chl-a concentrations were retrieved using the chl-aENS3

ensemble approach based on Rrs spectra from CMEMS-OLCI and

OC-CCI v.6 and validated against co-collocated in-situ chl-a

measurements from COMBINE and Alg@line datasets. Scatter

plots and main metrics are shown in Figure 13, including the

results from a common set of match-ups (2016–2019) for both

satellite datasets and from all the valid match-ups (1997–2019)

using the complete OC-CCI v.6 time series.

Our dataset includes a total of 9,035 chl-a in-situmeasurements

from 1997 to 2019 (3,955 from Alg@line, 5,080 from COMBINE).

For the OLCI period, only 1,047 measurements (325 from Alg@line,

722 from COMBINE) were available between 2016 and 2019. After

applying the quality control (see Section 2.4), the number of valid

match-ups for the OC-CCI v.6 (1997–2019) was 1,770, whereas for

the OLCI period, validation for both CMEMS-OLCI and OC-CCI

v.6 was based on a common set of 55 match-ups.

The results were quite comparable using the common set of match-

ups, although, looking in detail, CMEMS-OLCI performs better for all

performance metrics. As compared with CMEMS-OLCI, the results

from the longer OC-CCI v.6 time series are characterized by a better

fitness (R2 = 0.29) and a lower RPD (5%), but also a higher APD (69%)

and a tendency toward underestimation (bias = −0.14). These negative
FIGURE 7

Comparison between in-situ Rrs from automated shipborne radiometry and OLCI level-2 Rrs obtained using four AC processors: WFR, C2RCC,
POLYMER, and S3 FUB-CSIRO. Lines and shadowed areas represent the median values and the interquartile ranges, respectively.
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deviations also appear in the results from the shorter OC-CCI v.6 time

series (bias = −0.22) but are not observed in the CMEMS-OLCI dataset

(bias = −0.03). Although metrics differences between both datasets

could be explained by uncertainties associated with the input Rrs

spectra, OLCI results should be interpreted with caution considering

the lower number of match-ups (55 vs. 1,770) available for the OLCI

period (from 2016 to 2019).
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3.5 Comparison between CMEMS-OLCI
and OC-CCI v.6 datasets

Figure 14 shows the scatter plots between OC-CCI v.6 and

CMEMS-OLCI based on a set of co-collocated data points for the

five Rrs bands involved in the chl-a retrieval as well as for the

satellite-derived chl-a concentration (see Section 2.5).
FIGURE 8

Scatter plots of common match-ups between satellite (OLCI level-2) and in-situ (shipborne radiometry) Rrs measurements, for nine OLCI bands
between 400 nm and 778.75 nm. Data points and regression lines are color-coded by AC. The dash line represents the identity line (1:1 ratio).
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A good Rrs fitting with determination coefficients higher than

0.90 was observed in the 490–670-nm spectral range, whereas a

poorer agreement and a higher dispersion, especially with low Rrs

values (<5 10−3 sr−1), were found at 443 nm. Most of the data points

fall around the identity line leading to a bias value close to zero

(lower than 1.9 10−4 sr−1). In terms of percent error (APD and

RPD), values were lower than 12% for all the bands except for 670

nm, whereas comparable RMSD values were also found for all the

bands (between 2.7 10−4 and 7.6 10−4). Note that RMSD depends, to

some extent, on the distribution range, so that the maximum was

obtained at 443 nm (i.e., with the maximum range) and the

minimum at 670 nm (minimum range) despite this band showing

the maximum APD.

The scatter plots also show the data points deviating from the

expected 1:1 ratio. The greatest deviation of the regression line with

respect to the identity line is observed at 443 nm, caused by a

significant number of points with low OC-CCI v.6 values (lower

than 5 10−3 sr−1) but high CMEMS-OLCI Rrs (higher than 10 10−3

sr−1). Moreover, some erroneous data points with low CMEMS-

OLCI Rrs (lower than 0.5 10−3 sr−1) but OC-CCI v.6 Rrs values

approximately 5 10−3 sr−1 are also clearly visible in the scatter plot at

670 nm. These deviations are caused by problems with

CMEMS-OLCI.

The chl-a concentration yielded an acceptable fitting (R2 = 0.67)

but with a negative bias, meaning that chl-a values retrieved from
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OC-CCI v.6 tend to be lower than those from CMEMS-OLCI. In

fact, most of the points are located below the identity line. Similar to

Rrs at 443 nm and 670 nm, there is also a significant number of data

points deviated from the expected 1:1 ratio, with concentrations

ranging from 1.5 mg m−3 to 15 mg m−3 from OC-CCI v.6 but values

lower than 0.5 mg m−3 when retrieved from CMEMS-OLCI.
4 Discussion

This study presented the introduction within the Copernicus

Marine Service of the operational Rrs and chl-a datasets for the

Baltic Sea from OLCI full resolution (300 m). Poor performances

have been reported in the assessment of OLCI Rrs for the Baltic

CDOM-dominated waters using both the EUMETSAT Operational

Baseline (Zibordi et al., 2018; Zibordi et al., 2022) and the

alternative atmospheric correction processing chain based on

CR2CC (Cazzaniga et al., 2022). Hence, the first step was to select

the best AC method to retrieve OLCI Rrs by comparing the

accuracy of four processors using in-situ radiometric data from

AERONET-OC sites and Alg@line shipborne hyperspectral

radiometry as reference.

Our validation results from both in-situ sources (fixed platform

and shipborne observations) show that POLYMER v.4.14 was the

best option for the implementation in the processing chain for the
A B
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FIGURE 9

Spectral variation of the validation metrics computed for each AC from match-ups of OLCI level-2 and SYKE in-situ Rrs data. (A) RMSD (in Rrs units:
sr−1). (B) Relative percent differences (%). (C) Bias (in Rrs units: sr−1). (D) Determination coefficient (R2, unitless).
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new level-3 OLCI Rrs and chl-a datasets (see Section 3.2). In fact, it

performs better not only in the 443–665-nm spectral range which

includes the relevant bands for chl-a retrieval (Table 1), but also at

400 nm, 412.5 nm, and 778.75 nm. A greater variability in the

metrics in the 673.75–708.75-nm spectral range (validated only

with shipborne radiometry) and at 865 nm hinders the
Frontiers in Marine Science 17
identification of the best-performing AC in this spectral range.

Overall, performance differences are more remarkable in the blue

spectral region (400–490 nm), especially in terms of correlation

(Figures 6, 9). The main drawback for chl-a retrieval is the positive

bias observed from both sources across the 412.5–665-nm

spectral range.

Although validation results from AERONET-OC sites are

expected to be more robust and reliable as in-situ data come from

a stable platform with fewer uncertainties, metrics based on

shipborne radiometry collected in 2016 were consistent and show

the potential of this method to increase the number of match-ups

providing data at other sites with different atmospheric and/or

water conditions. According to Tilstone et al. (2022), differences

between both in-situ sources could be mainly explained by two

factors: 1) site differences—Baltic Sea waters are mainly dominated

by CDOM, but ship trajectories could be more influenced by

increases in chl-a concentrations due to phytoplankton blooms,

whereas CDOM concentrations are generally higher in AERONET-

OC sites; and 2) instruments and data processing—the differences

in instruments (TriOS-RAMSES in the case of the hyperspectral

shipborne radiometry; CIMEL-SeaPRISM for AERONET-OC) with

their specific uncertainties by wavelength may be augmented by the

fact that the data are processed with distinct methodologies.

Moreover, in our study, shipborne radiometry is only available

for validating Sentinel-3A in 2016, as AERONET-OC in-situ data

extend from 2016 to 2022 enabling the validation of both Sentinel-

3A and Sentinel-3B.

In our study, POLYMER results from AERONET-OC as

compared with Alg@line in the 442.5–665-nm spectral range were

better in terms of correlation (0.41–0.90 vs. 0.19–0.61), but slightly

worse considering RMSD (2.6–7.0 10−4 sr−1 vs. 1.7–6.0 10−4 sr−1) or

bias (1.3–6.4 10−4 sr−1 vs. 0.8–3.7 10−4 sr−1). As RPD are similar

from the two sources (between 10% and 28% except for 442.5 nm),

higher RMSD or bias values using AERONET-OC could also be

related to its larger in-situ Rrs range and maximum values (see in-

situ distribution in Figures 4, 7). Moreover, overall better results

according to all the metrics were derived from AERONET-OC at

400 nm, 412.5 nm, and 778.75 nm (except for RMSD at 412.5 nm).

At 400 nm, a negative bias was obtained from Alg@line (−2.7 10−4

sr−1) but a positive value (3.2 10−5 sr−1) from AERONET-OC,

which could be related to differences in optical water characteristics:

higher CDOM concentrations leading to lower Rrs (and higher bias)

in AERONET-OC sites. In fact, only 21% of match-ups from

AERONET-OC show Rrs greater than 1 10−3 sr−1 against 55%

from the shipborne radiometry.

Another remarkable feature is the high RPD peak at 442 nm

from shipborne radiometry, which is present in all the processors.

This peak is explained by a small set of match-ups with very high

RPD values (>200% with a maximum of approximately 23,000%)

from 2 days (9 June 2016 and 28 July 2016). These high RPD values

are caused by some outliers in the in-situ distribution at 442 nm

characterized by very low Rrs values (0.06–0.86 10−3), as compared

with the interquartile range between 1.25 10−3 and 1.75 10−3 sr−1

(Figure 7). These results evidence that results from shipborne

radiometry could be improved by a stricter in-situ quality control
A
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FIGURE 10

Comparison between in-situ Rrs from AERONET-OC sites and level-
3 Rrs datasets. (A) OC-CCI v.6 (complete time series: 2005–2022).
(B) OC-CCI v.6 (OLCI period: 2016–2022). (C) CMEMS-OLCI. Lines
and shadowed areas represent the median values and the
interquartile ranges, respectively.
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(e.g., removing spectra with outliers). However, this refinement is

out of the scope of this work as we use the dataset as a method to

confirm the conclusions based on AERONET-OC data.

POLYMER also shows advantages in terms of coverage in

comparison with other AC methods as by design it is able to deal

with residual sun glint (Steinmetz and Ramon, 2018). As seen in

Table 3, the number of valid match-ups based only on POLYMER

flag mask bitmask (846 valid match-ups from AERONET-OC) or

combining bitmask and IdePix (773 valid match-ups from

AERONET-OC) is 30% higher than those using other processors.

However, yielding more match-ups does not imply a better or worse

performance of the validation results. In fact, datasets showed similar

distributions, with close ranges and median values across the spectra.

Table 4, based on AERONET-OC in-situ data, presents comparable

values for R2, RMSD, or bias in the 412.5–665-nm spectral range,

whereas expected higher uncertainties were observed at 400 nm or

778.75 nm. Note that bias was consistently lower across the whole

spectra using only bitmask, especially in the blue, meaning that extra

match-ups produced by POLYMER tend to show a lower bias.
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Table 4 also shows the differences between the POLYMER

validation metrics from Sentinel-3A and Sentinel-3B using in-situ

data from AERONET-OC. Overall, results from Sentinel-3A are

better considering all the metrics across the spectra, except for the

bias between 620 nm and 778.75 nm. Differences are expected since

match-up datasets do not show the same spatial–temporal coverage

leading to different numbers of valid match-ups as Sentinel-3B is

only available from 2018.

Our level-2 validation results agree with the findings in other

works comparing AC algorithms over the Baltic Sea. Tilstone et al.

(2022) assessed Sentinel-3A Rrs from WFR (pb 2.23–2.29 and

OL_L2M.003), POLYMER v.4.14, and C2RCC using in-situ data

from Alg@line shipborne radiometry (199 match-ups), Gustav

Dalen Tower (5 match-ups), and Helsinki Lighthouse (4 match-

ups), all the match-ups for only 2016. They found that POLYMER

was the best-performing AC algorithm for six bands (412 nm, 443

nm, 490 nm, 560 nm, 665 nm, and 709 nm). Alikas et al. (2020)

validated satellite OLCI Rrs from four AC processors (i.e., ALTNN,

C2RCC, POLYMER, and WFR) against above-water field
FIGURE 11

Scatter plots of match-ups between satellite level 3 and in-situ AERONET-OC Rrs measurements for six bands between 412 n and 665 nm. Data
points and regression lines are color-coded by level-3 dataset (OC-CCI v.6—complete time series; OC-CCI v.6—OLCI period; CMEMS-OLCI). The
dashed line represents the identity line (1:1 ratio). N(1) and N(2) are the number of match-ups available for the OC-CCI v.6 complete time series and
for the OLCI period, respectively.
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measurements collected from a research vessel over the coast of the

Baltic Sea and Estonian Lakes in 2016. With a number of valid

match-ups between 15 and 49 depending on the AC processor and

filtering level, they reported POLYMER as the best suitable

algorithm for all the OLCI bands except for 865 nm.

Since most of the valid match-ups (199 of 208) in Tilstone et al.

(2022) are derived from the same dataset based on shipborne
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radiometry, metric values are expected to be similar to those

reported in Section 3.2.2. In fact, RMSD values (2–6 10−4 sr−1 in

this work; 3–7 10−4 sr−1 in Tilstone et al., 2022) or Pearson

correlation coefficients (0.45–0.78 in this work; 0.38–0.6) follow a

similar pattern. Differences are mainly observed in the bias, with

negative values in Tilstone et al. (2022) (−4 10−4 to −1 10−4 sr−1)

instead of the positive bias found in our work (8 10−5 to 4 10−4).
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FIGURE 12

Spectral variation of the validation metrics computed from match-ups of level-3 datasets (OC-CCI v.6 complete time series; OC-CCI v.6—OLCI
period; CMEMS-OLCI) and AERONET in-situ Rrs data. (A) RMSD (in Rrs units: sr−1). (B) Relative percent differences (%). (C) Bias (in Rrs units: sr−1).
(D) Determination coefficient (R2, unitless).
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FIGURE 13

Scatter plots of match-ups between satellite-derived and in-situ log-transformed chl-a measurements. Satellite chl-a concentrations were retrieved
using chl-aENS3. (A) all the valid match-ups (1997–2019) from OC-CCI v.6; (B) common match-ups (2016–2019) for OC-CCI v.6; and (C) CMEMS-
OLCI. Data points are colored by density. The continuous line represents the 1:1 ratio.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1256990
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


González Vilas et al. 10.3389/fmars.2023.1256990
This disparity could be explained because we applied a stricter

validation protocol with results based on a dataset of common

match-ups, leading to a considerably lower number of match-ups

(107 vs. 199 in Tilstone et al.). Relaxing our protocol using only

bitmask as flag band, the number of valid match-ups increases until

251 and bias tends to be lower (likewise using the AERONET-OC

dataset), so that comparable negative bias values (−8.9 10−5 to −1.4

10−4) were found in the 490–665-nm spectral range.

Regarding the level-3 datasets, the in-situ distribution for the

complete OC-CCI v.6 time series (Figure 10A) is characterized by

lower Rrs values at 490 and 560 nm in comparison with the OLCI

period (Figures 10B, C). Differences are more remarkable at 560

nm, with an upper quartile value approximately 3.5 10−3 sr−1

against a peak of almost 5 10−3 sr−1. These discrepancies could be

explained by two facts. Firstly, differences in the optical water types

related to the data availability from the three AERONET-OC sites:

the complete time series include more spectra from Helsinki

Lighthouse, whereas in-situ data from Irbe Lighthouse (available

since 2018) become more predominant during the OLCI period as

measurements at the Helsinki Lighthouse ended in 2019. Secondly,

the results at 560 nm for the complete time series use in-situ data

from the AERONET-OC band at 555 nm available between 2005

and 2011, introducing uncertainties associated with the band-

shifting process. However, the results for the OLCI period are

only based on the AERONET-OC band at 560 nm introduced in

2018 (Table 1).
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Using the common set of match-ups, CMEMS-OLCI and

multisensor OC-CCI v.6 show equivalent distributions and

metrics (with some differences indicated in Section 3.3)

notwithstanding the different spatial resolution (300 m vs. 1 km).

This similar behavior could be explained because both datasets are

based on the same AC processor, i.e., POLYMER (with the

exception of SeaWiFS), and that from 2020 onward, OC-CCI v.6

is based only on OLCI from Sentinel-3A and Sentinel-3B, as

MODIS-AQUA and VIIRS are included only until the end of

2019 (OC-CCI, 2022). As expected, the metrics from CMEMS-

OLCI L3 (Figure 6) are very close to those from POLYMER OLCI

L2 (Figure 12).

Our results based on the complete OC-CCI v.6 time series differ

from the metrics for OC-CCI v4.2 reported in Brando et al. (2021).

OC-CCI v.6 performs better in terms of correlation for the 412–

490-nm spectral range, whereas R2 values are similar for the other

bands, with more remarkable differences at 400 nm (0.51 vs. 0.05)

and 442.5 nm (0.66 vs. 0.34). However, OC-CCI v4.2 shows lower

positive bias values (0.1 10−4–0.8 10−4 sr−1 against 1.2 10−4–6.9 10−4

sr−1) and performs better in terms of APD or RPD in the 412–560-

nm spectral range. Finally, OC-CCI v.6 shows lower bias, APD, and

RPD at 665 nm.

The main differences between both OC-CCI versions explaining

these discrepancies are the change of reference sensor from

SeaWiFS to MERIS, the introduction of OLCI from Sentinel-3A

and Sentinel-3B, and the shift of the green band from 555 nm to 560
FIGURE 14

Scatter plots of co-collocated data points between OC-CCI v.6 and CMEMS-OLCI data points, including Rrs for five bands (443 nm, 490 nm, 510
nm, 560 nm, 670 nm) and chl-a concentration.
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nm. Moreover, the results in Brando et al. (2021) include 680

match-ups from 2005 to 2019, most of them from Gustav Dalen

Tower and Helsinki Lighthouse, as the results from v.6 until 2022

introduce more in-situ data from Irbe Lighthouse. Note also that a

stricter quality control (9 valid pixels in the extractions window

instead of 4) was introduced in this work.

Table 4 shows the metrics from CMEMS-OLCI Rrs for the three

sites. Overall, all of them are characterized by CDOM-dominated

waters, and the metrics follow the same spectral pattern. The results

from Gustav Dalen Tower and Helsinki Lighthouse lead to similar

results, with more match-ups and a better adjustment (R2) from

Gustav Dalen Tower. In the case of Irbe Lighthouse, the results

show a poorer agreement at 412.5 nm and lower RMSD and bias in
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the 490–560-nm spectral range, which could be explained by a

lower Rrs range.

OC-CCI v.6 chl-a retrievals show validation results (R2 = 0.29;

RPD = 5%; APD = 69%; bias = −0.14), consistent with those reported

for the previous version of the multisensor level-3 processing chain,

i.e., OC-CCI v4.2 (Brando et al., 2021: R2 = 0.24; RPD = 41%; APD =

90%; bias = −0.78), with a better performance considering all the

metrics. Overall, the effect of the positive bias observed in the 412–

510-nm spectral range (Figures 12, 13) seems to be adequately

handled by the ensemble approach.

Chl-a validation results from CMEMS-OLCI are similar to

those from OC-CCI v.6 using the common set of match-ups

(Figure 13). The most remarkable difference is the lower bias
TABLE 4 Validation metrics for eight OLCI wavelengths in the visible spectral range.

400* 412.5 442.5 490 510* 560* 620* 665 778.75

POLYMER L2 common match-ups (N = 392; N* = 354)

R2 0.41 0.57 0.69 0.78 0.82 0.9 0.8 0.77 0.74

RMSD 5.0 5.3 7.0 5.4 4.8 5.2 4.0 2.6 3.5

Bias 0.3 3.8 6.4 4.3 3.4 3.3 2.9 1.3 0.6

POLYMER L2 bitmask (N = 846; N* = 754)

R2 0.36 0.53 0.69 0.77 0.81 0.88 0.76 0.7 0.35

RMSD 5.1 5.1 6.9 5.3 4.7 5.2 4.0 2.7 1.6

Bias 0.0 3.3 6.3 4.1 3.1 2.7 2.6 1.0 0.5

POLYMER L2 common match-ups—SENTINEL-3A (N = 428; N* = 342)

R2 0.43 0.57 0.74 0.82 0.87 0.93 0.86 0.8 0.46

RMSD 4.6 4.5 6.7 5.1 4.4 4.5 3.7 2.3 1.2

Bias −0.1 2.8 6.2 4.2 3.3 2.8 2.9 1.2 0.6

POLYMER L2 common match-ups—SENTINEL-3B (N = 345; N* = 345)

R2 0.39 0.54 0.66 0.74 0.80 0.86 0.73 0.68 0.36

RMSD 5.1 5.7 7.2 5.6 4.9 5.7 4.3 2.9 1.7

Bias 0.7 4.2 6.5 4.3 3.3 3.0 2.7 1.1 0.5

CMEMS L3—Gustav Dalen Tower (N = 241; N* = 206)

R2 0.57 0.74 0.81 0.86 0.91 0.73

RMSD 4.7 6.9 5.2 4.7 5.2 2.5

Bias 2.9 6.4 4.3 3.4 3.0 1.1

CMEMS L3—Helsinki Lighthouse (N = 90; N* = 39)

R2 0.51 0.68 0.77 0.84 0.91 0.78

RMSD 4.2 6.4 5.2 5.7 6.2 2.6

Bias 2.4 5.8 4.2 4.5 4.2 1.1

CMEMS L3—Irbe Lighthouse (N = 155; N* = 155)

R2 0.36 0.63 0.74 0.80 0.92 0.72

RMSD 5.2 6.5 4.8 3.9 3.9 2.5

Bias 2.8 5.7 3.4 1.9 1.4 0.9
fron
Match-ups based on AERONET-OC in-situ Rrs. *Wavelengths with in-situ data only from 2018. R2: unitless. RMSD and bias: in 10−4 sr−1.
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(−0.03 against −0.22), which is consistent with the bias decrease

with the introduction of OLCI in the multisensor level-3 datasets

from −0.78 (OC-CCI v.4.2, without OLCI, Brando et al., 2021) to

−0.22 (OC-CCI v.6, with OLCI, this work). In any case, further

research is required because of the small number of chl-a match-

ups available for the OLCI period.

Scatter plots of co-collocated OC-CCI v.6 and CMEMS-OLCI

data points (Figure 14) show better statistical figures for Rrs (except

for 443 nm) than chl-a. Note that OC-CCI v.6 Rrs are derived from

different space sensors and AC, whereas CMEMS-OLCI Rrs are

obtained from Sentinel-A and Sentinel-B images processed with

POLYMER v.4.14. With the exclusion of outliers, which are possibly

related to the resolution and coverage of both datasets, most Rrs

differences can be attributed to the specificities of data processing

and absolute radiometric accuracy of the reference sensor (MERIS

for OC-CCI v.6 and OLCI for CMEMS-OLCI).

An overall good agreement was found in the comparison

between chl-a retrievals from CMEMS-OLCI and OC-CCI v.6,

with a tendency of CMEMS-OLCI toward greater chl-a

concentrations (Figure 14).

Nevertheless, the differences in Rrs are amplified in terms of chl-a

retrieval. This is probably due to the non-linear nature of the MLP

retrievals of chl-a and of the weights in the chl-aENS3 ensemble

approach adopted in this study, as well as the underlying relationship

between apparent and inherent optical properties in the Baltic Sea.

An issue is the presence of erroneous data points caused by

underestimation in the chl-a retrievals from CMEMS-OLCI (<0.5 mg

m−3) as compared with OC-CCI v.6 (1.5–15 mgm−3) (Figure 14). These

wrong retrievals are caused by anomalously high OLCI Rrs values with a

smaller range at 490 nm (4–5 10−3 sr−1 in CMEMS-OLCI against 0.01–

3.5 10−3 sr−1 in OC-CCI v.6) and 510 nm (3–3.25 10−3 sr−1 in CMEMS-

OLCI against 0.01–2.5 10−3 sr−1 in OC-CCI v.6). Note that these points

are not clearly visible in the scatter plots in Figure 14.

Potential differences in the validation results between the

available datasets (i.e., COMBINE and Alg@line, see Section

2.2.2), as well as differences in the analytical methods and

protocols for the chl-a concentration estimation, were not

considered in this study because of the limited number of match-

ups, mainly for the OLCI period. It should be noted that Brando

et al. (2021) reported higher uncertainty for the match-ups of their

multisensor time series with the COMBINE measurements as

compared with Alg@line water samples due to different sampling

strategies and dynamic ranges of both data sources.

In our sampling to perform the comparative analysis (a point

every 10 km, an image every 10 days, see Section 2.5), only 143 points

(of 190,546) from 32 images (of 240) were identified as erroneous. For

most of the images, only one erroneous point was found, with a

maximum of 28 points on a single image. Despite this low impact,

further research with a full sampling is required to evaluate the actual

effect of these wrong pixels and to implement a flagging procedure.

Regarding wrong Rrs values with a lower impact on the chl-a

results (e.g., at 442 nm or 670 nm, see Figure 14), the presence in our

sampling is limited to a small number of points by image (often only

one). For instance, we identified 216 erroneous points in 64 images at

442 nm and only 32 points in 18 images at 660 nm. In any case,

likewise chl-a, a further masking could improve the mapping results.
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5 Conclusions

In this study, the performance of four atmospheric correction

processors for the Rrs retrieval from Sentinel-3 OLCI was assessed

within the development of the regional ocean color processing

chain for the Baltic Sea. The validations with the in-situ

measurements collected at three AERONET-OC sites and those

relying on the Alg@line shipborne hyperspectral radiometry show

that POLYMER v.4.14 was the best-performing processor in terms

of error and fitness in the visible spectral range, as well as spatial

coverage. Results also document the relevance of shipborne

radiometry to complement in-situ measurements from fixed sites,

allowing for a larger spatial footprint across all subbasins.

POLYMER-derived Rrs spectra were thus employed to retrieve

chl-a from OLCI full-resolution (300 m) data using the bio-optical

ensemble scheme already introduced in the CMEMS processing

chain for the Baltic Sea. Additionally, this study evaluated the

operational Rrs and chl-a multiyear time series (from 1997 to

2022) for the Baltic Sea based on OC-CCI v.6.

The chl-a values retrieved from OC-CCI v.6 and OLCI Rrs

using the same regional bio-optical ensemble scheme were

compared with the in-situ chl-a measurements. Results confirm

previous analyses undertaken within the CMEMS products

assessments, even if the number of OLCI match-ups (2016–2019)

was lower. A study extension is planned to include more recent in-

situ measurements once available.

Finally, an overall good agreement was found in the comparison

between chl-a retrievals from OLCI and OC-CCI v.6. However,

differences between the Rrs bands used as input for the bio-optical

ensemble scheme were amplified in terms of chl-a retrieval. A flagging

strategy should be devised to identify and reduce the presence of

erroneous data points in both datasets. Furthermore, a sensitivity

analysis is then part of the future developments to analyze the

response of the bio-optical ensemble by adding synthetic offsets and

noise to input Rrs spectra and verify how it affects the chl-a retrieval.

Our results confirm that the quality of operational ocean color

datasets presented in this study is suitable for studies on phytoplankton

phenology, bloom occurrence, water quality monitoring, and

eutrophication assessment in this threatened ecosystem.
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