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Gas hydrates possess significant potential as an energy resource and exert a

notable influence on global climate change. The Shenhu Area is one of the

globally recognized focal points for gas hydrate research, and additional

investigation is required to fully comprehend its gas migration mechanism. By

utilizing the most recent core-log-seismic data and gas geochemical data, a

comprehensive analysis was conducted to determine the influence of gas

migration pathways on gas hydrate accumulation in the study area. This study

investigated the various types of gas migration pathways, employing integrated

geological models that incorporate faults and gas chimneys to understand their

respective contributions to the accumulation of gas hydrates. Based on these

findings and drilling constraints, a three-gas combined production model was

subsequently proposed. Thermogenic gas, secondary microbial gas, and in situ

microbial gas are all potential sources of the gas responsible for hydrate

formation. Thermogenic gas plays a significant role in the gas hydrate system,

as evidenced by distinct features of late-mature thermogenic gas observed in gas

samples extracted from hydrates in Well W18. In the study area, the primary

conduits for gas migration encompass deep faults, branch faults, and gas

chimneys. Among these, deep faults act as the most crucial pathways of

thermogenic gas migration. The integration of geological models that

incorporating deep faults and gas chimneys has profoundly impacted the

accumulation of gas hydrates in the Shenhu Area, consequently influencing

the distribution of shallow gas and gas hydrate. Furthermore, the proposed

three-gas combined production model, which involves the simultaneous

extraction of deep gas reservoirs, shallow gas reservoirs, and gas hydrates,

holds significant implications for exploring and developing deep-water natural

gas resources. However, its successful implementation necessitates

interdisciplinary collaboration among scientists.
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1 Introduction

Gas hydrates are solid compounds with cage structures, which

have attracted worldwide attention due to their huge energy

resource potential (Kvenvolden, 1993; Dickens et al., 1995; Sloan,

2003; Milkov, 2004; Solomon et al., 2007). Scientists estimate that

the global reserves of gas hydrate resources are approximately 3×103

trillion cubic meters of methane (Boswell and Collett, 2011). These

vast reserves hold immense potential as a viable alternative energy

source for humanity in the coming years. In recent decades, several

nations, including Russia, Canada, the United States, Japan, and

China, have conducted production tests on gas hydrates (Makogon

et al., 2007; Beaudoin et al., 2014; Chong et al., 2016; You et al.,

2019; Ouchi et al., 2021; Yu et al., 2021). These production tests

signify substantial progress toward the commercial utilization and

extraction of this valuable resource.

The formation and accumulation of gas hydrates are influenced

by a multitude of factors, encompassing the origin and migration of

gas, the characteristics of reservoirs, as well as pressure and

temperature conditions (Collett et al., 2009). Extensive research

has demonstrated that the formation of hydrates necessitates the

ingress of gas with a high flux into the gas hydrate stability zone

(GHSZ), which cannot be largely fulfilled by in situ microbial gas

(Kuang et al., 2018; Lai et al., 2023). Consequently, the importance

of deep thermogenic gas as a crucial gas source for gas hydrate

accumulation becomes apparent. Additionally, the study of gas

migration pathways has emerged as an essential aspect of gas

hydrate systems, obtaining considerable attention from

researchers (Davies et al., 2014; Fu et al., 2020; Santra et al.,

2022). Gas hydrates are predominantly found on continental

margins across the globe. In marine environments, the

accumulation of gas hydrates is intricately associated with faults,

acting as vital conduits for the migration of deep thermogenic gas

into the GHSZ (Milkov and Sassen, 2002; Hui et al., 2016).

Moreover, the pathways for gas migration include both vertical

transport conduits, such as gas chimneys and mud diapirs, and

lateral migration pathways, such as high-permeability sand layers

(Fraser et al., 2016; Hillman et al., 2017; Su et al., 2017; Ren et al.,

2022; Slowey et al., 2022; Zhang et al., 2023). These pathways are

essential components that should not be overlooked or disregarded.

The Shenhu Area in the South China Sea stands out as a

prominent hotspot for gas hydrate research worldwide

(Figure 1A). Notably, two rounds of successful production tests

have already been conducted in this region (Li et al., 2018; Qin et al.,

2020; Ye et al., 2020; Qin et al., 2022). A series of drilling expeditions

in the Shenhu Area has led to notable breakthroughs in

understanding the gas hydrate accumulation mechanism. These

endeavors have contributed to significant advancements in research

within the region. The formation of hydrates has been found to be

significantly influenced by deep thermogenic gas (Zhang et al.,

2017; Wang et al., 2021; Lai et al., 2022; Liang et al., 2022).

Therefore, the transportation of deep thermogenic gas to shallow

strata has come out as a topic of scholarly interest. Seismic data

analysis revealed that gas chimneys and mud diapirs are the

primary conduits for vertical gas migration. Additionally,
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polygonal faults have been identified as another contributing

factor in the process (Chen et al., 2013; Liang et al., 2017; Su

et al., 2017). Due to the earlier acquisition time of seismic data, deep

reflections could be more explicit, and a large number of fuzzy zones

on seismic profiles can be observed. In order to further enhance the

understanding of gas hydrates in the Shenhu Area, the Guangzhou

Marine Geological Survey (GMGS) undertook the acquisition of

high-resolution 3D seismic data in 2018. Cheng et al. (2020)

described the characteristics of various types of gas chimneys.

Their proposal suggests that gas chimneys, originating from the

Paleogene and terminating in the Quaternary, play a pivotal role in

facilitating the accumulation of gas hydrates. Zhang et al. (2023)

proposed that the large sediment thickness at the ridge of the

canyons led to gas chimney formation. Additionally, deep faults

serve as crucial conduits for the vertical migration of thermogenic

gas (Jin et al., 2020; Wang et al., 2021). Nevertheless, the

significance of faults, particularly their relationship with gas

chimneys, needs to be more frequently discussed in the gas

hydrate accumulation process.

In 2020, the GMGS carried out a reprocessing of seismic data,

leading to enhanced visualization of deep faults. In this study, the

up-to-date core-log-seismic data and gas geochemical data were

employed to comprehensively explore and analyze the role of faults

in the gas migration process. The study also investigated their

contribution to gas hydrate accumulation alongside gas chimneys.

We characterized the gas hydrate occurrence of seven drillings and

the coupled geological models of faults and gas chimneys under the

constraints of these drillings. Subsequently, we elucidated various

gas migration pathways, including deep faults, branch faults, and

gas chimneys. Combined with gas geochemical data, we found

evidence that deep thermogenic gas is an essential gas hydrate

source. Then, this paper clarified the contribution of different

geological models to gas hydrate accumulation. Finally, a three-

gas combined production model of deep natural gas reservoirs,

shallow gas reservoirs, and gas hydrates was proposed to promote

the exploration and development of offshore oil and gas resources.
2 Geological setting

The Shenhu Area can be found in the northern region of the

South China Sea, and it is structurally situated within the Baiyun

Sag of the Pearl River Mouth Basin (Figures 1A, C). It is worth

noting that the significant LW3-1 gas field was successfully

discovered within this area. In the northern South China Sea, the

Pearl River Mouth Basin encompasses a vast expanse and holds the

distinction of being the largest petroleum-rich basin (Zhu et al.,

2009; He et al., 2017; Zhang et al., 2021b). Over the course of the

Cenozoic era, the basin has experienced numerous instances of

tectonic activity, leading to the emergence of a diverse range of

faults, diapirs, and gas chimneys (Figure 1B) (Sun et al., 2008; Shi

et al., 2014; Pang et al., 2018; Sun et al., 2019). The presence of these

geological features has fostered favorable conditions for the flow of

fluids. The predominant sedimentary deposits within the basin are

characterized by the lacustrine facies of the Wenchang and Enping
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Formations. These formations are widely acknowledged as the key

hydrocarbon source rocks within the region. The transitional facies

of the Zhuhai Formation may also serve as source rocks. The basin

comprises diverse facies, ranging from littoral to bathyal and abyssal

environments. These facies include the Zhujiang, Hanjiang, Yuehai,

and Wanshan Formations, alongside the Quaternary strata (Mi

et al., 2018; Zhang et al., 2021a). The sediment thickness of the

Cenozoic strata in the Baiyun Sag can reach about 8 km, showing

good hydrocarbon generation conditions (Zhu et al., 2021).

The study area is characterized by water depths ranging from

500 to 1700 m (Figures 1A, C). Furthermore, it holds the distinction

of being the pioneering pilot test area for the exploration and

exploitation of gas hydrates in the South China Sea, and production

tests were successfully carried out in 2017 and 2020. The evidence of

favorable conditions for gas hydrate accumulation in this area is

compelling. Furthermore, it is noteworthy that the LW3-1 gas field

is situated within a proximity of less than 10 km from the study

area. The close proximity of the area strongly indicates the existence

of substantial thermogenic gas reserves in deep formations, thus

presenting a promising potential as a viable source for gas hydrate

accumulation (Figure 1C) (Zhu et al., 2009).
3 Data and methods

3.1 Core-log-seismic data

The research employed 3D seismic data predominantly

collected in 2018, covering an estimated expanse of 800 km2. In

2020, the GMGS undertook data reprocessing, with a particular

focus on deep reflection structures. The specific parameters of the

seismic data and the processing procedures can be found in Cheng

et al. (2020). Based on the seismic data and previous research, the

sequence stratigraphic framework was established (Shi et al., 2014;

He et al., 2017). In addition, Geoframe® software was used to

extract seismic attributes like coherence slices, and then characterize

the planform distribution of faults and gas chimneys.

In 2007, 2015, and 2018, logging data from seven wells, namely

SH5, W22, W17, W07, W18, SH2, and W11, were obtained and

processed by Schlumberger® (Figure 1C). The logging techniques

employed included GR logging, RES logging, Vp logging, density

(DEN) logging, and resistivity imaging (RES_BD_IMG) logging.

These methodologies mainly aimed to detect gas hydrates and free

gas, as illustrated in Figure 2 (Collett et al., 2019; Cook et al., 2023).

However, due to the limited coring wells, a small number of cores

were obtained from Well W17, and a comprehensive observation

and description of each segmented core was conducted.
3.2 Gas geochemical data

Although well logs at seven wells were acquired, only some wells

were tested for gas geochemistry (Table 1). Among them, hydrate gas

samples of Wells W17, W18, and W11 were obtained (Zhang et al.,

2019), hydrate gas samples of SC-1, SC-2, SC-W01B, SC-W01C,
Frontiers in Marine Science 03
SC-W02B, SC-W03B, SC-2017, SC-2020, and samples from the

LW3-1 natural gas reservoirs were also used for comparisons (Lai

et al., 2022; Liang et al., 2022). Gas geochemical data mainly include

methane carbon isotope composition (d13C-C1), the ratio of methane

to the sum of ethane and propane (R=C1/(C2+C3)), and methane

hydrogen isotope composition (d2H-C1), which are all used to

identify the source of gas (Milkov and Etiope, 2018).
3.3 History of fault activity

Based on the high-resolution seismic data, this work selected a

few typical faults to analyze their activity history, which mainly

includes the sedimentary thickness of the hanging wall and footwall

of faults in each sedimentary period, fault expansion index, and fault

activity rate (Jackson and Rotevatn, 2013; Zhao et al., 2016). The

sedimentary thickness was first measured by the two-way travel

time (TWT) and then converted into depth according to the time-

depth transformation formula (Zhou et al., 2009). The expansion

index is the ratio of the sedimentary thickness of the hanging wall of

the fault to the sedimentary thickness of the footwall, which is used

to indicate whether the fault is active. The fault activity rate is the

difference in sedimentary thickness between the hanging wall and

the footwall during a certain sedimentary period.
4 Results

4.1 Gas hydrate occurrence

Only logging data, including the GR curve, RES curve, and Vp

curve, were obtained at Well SH5 (Figure 2A). Among them, the

RES curve value exhibits minor variation, and no evident presence

of gas hydrates or free gas was observed (Supplementary Data

Sheet 1).

The geographical location of Well W22 is situated on the

eastern side of Well SH5 (Figure 1C). At approximately 186.1 to

190 mbsf, there is an observed increase in the values of both the RES

curve and Vp curve, accompanied by the highlighting of the

RES_BD_IMG (Figure 2B). Taken together, these observations

strongly indicate the gas hydrate occurrences (Supplementary

Data Sheet 1).

The values of the RES curve and Vp curve increase sharply

between ~210 mbsf to ~260 mbsf of Well W17, and the

RES_BD_IMG also show highlighted features, demonstrating the

gas hydrate occurrences (Figure 2C). The honeycomb structures

formed by gas hydrate dissociation are also visible on cores. The gas

hydrate layer exhibits an effective thickness of approximately

43.1 m, with an average gas hydrate saturation of approximately

19.4% (Supplementary Data Sheet 1). Beneath the gas hydrate layer,

there is a noticeable increase in the RES curve value, indicating the

presence of a free gas layer. However, the Vp value decreases within

this layer.

Well W07 is situated on the ridge of the canyon in the northern

region of the study area (Figure 1C). Around 150 mbsf, the RES
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curve and Vp curve values increase. At the same time, the DEN

decreases, and the RES_BD_IMG highlight, showing a gas hydrate

layer (Figure 2D). Additionally, beneath the hydrate layer, there

exists a free gas layer where both the RES and Vp curve values

experience a decline (Supplementary Data Sheet 1). The seismic

profile displays a clear and prominent BSR characterized by high-

amplitude reflections. Above the BSR, we can discern the gas

hydrate layer, while below it lies the free gas layer. These layers

exhibit significant and easily identifiable reflections on the seismic

profiles (Figure 3). Faults and gas chimneys serve as favorable

conduits for gas migration, facilitating the accumulation of gas

hydrates and free gas beneath Well W07.

The values of the RES curve and Vp curve of Well W18 both

dramatically rise at about 150 mbsf, while the value of the DEN

curve falls (Figure 2E). The RES_BD_IMG distinctly highlights the

presence of a gas hydrate layer, accompanied by a subsequent layer

of free gas underneath. The gas hydrate layer exhibits an effective

thickness of approximately 11.6 m, and the average saturation is

approximately 30.5% (Supplementary Data Sheet 1).
Frontiers in Marine Science 04
Based on the analysis of well logging data, gas hydrates

have been discovered at a depth of approximately 200 mbsf of

Well SH2 (Figures 1C, 2F). The hydrate layer showcases a thickness

of approximately 25 m and exhibits a saturation level of

approximately 35.5% (Supplementary Data Sheet 1).

Well W11 is positioned north of Well W17 (Figures 1C, 2G).

According to the RES curve, Vp curve, and RES_BD_IMG data, a

thick gas hydrate layer can be identified, about 78.4 m, with an

average saturation of about 22.9% (Supplementary Data Sheet 1).

Furthermore, it is noteworthy that no occurrence of free gas has

been observed beneath the gas hydrate layer (Figure 2G).
4.2 Gas migration pathways

4.2.1 Deep faults
The study area exhibits a widespread distribution of numerous

deep faults that have developed over time (Figures 4, 5). Generally,

the deep faults were active early, starting from the Eocene, and
B

C

A

FIGURE 1

(A) Location of the Shenhu Area. (B) Multi-beam map of the seafloor and the locations of deep-water drillings in the study area (modified from Yang
et al. (2015); Cheng et al. (2020); Zhang et al. (2020), and Zhu et al. (2021)). (C) Comprehensive stratigraphic column of the Pearl River Mouth Basin
(modified from Shi et al. (2014); He et al. (2017), and Lei et al. (2021)).
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lasted for a long time, and can be active until the Quaternary

(Supplementary Data Sheet 2). In the study area, deep faults

controlled sedimentary fillings according to the fault displacement.

The persistent and long-term activities of faults can serve as pathways.

Notably, numerous gas chimneys have developed in close proximity

to these deep faults.

Multiple deep faults can be discerned on the coherence slice

maps, primarily concentrated in the northern region of the study

area (Figure 5). The orientation is NW and NWW, with a large

extension length and a wide range of influence.

4.2.2 Branch faults
Branch faults are closely related to deep faults, generally

developed after the formation of deep faults, with deep faults as

the main faults and a series of faults formed in shallow strata

(Figures 3, 4). Most branch faults have an opposite dip to the deep

faults, but a few have the same. In the study area, the activity of

branch faults has been observed to occur relatively late (Figure 4,

Supplementary Data Sheet 2). It is notable that a significant number

of branch faults have been activated after the late Miocene, resulting

in their ability to cut through deep strata. However, according to the

fault displacements, branch faults have little influence on

sedimentary fillings. On the seismic profiles, branch and deep

faults form flower-like structures (Figures 3, 4). The distribution

of these faults can be visually observed on the coherence slice maps,
Frontiers in Marine Science 05
displaying a distinctive broom- or horsetail-like shape in the overall

planform (Figure 5). This pattern is indicative of the characteristics

typically associated with strike-slip faults.

4.2.3 Gas chimneys
Many gas chimneys have developed within the study area,

predominantly appearing as elongated columnar structures on the

seismic profiles (Figures 3, 4). They are generally characterized by

chaotic reflections at the bottom, acoustic blanking zone and pull-

down anomalies on the body, and high-amplitude reflections at the

top. Based on variations in their topographic shape, the gas

chimneys within the study area can be categorized into different

types, including mushroom-shaped, capsule-shaped, dome-shaped,

and corolla-shaped gas chimneys. Among them, the mushroom-

shaped gas chimney has been drilled to reveal the occurrence of gas

hydrate and free gas (Figure 3). Furthermore, the gas chimneys can

be further classified based on their root origin as either the

Paleogene or the Neogene. Typically, their upper parts extend

into the Quaternary layer and are linked to the BSR.

In the study area, the gas chimneys exhibit a long strip-like shape

on the planform, primarily concentrated along the canyon ridges.

Their predominant direction is mainly NNW (Figures 1C, 5). Also,

their distribution is similar to the planform distribution of BSR, and

their spatial distribution is well-matched, confirmed by the seismic

profiles (Figures 3, 4).
B

C D

E F

A

G

FIGURE 2

Gas hydrate occurrences in different wells. (A) Well logging data of Well SH5. (B) Well logging data and interpretations of Well W22. (C) Cores, well
logging data, and interpretations of Well W17. (D) Well logging data and interpretations of Well W07. (E) Well logging data and interpretations of Well
W18. (F) Well logging data and interpretations of Well SH2. (G) Well logging data and interpretations of Well W11.
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TABLE 1 Gas geochemical data used in this study.

Well
name

Water depth
(m)

Sample
depth

Sample
type

d13C-C1

(‰)
R=C1/(C2+C3)

d2H-C1

(‰)
Reference

LW3-1-1 1480

3070 m

Gas field gas

-37.1 12.2 -158.0

Liang et al.
(2022)

3189.5 m -36.8 12.5 -156.0

3144.5 m -36.6 12.5 -158.0

3499.5 m -36.6 10.7 -176.0

3149–3154 m -38.0 12 -151.0

3152.5 m -37.9 12.4 -153.0

3175.5 m -37.8 12.9 -142.0

3123.8 m -37.5 13.1 -150.0

3123.5–3127.5 m -37.3 13.2 -150.0

3123.5–3127.5 m -37.4 13.2 -146.0

W11 1310

101 mbsf

Hydrate gas

-65.0 3019 -170.4

Zhang et al.
(2019)

146 mbsf -63.9 271 -180.7

153.5 mbsf -65.0 285 -174.1

153.5 mbsf -59.5 280 -178.0

171 mbsf -64.9 239 -180.3

183 mbsf -63.5 212 -175.3

W17 1252

51.6 mbsf

Hydrate gas

-73.8 619 -144.1

Zhang et al.
(2019)

87.5 mbsf -63.7 595 -142.0

222 mbsf -55.7 171 -149.5

241 mbsf -60.9 222 -180.5

263 mbsf -62.4 236 -179.9

W18 1282

146 mbsf

Hydrate gas

-38.4 1561 -154.0

Zhang et al.
(2019)

149 mbsf -38.4 1318 -137.7

159.5 mbsf -34.9 643 -156.6

171.5 mbsf -41.1 162 -130.0

SC-1 /

155.35–155.48
mbsf

Hydrate gas

-49.5 426 -165

Lai et al. (2022)

160.02–160.13
mbsf

-48.9 156 -180

160.58–160.76
mbsf

-49.1 183 -163

161.43–161.63
mbsf

-49.5 72 -175

163.25–163.46
mbsf

-50.2 115 -169

SC-2 /

158.68–158.84
mbsf

Hydrate gas

-47.4 142 -173

Lai et al. (2022)
169.85–170.08
mbsf

-47.5 71 -179

SC-W01B /
135.7 mbsf

Hydrate gas
-50 1338.3 -170.3 Liang et al.

(2022)155.48 mbsf -47 302.4 -190.7

(Continued)
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TABLE 1 Continued

Well
name

Water depth
(m)

Sample
depth

Sample
type

d13C-C1

(‰)
R=C1/(C2+C3)

d2H-C1

(‰)
Reference

160.13 mbsf -47.1 121.4 -195.1

160.76 mbsf -49.2 119.6 -195

SC-W01C /

147.35 mbsf

Hydrate gas

-48.2 755.3 -183.5

Liang et al.
(2022)

148.21 mbsf -47.4 1792.5 -186.3

161.63 mbsf -47.8 56.9 -196.6

162.16 mbsf -47.6 79.9 -191.2

163.46 mbsf -48.1 75.4 -191.9

SC-W02B /

143.54 mbsf

Hydrate gas

-46.7 437.3 -185.8

Liang et al.
(2022)

144.52 mbsf -46.2 276.2 -191.9

158.84 mbsf -47.3 60.1 -197.9

170.08 mbsf -46.9 57.8 -193.5

SC-W03B /

136.57 mbsf

Hydrate gas

-65.2 316.7 -191.3

Liang et al.
(2022)

/ -66.2 342.4 -192.6

/ -66.6 462.4 -194

/ -66.6 464.4 -193.1

SC-2017 /

/

Hydrate gas

-64.9 198.3 -191.6

Liang et al.
(2022)

/ -63.9 199.4 -191.8

/ -64.9 204 -188.7

/ -64.8 200.9 -190.7

/ -65 203.1 -188.8

/ -65.1 202.1 -190.4

/ -65 193.4 -190.3

/ -64.9 202.4 -192.8

/ -64.9 201.6 -194

/ -65.1 203.3 -192.4

/ -65.1 198.4 -189

/ -64.8 213.9 -191

/ -64.6 214.2 -190.4

/ -64.5 218.6 -191.6

/ -65 210.2 -186

/ -65.2 209.8 -192.4

/ -65.2 206.3 -192.8

/ -65 205.9 -188.5

/ -65.2 215.7 -191.4

/ -65.3 215.9 -187.6

/ -65.1 210.1 -190.8

/ -65.1 211.4 -194.3

/ -65 213.3 -195.4

(Continued)
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TABLE 1 Continued

Well
name

Water depth
(m)

Sample
depth

Sample
type

d13C-C1

(‰)
R=C1/(C2+C3)

d2H-C1

(‰)
Reference

/ -65 215.7 -193.9

/ -64.9 214.2 -195.3

/ -64.7 206.9 -192.4

/ -64.8 209.3 -192.6

/ -65 210.1 -190.4

/ -65 213.7 -190.5

/ -64.8 207.9 -190.7

/ -64.8 211.6 -192

/ -65 208.4 -191.6

/ -64.7 214.7 -189.7

/ -65.3 199.6 -187.8

/ -64.8 200.5 -193.9

/ -65.3 197.3 -191

/ -65.1 193 -194.2

/ -65.3 197.7 -188.1

/ -65.2 198.3 -189

/ -65.1 203.7 -194

/ -65.2 195.5 -193.5

/ -65.2 195.4 -195.7

/ -65.1 199.7 -188.5

SC-2020 /

/

Hydrate gas

-65.2 182.3 -184.6

Liang et al.
(2022)

/ -64.9 177.9 -188.3

/ -64.5 189.9 -188.8

/ -64.5 184.2 -188.5

/ -64.4 179.8 -190.3

/ -64 159.8 -191.2

/ -64.5 177.8 -185.7

/ -64.7 184.7 -187.7

/ -64.3 201.3 -186.5

/ -64.3 182.4 -186.9

/ -64.6 183.5 -190.4

/ -64.4 182.2 -186.4

/ -64.7 216.1 -185.5

/ -64.5 232.2 -187.9

/ -64.4 210 -185

/ -64.8 232 -177.4

/ -64.4 241 -185

/ -64.4 216.4 -189.3

/ -64.3 227.3 -189.4
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4.3 Coupled model of faults and gas
chimneys

In this study, according to the coupling relationship of deep

faults, branch faults, and gas chimneys under drilling constraints,

seven different geological models can be identified (Figures 3, 6, 7,

8). The geological models can be categorized into two groups: gas

chimney-based and fault-based, with the gas chimney serving as a

supplementary factor. Within the gas chimney-based models, there

are two subdivisions: Model-SH5 and Model-W22, based on the

origins of the gas chimneys. On the other hand, the fault-dominated

geological model, supplemented by gas chimneys, can be further

divided into Model-W17, Model-W07, Model-W18, Model-SH2,

and Model-W11, based on the type and timing of deep faults,

branch faults, and the origins of gas chimneys.

4.3.1 Model-SH5
Model-SH5, a gas chimney-based structure, traces its origin to

the Zhujiang Formation and terminates in the Quaternary layer. It

is characterized by a dome-shaped top, as illustrated in Figure 6A.

Micro-fractures are observed within the gas chimney, leading to

chaotic reflections. The seismic profile reveals pull-down anomalies
Frontiers in Marine Science 09
along the body, high-amplitude reflections at the top, and the

presence of the BSR. It is worth noting that no gas hydrate was

encountered during drilling, as depicted in Figure 2A.

4.3.2 Model-W22
The Model-W22 is also gas chimney-based, which originated in

the Wenchang-Enping Formations and terminated in the

Quaternary, with a mushroom-shaped top (Figure 6B). The lower

part of the gas chimney mainly shows chaotic reflections and no

apparent micro-fractures are seen; the upper part has pull-down

anomalies, and the top shows high-amplitude reflections. Based on

the drilling results from Well W22, a thin layer of gas hydrate is

observed atop the gas chimney (Figure 2B).

4.3.3 Model-W17
The Model-W17 is dominated by a deep fault, which has been

active since the Eocene, liking source rocks and shallow formations

(Figure 7A). The gas chimney is developed on the deep fault,

originating in the Wenchang-Enping Formations and terminating

in the Quaternary, and have a mushroom-shaped top. The interior

of the gas chimney exhibits pull-down anomalies, while the upper

portion reveals an acoustic blanking zone. The top of the gas
FIGURE 3

Interpreted seismic profile crossed Well W07 shows the typical characteristics of BSR.
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chimney displays high-amplitude reflections resulting from the

accumulation of free gas. Concurrently, drilling activities have

confirmed the presence of gas hydrates and free gas in the

area (Figure 2C).

4.3.4 Model-W07
Similar to Model-W17, Model-W07 is also dominated by deep

faults (Figure 3). The deep faults were active early and continued

until the Quaternary. The difference is that the gas chimney of

Model-W07 originates from the Zhujiang Formation and

terminates in the Quaternary. The lower part of the gas chimney

shows chaotic reflections, the body is an acoustic blanking zone, and

the top is high-amplitude reflections, mushroom-shaped.

Moreover, the presence of gas hydrates and free gas has been

confirmed based on the findings from Well W07 (Figure 2D).

4.3.5 Model-W18
Model-W18 is also deep fault-dominated, and branch fault

plays an important role in gas migration (Figure 7B). Deep fault

has been active since the Eocene, connecting deep and shallow

strata and even the seafloor. The branch fault was active later but

also cut theWenchang Formation. The gas chimney is developed on

a branch fault, originating from the Wenchang-Enping Formations

and terminating in the Quaternary, with a mushroom-shaped top.

A chaotic reflection zone, an acoustic blanking zone, and pull-down

anomalies primarily characterize bottom-up features. A high-
Frontiers in Marine Science 10
amplitude zone is also formed at the top due to gas hydrates and

free gas (Figure 2E).

4.3.6 Model-SH2
Model-SH2 is similar to Model-W18, mainly controlled by deep

faults and branch faults, all of which are connected with source

rocks (Figure 8A). The difference is that the gas chimney of Model-

SH2 originates from the Lower Miocene Zhujiang Formation,

connects with branch fault at the bottom, terminates at the

Pliocene Wanshan Formation, and has a corolla-shaped top.

Minor faults are observed at the upper section of the gas

chimney, connecting it to the BSR. These faults serve as conduits

for transporting free gas to the GHSZ, contributing to forming gas

hydrates (Figure 2F).

4.3.7 Model-W11
Model-W11 is dominated by a deep fault, branch fault, and gas

chimney (Figure 8B). The deep fault has been active for a long time,

connecting the source rocks. The activity of branch faults was

initiated relatively late, specifically during the Middle and Late

Miocene period. The gas chimney is developed on a branch fault,

originating from the Hanjiang Formation and terminating in the

Quaternary, and the top is still mushroom-shaped. The internal

events of the gas chimney are relatively continuous, with pull-down

anomalies. The presence of a distinct BSR is evident at the top,

indicating the occurrence of thick gas hydrate deposits (Figure 2G).
FIGURE 4

Interpreted typical seismic profile in the study area shows deep faults, branch faults, and gas chimneys.
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5 Discussion

5.1 Gas origin of hydrates in the Shenhu
Area

Recent studies have highlighted the increasing significance of

gas geochemical data analysis for identifying the origin of gas

derived from hydrates. This emerging area of research has

garnered considerable attention within the field of gas hydrate

exploration (Sassen et al., 2001; Milkov, 2005; Feng et al., 2009;

Wu et al., 2011; Portnov et al., 2021; Wei et al., 2021; Lai et al.,

2023). Milkov and Etiope (2018) have introduced genetic diagrams

that have gained global popularity, encompassing various plots.

This study mainly analyzed three types of gas geochemical data

collected from four wells (Table 1) (Zhang et al., 2019; Lai et al.,

2022; Liang et al., 2022).

One hundred eleven gas samples used in this study are plotted

in the genetic diagrams (Figure 9) so as to determine the source of

hydrate gas. Five samples from Well W17 are plotted in the genetic

diagrams, which mainly show the characteristics of microbial-

thermogenic mixing origin (Figure 9) (Bernard et al., 1977).
Frontiers in Marine Science 11
There are not only contributions from in situ microbial gas but

also contributions from deep thermogenic gas. In addition, one data

point may be related to the secondary microbial gas, just like

samples from Wells SC-1 and SC-2, indicating that the deep

thermogenic gas was modified by microorganisms during the

upward migration to the shallow strata (Figure 9A) (Lai et al.,

2022). Four samples taken from Well W18 are primarily situated

within the thermogenic gas field. Among these, three samples

indicate late mature thermogenic gas, and one may be attributed

to secondary microbial gas (Figure 9). The analysis reveals a strong

correlation between the gas extracted from hydrates in Well W18

and deep thermogenic gas. This correlation is notably linked to the

Paleogene source rocks present in the study area (Figure 7B). Six

data points obtained from Well W11 have been plotted, indicating

that the majority of these data points are attributed to microbial-

thermogenic mixing origin. Similar results to those of Well W17

may be due to the close distance between the two drillings

(Figures 1C, 9). It is essential to acknowledge that the gas

hydrates in Well W11 also derive contributions from deep

thermogenic gas sources. In situ, microbial gas in both Well W11

and Well W17 is also attributed to CO2 reduction processes
B

C D

A

FIGURE 5

(A) Uninterpreted and (B) interpreted coherence slice map of 2050 ms. (C) Uninterpreted and (D) interpreted coherence slice map of Horizon T32.
White circles are selected points of faults for calculating fault activities.
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(Bernard et al., 1977; Whiticar et al., 1986; Whiticar, 1999; Zhang

et al., 2019; Lai et al., 2022; Liang et al., 2022).

Ten samples obtained from the LW3-1 gas field exhibit distinct

characteristics compared to samples collected from the other three

wells. These specific samples originate from the deep natural gas

reservoirs found within the Zhuhai Formation and Zhujiang

Formation of the LW3-1 gas field (Figure 1C, Table 1). Based on

the genetic diagrams, the analyzed samples primarily consist of

thermogenic gas, particularly oil-associated thermogenic gas. The

data points presented in Figure 9 provide substantial support for

this conclusion. It is worth noting that the LW3-1 gas field has

undergone several years of product development. Extensive

research has been conducted in previous studies to investigate the
Frontiers in Marine Science 12
gas source of the area, leading to the belief that the primary natural

gas supply originates from lacustrine source rocks within the

Wenchang Formation and Enping Formation (Dai et al., 2017;

Zhu et al., 2021).

According to previous studies, a large number of data from

other drillings in the Shenhu Area, including SC-W01B, SC-W01C,

SC-W02B, SC-W03B, SC-2017, and SC-2020, show that hydrate gas

is of mixed origin. In addition to biogenic gas, it confirms the

contribution of thermogenic gas (Liang et al., 2022). Figure 1C

clearly illustrates the proximity of the LW3-1 gas field to the study

area, indicating its close proximity to the W17, W18, and W11 drill

sites. The gas samples from these four wells all have traces of

thermogenic gas. By considering the gas source of the LW3-1 gas
BA

FIGURE 6

(A) Interpreted seismic profile crossed Well SH5. (B) Interpreted seismic profile crossed Well W22.
BA

FIGURE 7

(A) Interpreted seismic profile crossed Well W17. (B) Interpreted seismic profile crossed Well W18.
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field, it can be inferred that the gas within the hydrates may have

originated from the thermogenic gas present in the Wenchang,

Enping, and Zhuhai Formations (Mi et al., 2018; Pang et al., 2018).
5.2 Contribution of different coupled
geological models to gas hydrate
accumulation

This study utilizes core-log-seismic data from the study area to

establish seven integrated geological models of faults and gas

chimneys (Figure 10). Subsequently, statistical analyses are

conducted to examine the occurrences of gas hydrates and free

gas as revealed by the drillings conducted within each model

(Figure 11, Supplementary Data Sheet 1). Among them, the gas

chimneys in Model-SH5 and Model-W22 both serve as the main

gas migration pathways and contribute little to gas hydrate
Frontiers in Marine Science 13
accumulation (Figures 10A, B, 11). Model-SH5 did not yield any

gas hydrate discoveries, while Model-W22 exhibited only a thin

layer of hydrates with a saturation of less than 10%. This

observation may be attributed to the fact that the gas chimney in

Model-W22 originated from a thermogenic gas zone (Cheng et al.,

2020; Wan et al., 2022).

Deep faults and gas chimneys act as the main gas migration

pathways in Model-W17 and Model-W07 (Figures 10C, D). The

difference is that the former gas chimney originates from the deep

thermogenic gas zone, while the latter originates from the shallow

microbial gas zone. Based on the drilling results depicted in

Figure 2, both Model-W17 and Model-W07 exhibit the presence

of gas hydrates and free gas. Notably, Model-W17 shows a more

significant contribution to hydrate accumulation compared to

Model-W07. Moreover, illustrated in Figure 9, the geochemical

analysis unveils that the gas confined within hydrates of Model-

W17 emanates from thermogenic origins. This substantiates the
BA

FIGURE 8

(A) Interpreted seismic profile crossed Well SH2. (B) Interpreted seismic profile crossed Well W11.
FIGURE 9

(A) Genetic diagram of R=C1/(C2+C3) versus d13C-C1. (B) Genetic diagram of d13C-C1 versus d2H-C1. These diagrams are modified from Milkov and
Etiope (2018) and Snodgrass and Milkov (2020). The gas geochemical data are obtained from Zhang et al. (2019), Lai et al. (2022), and Liang et al.
(2022). CR-CO2 reduction, EMT-early mature thermogenic gas, F-methyl-type fermentation, LMT-late mature thermogenic gas, OA-oil-associated
thermogenic gas, SM-secondary microbial.
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presence of vertical migration pathways, such as deep faults and gas

chimneys, affirming their role in facilitating gas migration. These

findings underscore the pivotal role these pathways play in

facilitating the accumulation of gas hydrates (Zhang et al., 2019).

The gas migration pathways of Model-W18, Model-SH2, and

Model-W11 are all composed of deep faults, branch faults, and gas

chimneys (Figures 10E–G). The branch fault of Model-W18 cut to

the deep strata, and the gas chimney also originates from the

thermogenic gas zone located on the branch fault (Figure 10E). In

contrast, the gas chimney originates in the microbial gas zone in

Model-SH2 (Figure 10F). The branch fault observed in Model-W11

exhibited late activity and did not penetrate the deep thermogenic

gas zone (Figure 10G). The gas chimneys in these two models are

rooted in the Neogene and are situated along branch faults. The

drilling results indicate favorable gas hydrates and free gas

occurrences in each model. Additionally, the gas geochemical

data from Model-W18 and Model-W11 further support the

presence of thermogenic gas (Figures 9, 11). However, it is

noteworthy that in Model-W18, both the branch fault and the

bottom root of the gas chimney are situated within the thermogenic
Frontiers in Marine Science 14
gas zone. As a result, the gas samples exhibit distinct characteristics

indicative of late-stage maturation of thermogenic gas.

Evident from the analysis of the seven geological models, it

becomes apparent that the influence of gas chimney-based geological

models on gas hydrate accumulation is notably overshadowed by the

prominence of deep fault-based geological models supplemented by

gas chimneys and branch faults (Figure 10). The absence of free gas

layer in Model-W22 may be because this model has no deep faults.

Deep thermogenic gas cannot migrate and accumulate in

considerable quantities vertically. The reason for Model -W11 may

be similar; the gas chimney is not directly connected to the fault

active in the deep source rock. Moreover, we overlayed the planform

distribution of faults and gas chimneys onto the coherence slice map

of Horizon T32. The observation reveals that in areas where both

faults and gas chimneys are present, the occurrence of gas hydrates

and free gas is notably more substantial compared to regions where

only gas chimneys are developed. This finding further emphasizes

the influential role of fault systems in governing the accumulation of

gas hydrates (Figure 12) (Jin et al., 2020; Sun et al., 2020; Zhang et al.,

2023). Hence, the integrated geological models incorporating
B C D

E F G H

A

FIGURE 10

Simplified schematic diagrams of the coupled geological models of faults and gas chimneys (not to scale). (A) Gas chimney-based Model-SH5, and
the gas chimneys originate from the microbial gas zone. (B) Gas chimney-based Model-W22, and the gas chimneys originate from the thermogenic
gas zone. (C) Fault-based and gas chimney supplemented Model-W17, and the gas chimneys originate from the thermogenic gas zone. (D) Fault-
based and gas chimney supplemented Model-W07, and the gas chimneys originate from the microbial gas zone. (E) Fault-based and gas chimney
supplemented Model-W18, the branch fault is connected to the Paleogene, and the gas chimney originates from the thermogenic gas zone.
(F) Fault-based and gas chimney supplemented Model-SH2, the branch fault is connected to the Paleogene, and the gas chimney originates from
the microbial gas zone. (G) Fault-based and gas chimney supplemented Model-W11, the branch fault is connected to the Neogene, and the gas
chimney originates from the microbial gas zone. (H) A summarized geological model conducive to gas hydrate accumulation mainly consists of
deep fault, branch fault, and gas chimney originating from the thermogenic gas zone.
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deep faults, gas chimneys, and branch faults hold great

significance in understanding the processes involved in gas

hydrate accumulation (Figure 10H).
5.3 Implications for gas hydrate exploration
and industrialization

By analyzing gas geochemical data and assessing the

contribution of various geological models that encompass faults

and gas chimneys to the accumulation of gas hydrates, the

significant influence of deep faults in gas hydrate systems

becomes evident. Similarly, it is evident that the primary gas
Frontiers in Marine Science 15
migration pathways, including the LW3-1 gas field, are

predominantly associated with deep faults (Wu et al., 2018; Jin

et al., 2020). Consequently, we chose a seismic profile that intersects

the gas hydrate wells and the LW3-1 gas field to examine the

interrelationship between deep natural gas reservoirs, shallow free

gas/shallow gas reservoirs, and gas hydrates (Figure 13).

The thermogenic gas, derived from source rocks such as the

Wenchang Formation and Enping Formation, exhibits vertical

migration along deep faults towards the Zhuhai Formation and

Zhujiang Formation, resulting in the formation of deep natural gas

reservoirs. The gas geochemical data further validate that the gas

present in the LW3-1 gas field is primarily oil-associated thermogenic

gas (Figure 9) (Zhu et al., 2009). With the accumulation of gas, the
FIGURE 11

Stream Chart shows the occurrence of gas hydrate and free gas under different drilling constraints.
FIGURE 12

Coherence slice map of Horizon T32 superimposed gas hydrate and free gas occurrences, faults, gas chimneys, and BSRs.
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formation fluid pressure in deep natural gas reservoirs increases,

resulting in overpressures. It is generally believed that the Dongsha

movement is the trigger for the release of overpressures, which will

lead to the migration of fluids (Guo et al., 2016; Kong et al., 2018).

The Baiyun sag has been scientifically confirmed to possess a record

of intermittent occurrences of overpressure events. These events have

served as the driving mechanism for the vertical migration of deep

thermogenic gas towards the shallow strata through faults and gas
Frontiers in Marine Science 16
chimneys (Figure 13). Moreover, the formation of shallow gas

reservoirs ensures a continuous and high-flux supply of gas,

contributing to the accumulation of gas hydrates within the upper

GHSZ. Ultimately, this comprehensive interplay forms a complete

gas hydrate system (Figure 13).

Thermogenic gas plays a crucial role as a significant gas source

for multiple components, including the deep natural gas reservoirs

within the LW3-1 gas field, as well as the shallow gas reservoirs and
FIGURE 13

Typical seismic profile crossed gas hydrate drillings Well W11, Well W17, and LW3-1 gas field. Deep thermogenic gas can migrate along faults to
accumulate in the Zhujiang Formation, forming deep natural gas reservoirs (LW3-1 gas field). They have the potential to migrate vertically towards
the shallow strata through faults and gas chimneys. This process can lead to the accumulation of gas together with secondary microbial gas and in
situ microbial gas, resulting in the formation of shallow gas reservoirs. Gas can then migrate vertically toward the gas hydrate stability zone,
ultimately forming gas hydrates.
FIGURE 14

Three-gas combined production model for exploring and developing deep natural gas reservoirs, shallow gas reservoirs, and gas hydrates as a whole
system (not to scale).
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gas hydrates within Wells W11 and W17 in the study area. It is also

important to acknowledge the contributions of shallow in situ

microbial gas and secondary microbial gas in this context

(Figure 9). Hence, it can be deemed feasible to explore and

develop deep natural gas reservoirs, shallow gas reservoirs, and

gas hydrates as a complete system in a marine environment

(Figure 14). The implementation of a three-gas combined

production model holds the potential to enhance the optimization

of design for deep-water drilling and production projects. This

model enables efficient development of deep-water natural gas

resources and represents a cutting-edge direction for the future of

oil and gas fields. Embracing such an approach is of immense

significance in ensuring national energy development. Even so,

there still exist several technical challenges that necessitate the

collaboration of multidisciplinary scientists to address this

juncture (Bai and Zhou, 2022).
6 Conclusions

By leveraging the most recent core-log-seismic data, this paper

provides comprehensive documentation of the occurrence of gas

hydrates, the diverse types of gas migration pathways, and the

distinct characteristics of geological models integrating faults and

gas chimneys. In conjunction with gas geochemical data, an analysis

of the gas origin within hydrates and the contribution of each

geological model to gas hydrate accumulation is presented. Based

on these findings, a three-gas combined production model is

proposed, offering valuable insights for future research and

development in the field. The detailed conclusions are as follows:
Fron
1. The gas origin of hydrates mainly includes three types:

thermogenic gas produced by the Paleogene source rocks,

secondary microbial gas formed from thermogenic gas

transformed by microorganisms, and shallow in situ

microbial gas. Significantly, deep thermogenic gas has

been established as a vital gas source for gas hydrate

formation, a finding substantiated by drilling activities.

Gas samples from hydrates in Well W18 show obvious

characteristics of late mature thermogenic gas.

2. The study area reveals three primary types of gas migration

pathways: deep faults, branch faults, and gas chimneys.

Among these, deep faults assume a pivotal role in enabling

the vertical migration of thermogenic gas.

3. According to the types of gas migration pathways, seven

different coupled models of faults and gas chimneys can be

established. Through an integration of the drilling results, it

becomes evident that the geological model incorporating

deep faults and gas chimneys plays a crucial role in

facilitating the accumulation of gas hydrates. These

geological features effectively control the occurrence of

gas hydrates and free gas.

4. The implementation of a three-gas combined production

model, incorporating deep natural gas reservoirs, shallow

gas reservoirs, and gas hydrates, represents an auspicious

approach for future endeavors in deep-water oil and gas
tiers in Marine Science 17
exploration and production. This integrated model holds

substantial potential in optimizing resource utilization and

maximizing operational efficiency in these domains.

However, its successful implementation necessitates

extensive interdisciplinary collaboration among scientists.
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