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and Jeyaraj Antony Johnson1*
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2Environment Agency, Marine Threatened Species and Habitats, Terrestrial & Marine Biodiversity,
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The Andaman and Nicobar Islands, India, a geographically remote region, harbor

a diverse island ecosystem. Limited exploration has hindered our understanding

of marine floral biodiversity in this area. To address this gap, we investigated

seagrass meadows in the Andaman and Nicobar Islands to understand their

spatial distribution, species composition, and habitat characteristics. We

assessed 66 seagrass meadows, including 32 newly discovered ones, filling

data gaps in the region’s seagrass coldspots. Seagrasses were found across a

wide range of depths, with the majority occurring in shallow subtidal waters (< 8

m). Large-sized species such as Thalassia hemprichii, Enhalus acoroides,

Cymodocea rotundata, Cymodocea serrulata, and Syringodium isoetifolium

dominated the littoral and shallow subtidal zones, while smaller species such

as Halophila spp. and Halodule spp. exhibited broader depth distributions. H.

beccarii and H. decipiens were strictly intertidal and subtidal species,

respectively. Water depth significantly influenced seagrass occurrence (p <

0.0001), cover (b = -0.2759; SE = 0.02471; p < 0.0001), shoot densities (b =

-0.3556; SE = 0.1231; p = 0.005), and biomass (b = -0.3526; SE = 0.1159; p =

0.003). Sand availability emerged as the second significant predictor of seagrass

distribution, cover, and biomass (p values < 2e-16, < 2e-16, and 0.01,

respectively). Habitat heterogeneity decreased with increasing water depth,

and seagrass species exhibited strong preferences for specific substrata,

resulting in spatial niche partitioning. Our study provides novel insights into the

seagrass spatial diversity, habitat characteristics, and seagrass-environment

relationship in the Andaman and Nicobar Islands. Further, it highlights the

importance of water depth, habitat characteristics, and substratum

heterogeneity in seagrass distribution and growth. Lastly, our findings imply

that any change to the benthic profile of the meadows will influence the seagrass
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species distribution and growth. Understanding these factors is crucial for

seagrass conservation and management in the region, aiding the development

of targeted strategies to protect these valuable marine habitats and

associated biodiversity.
KEYWORDS

intertidal, water depth, substrate availability, niche partitioning, seagrass distribution,
dugongs, deepwater habitats
1 Introduction

Seagrass meadows are critical marine ecosystems that provide

numerous ecological and economic benefits. The diversity and

distribution of seagrasses are influenced by various regulatory

factors, including benthic light availability, sediment profile, wave

exposure, water temperature, and nutrient dynamics (Dennison and

Alberte, 1987; Duarte, 1991; Malmer and Grip, 1994; Greve and

Binzer, 2004). These factors play a crucial role in the growth and

persistence of seagrass populations, as seagrasses rely on optimal

light for photosynthesis, suitable sediments for proliferation, and

nutrients for growth (Duarte, 2002). Resultant declines in seagrass

populations are reported due to light reduction (Short and Wyllie-

Echeverria, 1996), altered nutrient dynamics (Lee and Dunton,

2000), and wave action (Japar Sidik et al., 2018). Impacts of wave

exposure are more prominently seen in intertidal zones, which are

at the transition of land and sea. Only species able to cope with the

heavy tidal fluctuations and associated parameters can thrive in

these littoral zones, thus restricting the upslope distribution of

seagrasses (Hemminga and Duarte, 2000). Variations in water

temperature, whether seasonal or due to climate change (marine

heat waves), are also known to influence seagrass photosynthesis

and productivity (Barber and Behrens, 1985; Seddon and Cheshire,

2001; Dıáz-Almela et al., 2009; Garrabou et al., 2022). Nevertheless,

seagrasses exhibit wide-ranging acclimation strategies as a response

to changes in their natural environment (Vermaat et al., 1998; Lee

et al., 2007). An experimental study in the Philippines demonstrated

that seagrass species have a varied tolerance to enhanced siltation

and altered light irradiance in the water column (Bach et al., 1998;

Terrados et al., 1998). Besides, the shift in turbidity levels resulted in

local variation in seagrass diversity, growth, and depth limits.

Accordingly, global research provides substantial evidence that

natural variability in the environment influences seagrass

ecosystems at local and regional scales.

Additionally, unprecedented human-induced stressors catalyze

the natural factors impacting seagrasses (Orth et al., 2006). The rise in

anthropogenic footprints in the seagrass meadows is majorly

attributed to dredging, marina construction, destructive fishing

practices, land reclamation, nutrient and sediment loading,

turbidity, and habitat alteration (Short et al., 2007). As a result,

subsequent seagrass declines are reported worldwide (Waycott et al.,

2009; Gunderson et al., 2016). Unfortunately, the degradation and
02
loss of seagrass habitats have significant implications for the

environment and society. With global recognition as a valuable

marine ecosystem, seagrass shares a multifaceted relationship with

its environment. Seagrass meadows provide essential services by

maintaining the health of adjacent habitats such as coral reefs and

mangroves (Green and Short, 2003; Short et al., 2007). They also

serve as nursery grounds for commercially important fish and

invertebrates, supporting fisheries and contributing to local

economies (Hemminga and Duarte, 2000; Unsworth et al., 2019;

Berkström et al., 2020; United Nations Environment Programme

[UNEP], 2020). Furthermore, seagrasses are crucial for the survival of

megaherbivores like dugongs, as they constitute their primary food

source (Short et al., 2007). Under the socioeconomic context,

seagrasses provide economical services higher than terrestrial

habitats (Costanza et al., 2014) and support local communities’

livelihood and well-being (Mtwana Nordlund et al., 2016;

Unsworth et al., 2019). Thus, seagrass losses or deterioration

significantly impact these valuable services offered (Duarte, 2002;

Orth et al., 2006). For instance, Unsworth (2007) reported a

reduction in fish and invertebrate stocks in the Wakatobi Marine

National Park, Indonesia, in response to seagrass degradation.

Similar seagrass trajectories are predicted to accelerate,

particularly in developing countries, since these regions critically

lack legislative measures to protect seagrasses (Duarte, 2002). Sadly,

seagrass management has received little attention in the tropics than

the adjacent coral reefs (Mumby et al., 2006). Although positive

human interventions have reported an optimistic reversing of

seagrass losses (Elliott et al., 2007; de los Santos et al., 2019; Tan

et al., 2020), such initiatives, along with in situ seagrass

management are yet substantially lacking in the tropics, including

Indian waters. The widely accepted global seagrass distribution

model classifies India into a diverse Indo-Pacific bioregion (Short

et al., 2007). Of which the ecologically rich Andaman and Nicobar

Islands (ANI) form the country’s second most varied seagrass

habitats (Thangaradjou and Bhatt, 2018). Seagrass meadows in

ANI are crucial to supporting the dugong’s remnant insular

population (D’Souza et al., 2015). A recent study highlighted the

importance of resource-rich seagrass beds for aggregating dugongs,

possibly for calf protection (Gole et al., 2023). Despite such crucial

ecological significance of seagrass meadows, there is a lack of

information on their spatiotemporal changes, threats, and

ecological and economic impacts in ANI. A report by Paulose

et al. (2013) outlines the large-scale seagrass denudation in ANI

(~1619 ha) caused by the Sumatra-Andaman earthquake and the
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2004 Indian Ocean Tsunami. The severe deposition of marine

debris from this disturbance has further altered the species

distribution trends (Thangaradjou et al., 2010a). In addition, ANI

is also a geologically vulnerable region, with reports of ~ 486

earthquakes (Richter scale >4; United States Geological Survey,

20231) and 25 cyclonic storms/depressions (Indian Meteorological

Department, 20232) that have hit the islands’ coastline in the recent

times (2018 to 2022). Unfortunately, the extent of seagrass loss to

these threats remains uncertain due to sparse and discontinuous

spatial seagrass assessments in the Islands.

For effective seagrass management, the accuracy of spatial

studies and robust ecological knowledge is of utmost importance.

Detailed information on species’ checklists, distribution ranges,

depth limits, and, most importantly, regulatory factors governing

distribution and growth is essential for translating seagrass science

to management and conservation (Unsworth, 2007; International

Seagrass Biology Workshop 13, 20133; McKenzie et al., 2020). A few

significant challenges to studying seagrasses in ANI are the

inaccessibility of sites to researchers, funds, and logistics required

to perform marine surveys. Despite this, prior studies have given

valuable baselines on species distribution, natural history,

descriptive habitat preferences, and spatial extent of seagrasses in

ANI (Jagtap, 1991; Jagtap, 1992; Das, 1996; Thangaradjou et al.,

2010a; Thangaradjou et al., 2010b; Paulose et al., 2013; D’Souza

et al., 2015; Ragavan et al., 2016; Savurirajan et al., 2018). However,

a data gap is still reflected in many of the management crucial

aspects of the region. Published literature largely lacks precise

spatial information (local i ty) of meadows, hindering

spatiotemporal comparisons like other global initiatives (Sudo

et al., 2021). Despite three decades of seagrass exploration and

research, only limited studies have a quantified seagrass-

environment relationship (Savurirajan et al., 2018). Likewise,

recent reports of new species’ local distribution and range

(Savurirajan et al., 2015; Gole et al., 2022) indicate more seagrass

exploration to upgrade species checklist and distribution trends. As

most of the seagrass meadows in ANI are recovering from the

impact of the 2004 tsunami, it is essential to update existing

information on the species composition, distribution, and factors

that determine the existing trends. To address these knowledge

gaps, this study aimed to investigate the spatial diversity and

distribution patterns of seagrass meadows along the accessible

coastline of ANI. Contrary to prior spatial assessments, our work

instead focused on studying the complex interactions of seagrass

species with their natural environment. Thus, we also aimed to

understand the environmental regulatory factors that influence

seagrass occurrence and distribution locally. By conducting a

comprehensive assessment of seagrass ecology, this study will

complement the existing knowledge on seagrasses and collectively

contribute to developing effective management and conservation

strategies for seagrass habitats in ANI.
1 https://earthquakes.usgs.gov/(accessed on March 2023).

2 https://mausam.imd.gov.in/(accessed on March 2023).

3 https://wsa.seagrassonline.org/(accessed on January 2023).
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2 Materials and methods

2.1 Study area and site selection

India’s Andaman and Nicobar Islands support a tropical insular

ecosystem as part of two global biodiversity hotspots (Myers et al.,

2000). The ANI has a long and sheltered coastline spanning 1962

km (Andaman and Nicobar Administration, 20234), providing

favorable conditions for the growth and diversification of shallow

coastal habitats such as coral reefs, mangroves, and seagrasses

(Tigga and Rao, 2004). We explored the coastal waters of ANI,

ranging from a depth of 0.2 m (intertidal) to 37 m (deep waters), for

seagrass presence between 2018 to 2022 (January to April). We

identified seagrass meadows using three approaches: a) tapping

local knowledge of fishers through community interactions, b)

published literature and correspondences with prior seagrass

researchers, and c) exploratory free dives or swims in potential

sandy habitats. Based on the geographical proximity of the

investigated regions, assuming these sites will have a shared

environment for seagrasses, we broadly divided ANI into five

island groups: 1) North and Middle Andaman (NMA), 2) South

Andaman (SA), 3) Ritchie’s archipelago (RA), 4) Little Andaman

(LA), and 5) Nicobar Islands (NIC) (Figure 1).
2.2 Field surveys

We conducted intertidal surveys (0.2 to 0.5 m) during the spring

tides when the region was maximally exposed, extending to the reef

ward edges. We performed subtidal exploration using SCUBA diving-

assisted surveys in both shallow and deep waters. However, due to

saltwater crocodile hotspots in more than 80% of the sampled regions,

deepwater investigations were limited to approximately 10 m, except

for RA, which has a flourishing tourism industry and diving-friendly

sites, allowing efforts up to 37 m. Coasts with strong wave action that

hindered SCUBA exploration were excluded from the study. The line

intercept transects (LIT; English et al., 1997) method was employed for

systematically sampling seagrass meadows after locating them

intertidally and sub-tidally. We surveyed 18 sites from NMA (25

LITs), 19 sites from RA (44 LITs), 8 from SA (11 LITs), 7 from LA

(14 LITs), and 14 from NIC (20 LITs). At each site, the 50 m long LITs

were placed perpendicular to the shore, and spatial replicates (3 to 4

LITs) were spaced 150-200 m apart. Within each transect, a 50 x 50 cm

quadrat was used at every 5 meters to record seagrass meadow

characteristics, including species composition, total and species-

specific seagrass cover, shoot density, shoot length, total biomass

(above and below ground, dry weight), and algal cover (epiphytic

and non-epiphytic).

In addition, we recorded the following predictor variables at each

sampling point: water depth (using a Dive Computer for subtidal

meadows), pH and water temperature (measured using a handheld

multi-parameter tester - Eutech Oaklon- PCS Testr 35), and salinity

(measured using a handheld refractometer - LABART). We recorded
4 www.andaman.gov.in (accessed on February 2023).
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major substrate types from the same quadrat for fine-scale habitat

characterization, such as sand, dead coral with macroalgae, rock,

rubble, and live coral. The habitat profile was calculated as the mean

cover (%) from each sampling point, and it was further classified as

either homogenous (100% sand) or heterogenous (approximately

50% sand along with other substrate types). The seagrass meadows

were characterized based on the three criteria: a) observed depth

gradient, b) seagrass cover, and c) species composition. We classified

meadows’ depth profile as intertidal (0.2 to 0.5 m), shallow-subtidal

(< 8 m), and deep waters (> 8 m; McKenzie et al., 2020). Based on the

total seagrass cover, meadows were further profiled as a) sparse (0-

25% cover), b) moderate (25-50% cover), c) dense (50-75% cover)

and d) very dense (75-100% cover; Sabilah and Amran, 2020), and

grouped as either mono-specific (single species) or mixed-species (2

or more co-occurring species).
2.3 Laboratory assessments

To estimate shoot density and biomass (above and below ground),

we collected samples from a 20 X 20 cm smaller quadrat within each

transect (n= 3/transect). The collected seagrass samples were stored in

zip-lock bags and transported to the field base for further analysis. We

rinsed the seagrass samples to remove sediment particles and algae and

counted seagrass shoots (species-specific) to estimate shoot densities
Frontiers in Marine Science 04
(shoots/m2). Lastly, we air-dried the seagrass samples and calculated

total biomass (above and below ground - g/m2) on a micro-scale

weighing balance (WENSAR PGB-220/0.001 to 200 g). Sediments were

hand-scooped in triplicates from 0.4 m2 within the sampled seagrass

beds and air-dried for texture analysis to assess the habitat suitability of

the seagrass species.
2.4 Data analysis

2.4.1 Step 1-Data normalization and collinearity
We used a generalized linear model (GLM) framework to

elucidate the influence of 11 potential explanatory variables on

four response variables, namely seagrass occurrence, cover,

biomass, and density. Since the normal distribution was not

observed for three quantitative response variables (seagrass cover,

density, and biomass), the data were transformed using Z-score

normalization. Before GLM, collinearity among the 11 quantified

explanatory variables (water depth, pH, water temperature, salinity,

epiphytic macroalgae, non-epiphytic macroalgae, sand, rubble,

dead-coral with macroalgae, live coral, and rock) was assessed

using Variance Inflation Factor (VIF) values. The VIF value for

sand, which is the primary substrate for seagrass occurrence and

growth, was found to be considerably higher than the other

independent variables. Therefore, we conducted a bivariate
FIGURE 1

Seagrass distribution sites in the Andaman and Nicobar Islands (Sites codes and names in Supplementary Material Annexure 1).
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regression analysis to determine the strength and relationship of

other independent variables with sand (Table 1). We observed that

the least important variables for seagrass growth such as live coral

and rock substantially correlated with sand (Table 1), so these two

variables were removed from further analysis. The VIF values were

rechecked, and it was found that all nine remaining explanatory

variables exhibited low collinearity (VIF < 3), which is

recommended for regression analysis (Bolker, 2008).
2.4.2 Step 2-Regression analysis
We assumed the response variable of seagrass occurrence to

follow a binomial distribution, and analysis was performed on the

seagrass presence-absence matrix. An “Intercept-only” model was

created with the response variable, and nine independent models

were built for each predictor variable versus seagrass occurrence

(Johnson and Omland, 2004). We excluded models with Akaike

Information Criterion (AIC) values higher than the “Intercept-

only” model from further analysis (Johnson and Omland, 2004;

Arnold, 2010). We generated different combinations of informative

models, and the model with the lowest AIC value and highest

corresponding AIC weight was selected as the best-fit model. For

quantitative variables, we assumed that the normalized data (Z-

score) for seagrass cover (mean percentage), shoot densities

(shoots/0.04 m2), and seagrass biomass (total dry weight/0.04 m2)

followed a Gaussian distribution. Thus, GLM analyses were

performed on their respective matrices. However, the AIC values

of informative models did not differ significantly, making it

challenging to select one best-fit model and potentially discarding

relevant explanatory variables. To overcome this, we employed an

information-theoretic model averaging approach. We created

multiple combinations of models using the function “dredge” in

the Mumin package in R (version 4.2.1). A total of 512 models were

created for seagrass cover, density, and biomass. The models with

the lowest AIC and AIC delta < 2 (indicating a small difference in

AIC values) were averaged (Burnham and Anderson, 2002),

providing a more robust understanding of the influence of

potential explanatory variables on seagrass cover, density,

and biomass.
2.4.3 Step 3-Species habitat and
substratum preference

Canonical Correspondence Analysis allows for the exploration

of relationships between species abundances and environmental

variables. We performed Canonical Correspondence Analysis

(CCA plots) on the species-densities matrix to assess the impact

of habitat and sediment profile on seagrass species densities. All

data analysis was conducted in R (version 4.2.1) using packages

such as CAR, AICcmodavg, and ggplot2. Functions like glm, AIC,

Loglik, and aictab were utilized to perform GLM analysis, calculate

AIC values and likelihoods, and create plots (R core development

team, 20195).
5 https://www.R-project.org/(accessed on December 2022).
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3 Results

3.1 Spatial distribution of seagrasses

The Andaman and Nicobar Islands (ANI) coastal waters host

12 species of seagrasses. Our study encompassed 66 meadows from

34 islands across five clusters, allowing us to identify 11 out of the 12

reported seagrass species in the region (Table 2). These seagrasses

exhibited varying distribution patterns, ranging from dense and

continuous beds to moderate to sparse stands. They were found in

both homogeneous and heterogeneous habitats across different

depth gradients. Among the identified species, Halophila ovalis

and Halodule pinifolia demonstrated the widest distribution range,

spanning from Landfall (Site 1), the northernmost limit, to Great

Nicobar Islands (Site 66), the southernmost limit (Figure 1). These

two species collectively occurred in over 50% of the investigated

meadows. Following them, Halodule uninervis (34.8%), Thalassia

hemprichii (31.8%), and Cymodocea rotundata (19.7%) were the

next most frequently encountered species (Supplementary Material

Annexure 1). However, the spatial spread of the remaining six

species was relatively limited. An interesting finding was the rare

occurrence ofH. beccarii, observed only once at Pokkadera (Site 18)

(Supplementary Material Annexure 1; Figure 1), indicating its

scarcity in the study areas. Syringodium isoetifolium exhibited a

restricted distribution, being confined to just five sites: Jua Tekdi

(Site 21) and Vijay Nagar (Site 27) in the RA, and the shallow waters

of Kardip (Site 53), Trinket (Site 63), and Al-Reak (Site 64) in the

Nicobar Islands (Supplementary Material Annexure 1; Figure 1).

Notably, C. serrulata was absent in the NMA sites, while H. minor

and Enhalus acoroides were exclusively found in the RA and NIC

regions (Supplementary Material Annexure 1). We observed

highest seagrass coverage, and total plant biomass in shallow

subtidal meadows of Safed Balu and Kardip respectively, in the

Nicobar archipelago (Supplementary Material Annexure 1). Shoot

densities however were the highest in the mixed intertidal meadow

of Vijay Nagar (6392.5 ± 672.5 shoots/m2).
3.2 Species distribution across
depth gradients

Seagrass meadows in the study area exhibited a range of

depth distributions, occurring from the littoral zone (n=17) to

subtidal regimes, shallow-subtidal (n=39), and deep waters (n=10;

Supplementary Material Annexure 1). Most meadows in NMA, SA,

and NIC were found in shallow-subtidal areas (Table 2). Deepwater

seagrass beds were primarily restricted to RA, with the exception of

Delgarno in the NMA (Table 2; Figure 1). In LA, seagrasses were

exclusively intertidal and distributed along the island’s North-

Eastern to Southern coast (Figure 1). No subtidal seagrasses were

detected along Little Andaman’s West and North coasts. Intertidal

and shallow-water seagrass meadows exhibited similar species

richness, with ten species each and nine species overlapping

between the two zones. The exceptions were H. beccarii, which

was restricted to intertidal regions (0.4 m), and H. decipiens, which

occurred exclusively in subtidal zones (3 to 21 m). T. hemprichii and
frontiersin.org
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C. rotundata were dominant species in the intertidal meadows (0 to

0.5 m), occurring with 88% and 59% frequency rates, respectively.

However, T. hemprichii was observed colonizing down to a depth of

2.5 m. E. acoroides, Cymodocea spp., and S. isoetifolium had a down

slope limit of 5 m, beyond which these species were not found. The

Halophila spp. + Halodule spp. Complex, excluding H. beccarii,

dominated the depth regimes beyond 5 m, accounting for

approximately 96% of the observed occurrences, particularly

within the range of 8-15 m (Supplementary Material Annexure

1; Figure 2). H. ovalis was the most frequent species (66%

occurrence rate), followed by Halodule pinifolia (50%) and

Halodule uninervis (39%) in the shallow-subtidal seagrass beds.

H. ovalis also dominated the deepwater meadows, occurring in ~

80% of the sites.
3.3 Meadow species composition and
distribution trends

Based on depth profile and species composition, we classified

the observed seagrass meadows into six categories; (1) Intertidal,

mono-species meadows (n=4), (2) Intertidal, mixed-species

meadows (n=13), (3) Shallow, mono-species meadows (n=15), (4)

Shallow, mixed-species meadows (n=24), (5) Deep, mono-species

meadows (n=3), (6) Deep, mixed-species meadows (n=7). Of the 66

meadows, 44 were mixed-species, while 22 were mono-specific

(Supplementary Material Annexure 1). A clear trend of

decreasing seagrass species richness and coverage with increasing

water depth was observed. Mixed-species beds exhibited dense

coverage and were limited to intertidal and shallow waters
Frontiers in Marine Science 06
(Supplementary Material Annexure 1). In contrast, single species

dominated all depth regimes but rarely formed dense meadows. In

category 1, T. hemprichii was the dominant species in the sparse to

moderate seagrass beds found in the heterogeneous habitats of RA

and SA (Supplementary Material Annexure 1). In category 3, H.

ovalis accounted for 40% of the sparse to moderate, mono-species

meadows along with C. rotundata, H. decipiens, H. minor, H. ovalis,

Halodule pinifolia, and Halodule uninervis. Similarly, H. ovalis, H.

minor, and Halodule pinifolia formed deep water, mono-species

stands in category 5 (Supplementary Material Annexure 1).

The species richness in mixed-seagrass meadows ranged from a

minimum of two to eight species. Interestingly, we found that the

probability of two co-occurring species was more frequently observed

(>50% of meadows) than a greater number of species in a single

mixed-species meadow. Six species exhibited the highest co-occurring

tendencies; ‘Halophila spp. withHalodule spp.’ (in all-depth regimes),

‘T. hemprichii with C. rotundata’ (in intertidal habitats), and ‘S.

isoetifolium with E. acoroides’ (in intertidal habitats). Three to eight

co-occurring species characterized intertidal, mixed meadows

(category 2) and showed a wide range of seagrass coverage ranging

from sparse to very dense (Supplementary Material Annexure 1).

Particularly within this category, we observed highly diverse (4 to 8

co-occurring species), dense, and contiguous seagrass meadows in

sheltered bays such as Jua Tekdi (Site 21), Vijay Nagar (Site 27),

Haddo (Site 38), Burmanallah (Site 39), and Light House-South Bay

(Site 51) (Figure 1, Supplementary Material Annexure 1). Except for

Haddo, all other intertidal seagrass-rich sites exhibited habitat

heterogeneity (Supplementary Material Annexure 1). The mixed-

species meadows of categories 4 and 6 were predominantly

dominated by Halophila spp. and Halodule spp. Complex.
TABLE 1 Bivariate regression analysis carried out on 11 explanatory variables considered for the regression analysis.

water
depth

pH temperature salinity sand rubble
dead
coral
algae

Live
coral

rock
Non-

Epiphytic
Algae

Epiphytic
Algae

water depth 1 0.053 0.035 -0.121 0.203 -0.102 -0.123 0.023 -0.147 -0.146 0.014

pH 0.053 1 0.327 -0.240 -0.124 -0.042 0.206 0.013 0.013 0.030 -0.181

temperature 0.035 0.327 1 -0.340 -0.079 0.079 0.014 0.000 0.056 0.057 -0.141

salinity -0.121 -0.240 -0.340 1 0.118 0.021 -0.115 -0.003 -0.100 0.020 0.112

sand 0.203 -0.124 -0.079 0.118 1 -0.472* -0.636* -0.332 -0.484* -0.053 0.086

rubble -0.102 -0.042 0.079 0.021 -0.472 1 -0.045 0.015 -0.037 0.042 -0.023

dead coral
algae -0.123 0.206 0.014 -0.115 -0.636* -0.045 1 0.075 -0.032 0.043 -0.024

Live coral 0.023 0.013 0.000 -0.003 -0.332 0.015 0.075 1 0.024 -0.012 -0.010

rock -0.147 0.013 0.056 -0.100 -0.484* -0.037 -0.032 0.024 1 0.012 -0.108

Non-
Epiphytic
Algae -0.146 0.030 0.057 0.020 -0.053 0.042 0.043 -0.012 0.012 1 -0.068

Epiphytic
Algae 0.014 -0.181 -0.141 0.112 0.086 -0.023 -0.024 -0.010 -0.108 -0.068 1
*Indicates significant correlation.
Values expressed as spearman’s correlation co-efficient (r).
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3.4 Habitat-sediment characterization and
species’ affinities

Seagrasses were found predominantly in five habitat types; sand,

rubble, dead coral with macroalgae, rock, and live coral

(Supplementary Material Annexure 1; Figure 3). The sediment

texture consisted of fine and coarse sand, clay, and silt.

Homogeneous seagrass beds exhibited high siltation and

turbidity. Sites in NMA and NIC were predominantly

homogeneous, while LA and SA indicated habitat heterogeneity.

RA displayed a more diverse habitat profile with a mix of

homogeneous and heterogeneous benthic profiles (Supplementary
Frontiers in Marine Science 07
Material Annexure 1). Seagrass patches in sites with fine sand were

often found around dunes formed by crustacean burrows, such as

Pokkadera, Dolphin, Temple, Nemo Reef, and Imli Dera (Figure 1).

The presence of habitat heterogeneity supported highly diverse and

extensive mixed-species meadows. The dominant non-epiphytic

macroalgae were the Padina spp., followed by Halimeda spp. and

Caulerpa spp. Epiphytic algal cover varied from thin or dense matt

algal film over seagrass shoots. We observed the epiphyte Melobsia

spp. on T. hemprichii shoots in Laxmanpur, Natural Bridge, and

Burmanallah (Figure 1). 14 seagrass sites, mainly from NMA and

RA, exhibited a high cover of mat-forming algae on shoots and the

seabed (Supplementary Material Annexure 1).
TABLE 2 Island wise summary of seagrass meadow characteristics in the Andaman and Nicobar Islands, India.

Island
group

Sites
sampled

New
Seagrass
beds

Sampling
Range

Species
Richness

Species
Composition

Water
Depth
Range
(m)

Total
Seagrass
Cover
(%)

Total
biomass
(dry wt.;
g/
0.04m2;
mean ±
SE)

Shoot
density
(shoots/
m2;
mean ±
SE)

North and
Middle
Andaman

18 10 13°
38’7.91”N,93°
1’50.66”E to
12°
54’15.44”N,
92°54’40.50”E

8 Halophila beccarii,
Halophila decipiens,
Halophila ovalis,
Halodule uninervis,
Halodule pinifolia,
Cymodocea rotundata,
Thalassia hemprichii,
Enhalus acoroides

0.4 to 8.5 32.9 87.2 ± 51.4 1448.8 ±
212.4

Ritchie’s
archipelago

19 12 12°
12’37.84”N,
93° 4’31.94”E
to 11°
47’4.81”N, 93°
4’26.94”E

10 Halophila ovalis,
Halophila decipiens,
Halophila minor,
Halodule uninervis,
Halodule pinifolia,
Cymodocea rotundata,
Cymodocea serrulata,
Thalassia hemprichii,
Enhalus acoroides,
Syringodium
isoetifolium

0.2 to
21.5

28 131.8 ± 82.5 1147.9 ±
313.9

South
Andaman

8 2 11°
40’55.56”N,
92°43’32.12”E
to 11°
23’58.12”N,
92°33’21.65”E

6 Halophila ovalis,
Halodule uninervis,
Halodule pinifolia,
Cymodocea rotundata,
Cymodocea serrulata,
Thalassia hemprichii

0.2 to 6.6 32.8 55.5 ± 28.5 2124.7 ±
427.3

Little
Andaman

7 2 10°47’1.00”N,
92°35’23.89”E
to 10°
30’49.21”N,
92°29’39.82”E

6 Halophila ovalis,
Halodule uninervis,
Halodule pinifolia,
Cymodocea rotundata,
Cymodocea serrulata,
Thalassia hemprichii

0.1 to 0.5 35.8 158.2 ± 35.9 2556.4 ±
488.7

Nicobar 14 6 8° 2’21.88”N,
93°32’55.61”E
to 7°
0’31.25”N, 93°
55’49.58”E

10 Halophila ovalis,
Halophila decipiens,
Halophila minor,
Halodule uninervis,
Halodule pinifolia,
Cymodocea rotundata,
Cymodocea serrulata,
Thalassia hemprichii,
Enhalus acoroides,
Syringodium
isoetifolium

0.2 to 5 44.5 870.1 ± 306 1764.2 ±
288.9
fr
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Seagrass species’ densities clustered according to their habitat and

substratum preferences, with Axes 1 and 2 of the CCA plots explaining

a cumulative variance of 76. 32% (54.96% and 21.36%, respectively).

While most species were dominant along a sediment gradient of sand,

silt, and fine sand, distinct preferences for H. ovalis, T. hemprichii, and

C. rotundata densities were observed. H. ovalis showed higher shoot

densities in sandy substrata mixed with clay. It also occurred sparsely

around the fringes of coral reefs in subtidal meadows (Figure 3). H.

decipiens and H. minor displayed a strong preference for sandy

habitats. H. beccarii was observed as a one-time occurrence in a

muddy substratum, occupying fine sand mixed with mud near the

high tide edges of Pokkadera (Site 18; Figure 1). E. acoroides and S.

isoetifolium were positively associated with fine sand, while Halodule

spp. was predominantly observed in silt. T. hemprichii, C. rotundata,

and C. serrulata favored heterogeneous habitats consisting of sand,
Frontiers in Marine Science 08
rock, dead coral with macroalgae, and rubble across all sites (Figure 3).

However, there were differences in microhabitat preferences among

these species. T. hemprichii densities correlated with coarse sand mixed

with rubble, while C. rotundata was found in coarse sand as random

sparse stands interspersed within the rubble, dead coral with

macroalgae, and rocks. Additionally, C. rotundata, along with C.

serrulata, also preferred fine sand in shallow waters or the upper

edges of intertidal zones (Figure 3).
3.5 Factors influencing seagrass
distribution and meadow characteristics

We used multiple regression models to examine factors

influencing seagrass distribution and meadow characteristics
FIGURE 3

Canonical Correspondence Analysis ordination showing the influence of habitat profile and sediment texture on seagrass species’ shoot densities
(sn, sand; fine.sn, fine sand; rk, rock; DCA, dead coral with macroalgae; coarse. sn, coarse sand; ru, rubble; cr, Cymodocea rotundata; cs,
Cymodocea serrulata; ea, Enhalus acoroides; hb, Halophila beccarii; hd, Halophila decipiens; hm, Halophila minor; ho, Halophila ovalis; hp, Halodule
pinifolia; hu, Halodule uninervis; si, Syringodium isoetifolium; th, Thalassia hemprichii).
FIGURE 2

Depth wise distribution trends of seagrass species (Cr, Cymodocea rotundata; Cs, Cymodocea serrulata; Ea, Enhalus acoroides; Hb, Halophila
beccarii; Hd, Halophila decipiens; Hm, Halophila minor; Ho, Halophila ovalis; Hp, Halodule pinifolia; Hu, Halodule uninervis; Si, Syringodium
isoetifolium; Th, Thalassia hemprichii).
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(seagrass occurrence, cover, biomass, and shoot densities). Water

depth and sand (except shoot densities) were the key environmental

variables significantly predicting all response variables. Seagrass

occurrence was found to decline with water depth (p=3.72e-15), as

well as the presence of dead coral with macroalgae (p=<2e-16) and

rubble (p=3.88e-10) (Figures 4A–C; Table 3). However, the

presence of sand showed a positive association with seagrass

occurrence (p- < 2e-16; Figure 4D, Table 3). Water depth

exhibited a similar correlation with seagrass cover (b = -0.2759;

SE= 0.02471; p= <2e-16), shoot densities (b = -0.3556; SE= 0.1231;

p- 0.005) and biomass (b= -0.3526; SE= 0.1159; p=0.003). These

variables decreased from littoral zones to deep waters (Figures 5A–

C; Table 4). On the other hand, seagrass cover (b = 0.2924; SE=

0.03124; p- <2e-16) and biomass (b = 0.295; SE= 0.1171; p- 0.01)

showed a positive relationship with the availability of sand

(Figures 6A, B; Table 4). Furthermore, seagrass cover and

biomass exhibited a positive correlation with the presence of

epiphytic algae (b= 0.136, SE= 0.0244, p =<2e-16) and water

temperature respectively (b= 0.4235, SE= 0.1103, p =0.0002)

(Figures 6C, D; Table 4). Lastly, we observed a peak in seagrass

biomass at approximately 2.5 m depth, with the highest coverage

and shoot densities recorded up to 5 m depth (Figures 7A–C).
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4 Discussion

The spatial diversity, distribution, and growth of seagrasses in

the explored meadows are primarily determined by water depth,

habitat heterogeneity, and substrate availability. Our findings reveal

significant variations in species richness between intertidal/shallow

and deepwater meadows, with the former habitats supporting

higher species (10) than the latter (4). All 11 observed species

were found up to a depth of 5 m, either in mono-species or mixed

meadows. Beyond this depth, the species composition shifted

toward exclusive dominance of Halophila spp. and Halodule spp.

Complex, with Halophila ovalis and H. decipiens marking the

deepest recorded seagrasses from our study area (ANI), reaching

depths of 21 m. While the general depth limits for Indo-tropical

seagrasses are commonly less than 10 m (Short et al., 2007), our

findings, along with regional studies from Hervey Bay and Cape

York (Queensland), the Red Sea, and the Mediterranean Sea,

indicate region-specific deepwater trends (Den Hartog, 1971; Lee

Long, 1996; Short et al., 2007). Halophila spp. has been recorded

from depths of 50 m in the tropical Atlantic region, 70 m in the Red

Sea (Short et al., 2007), and 90 m in the Coral Sea (Den Hartog,

1971) highlighting the species’ adaptability to deeper regimes.
BA

C D

FIGURE 4

Influence and nature of the relationship between seagrass occurrence and (A) water depth, (B) dead coral with algae, (C) rubble, and (D) sand.
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Additionally, H. decipiens has been reported from 58 m in the Great

Barrier Reef (Lee Long, 1996), whileH. ovalis is commonly observed

beyond 35 m (Coles et al., 2000). The deepest recorded seagrass

sample to date is a one-time dredged sample of H. stipulacea from

145 m (Lipkin et al., 2003; Short et al., 2007). Our findings are thus,

consistent with global evidence, supporting the notion that

Halophila spp. and Halodule spp. are adaptive to depths.

Although our observed depth-scaled distribution trends are

consistent with previous local and regional assessments from ANI

and mainland India (Das, 1996; Jagtap, 1996; Jagtap, 1998; D’Souza

et al., 2015),we report some stark contrast for few species’ regional

colonization depths. For instance, Jagtap et al. (2003) reported

Thalassia hemprichii and Cymodocea serrulata from a depth range

of 0-10 m in Southeast India, as opposed to restricted littoral

distribution in our study (with one-time observations from 2.5 m

and 5 m, respectively). Similarly, the compensation depth of

Halodule uninervis, one of the deepest species from our sites (15

m), was 3 m from Tamil Nadu (Jagtap et al., 2003). We speculate

these differences to be driven by local variation in the physical
Frontiers in Marine Science 10
environment of the two regions. Palk Bay and the Gulf of Mannar in

Tamil Nadu have a shallow continental shelf, a vast seagrass

expanse (often 5 to 10 km from the shore), and a tidal amplitude

of around 0.3 to 0.5 m (Geevarghese et al., 2018). In contrast, in

ANI habitat discontinuity, narrow shelf and sharp depth slopes (a

few meters from the shore), results in irregularity in seagrass

distribution (Das, 1996; Geevarghese et al., 2018). Considering the

limited physical variation in Tamil Nadu, water depth likely plays a

lesser role as a regulatory variable in shaping seagrass species

distribution. Nevertheless, in ANI, we propose that water depth

favors certain adaptive species over others, thus influencing the

colonization depths of seagrasses (Lee et al., 2007; Short et al., 2011).

In our study, furthermore, we suggest that water depth not only

regulates the species distribution ranges, but also the plant growth.

Overall, seagrass coverage, shoot densities, and community biomass

declined in deep waters (critical limit between ~ 2 to 5 m) consistent

with reports from other geographic regions such as the Southeast

coast, insular Lakshadweep (Jagtap, 1996; Jagtap, 1998), north-

western Cuba (Buesa, 1975), and from the Mediterranean Sea
TABLE 3 Summary of logistic linear models used to identify key explanatory variables influencing seagrass occurrence in the Andaman and Nicobar
Islands, India.

Sr.
No. Model combination AIC LogIik p values

1 seagrass occurrence vs sand 1566.404
-781.1982
(df=2) < 2e-16 ***

2 seagrass occurrence vs dead coral algae 1682.356
-839.1738
(df=2) <2e-16 ***

3 seagrass occurrence vs water depth 1723.925
-859.9586
(df=2) 3.72e-15 ***

4 seagrass occurrence vs rubble 1745.774
-870.8831
(df=2) 3.88e-10 ***

5 seagrass occurrence vs salinity 1765.806
-880.8991
(df=2) 6.12e-06 ***

6 seagrass occurrence vs pH 1767.476
-881.7339
(df=2) 1.89e-05 ***

7 seagrass occurrence vs temperature 1781.31
-888.6509
(df=2) 0.025623 *

8 seagrass occurrence vs epiphytic algae 1782.1
-889.0459
(df=2) 0.0454 *

9 Intercept model 1784.224
-891.1107
(df=1)

10 seagrass occurrence vs non-epiphytic algae 1786.223
-891.1073
(df=2) 0.935

Sr.
No.

Additive Models AIC
AIC
delta

AIC
weights

LogIik
McFadden’s

R

1 seagrass occurrence vs. water depth+ dead coral algae+rubble+sand 1421.8 0 0.65
-705.4889
(df=6) 0.21

2
seagrass occurrence vs. water depth+ dead coral algae+rubble+sand+epiphytic

algae 1423.0 1.5 0.30
-705.4889
(df=6) 0.21

3
seagrass occurrence vs. water depth+ ph+temperature+salinity+dead coral algae

+rubble+sand+epiphytic algae 1426.4 5.2 0.05
-704.2162
(df=9) 0.21
*Indicate significant p values.
Model in bold denotes selected best-fit model.
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(Drew, 1978). As light attenuates strongly in deeper waters, the

observed variations are a possible outcome of differential traits of

seagrasses to adapt to depths (Lee et al., 2007; Short et al., 2011;

Minguito-Frutos et al., 2023). Seagrass depth penetration and

growth are directly influenced by light availability (Zieman and

Wetzel, 1980; Duarte, 1991), owing to which conducive growth

environment declines in the subtidal regions (Dennison and

Alberte, 1987). Within similar environmental conditions, species-

specific variation in colonization depths is a response to range of

factors such as plant architecture, growth strategies, physiological

responses, and acclimation potential (Dennison et al., 1993;

Alcoverro et al., 2001; Greve and Binzer, 2004; Bité et al., 2007;

Silva et al., 2013; Kilminster et al., 2015; Schubert et al., 2018; Tuya

et al., 2019). A synthesis of the seagrass-water depth relationship

indicates that seagrasses restrict their rhizome development in

deeper regimes, with subsequent growth reduction (Duarte,

1991). This ability further is highly pronounced in pioneer, small-

sized species with fast recolonization rates allowing them to cope up

in deeper regimes. For instance, Halophila spp. and Halodule spp.

can more efficiently regulate their respiratory demands in depths

than large-sized seagrass species (Fourqurean et al., 1995).

Therefore, deep water colonization of Halophila and Halodule

species complex in our study could be accounted for higher
Frontiers in Marine Science 11
acclimation potentials at greater depths (Minguito-Frutos et al.,

2023). Since light attenuation is not the only predictor of depth

distributions (Koch, 2001), in way forward, it would be critical to

understand the fine-scale mechanisms which allow dominance of

one species over the other across depth regimes.

Additionally, seagrass distribution is a product of habitat

heterogeneity and substratum suitability from the sampled

meadows. Heterogeneous habitats in the islands support a higher

species richness (Das, 1996; Savurirajan et al., 2018). Our study

reveals that variabilities in substratum types and habitat

heterogeneity allow different species to dominate various spatial

niches. Meadows with less substratum variability, such as those

found in Little Andaman, Burmanallah, Laxmanpur, and Natural

Bridge, had a vast extent but supported lower species richness. Our

investigation of sediment texture affinities of seagrass species

partially agrees with a previous study in the region by Savurirajan

et al. (2018), which also reported high densities of H. ovalis in sand

and clayey substrates. However, we observed T. hemprichii, E.

acoroides, and Halodule pinifolia occupying coarse sand, fine

sand, and silt, respectively, contrary to their preference for clayey

sand in the previous study. It is important to note that the study by

Savurirajan et al. (2018) focused on intertidal waters (< 2 m), while

our study spanned depths up to 21 m. Therefore, the differences in
A B

C

FIGURE 5

Relationship between water depth with (A) seagrass cover (Z-score values), (B) shoot density (Z-score values) and (C) seagrass biomass (Z-score values).
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spatial scale and sample sizes may contribute to the variations in

results between the two studies. Additionally, we suggest that

habitat and substratum profiles change from intertidal to deeper

waters, limiting direct comparisons. In addition, the absence of H.

decipiens from the intertidal regions is in line with the same report

from South Andaman (Savurirajan et al., 2018). Yet, contrary to this

study, we report C. serrulata and Syringodium isoetifolium from the

littoral zones (0.2 to 0.4 m) of Ritchie’s archipelago and Little

Andaman, updating the species’ distribution ranges.

Lastly, despite the vast spatial scale of our study, we did not

observe H. ovata from the ANI’s seagrass checklist (12 species).

Genus Halophila, with high taxonomic diversity, overlapping

morphology, and phenotypic plasticity at local scales (Japar Sidik

et al., 2010), has often led to species misidentification and

systematic ambiguity (Fortes et al., 2018). The species was last

reported in 2010 from ANI (Thangaradjou et al., 2010a;

Thangaradjou et al., 2010b). A recent study (Ragavan et al., 2016)

argued that H. ovata is a misidentified H. minor from all previous

assessments in ANI. A similar report from Southeast Asia pointed
Frontiers in Marine Science 12
to taxonomic discrepancies within Halophila spp., where the

morphological resemblance between H. ovata and H. minor was

“compounding” and has led to species misidentification (Fortes

et al., 2018). Since all seagrass assessments in ANI have relied only

on morphological traits for species identification, including our

study, the possibility of misidentification cannot be ruled out. Thus,

we suggest a more robust approach for species identification using

molecular traits to resolve present inconsistencies.
4.1 Management recommendations

Based on our study findings, we propose the following

recommendations for the effective management and conservation

of seagrass ecosystems in the Andaman and Nicobar Islands (ANI):

4.1.1 Enhance legislative measures
The limited legislative measures safeguarding seagrass

ecosystems in India include 1) recognition as ecologically
TABLE 4 Summary of gaussian model-averaged coefficients (full average) explaining influence of each explanatory variable on seagrass cover,
biomass and shoot densities.

Quantitative response variable Predictor variables Estimate Std. Error Adjusted SE z value Pr(>|z|)

Seagrass cover

(Intercept) 2.13E-10 2.37E-02 2.38E-02 0 1

Water depth -2.76E-01 2.47E-02 2.47E-02 11.156 <2e-16 *

Sand 2.92E-01 3.12E-02 3.13E-02 9.354 <2e-16 *

Epiphytic Algae 1.36E-01 2.44E-02 2.44E-02 5.57 <2e-16 *

Temperature 3.17E-02 3.05E-02 3.05E-02 1.036 0.3

pH 3.33E-02 3.00E-02 3.00E-02 1.109 0.267

Non-Epiphytic Algae 1.26E-02 2.16E-02 2.16E-02 0.58 0.562

Dead Coral Algae -1.06E-02 2.38E-02 2.39E-02 0.443 0.658

Rubble 8.26E-03 1.98E-02 1.98E-02 0.418 0.676

Salinity -1.66E-02 2.48E-02 2.49E-02 0.667 0.505

Seagrass biomass

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) 3.50E-11 1.08E-01 1.10E-01 0 1

Sand 2.95E-01 1.17E-01 1.19E-01 2.47 0.013521 *

Temperature 4.24E-01 1.10E-01 1.13E-01 3.764 0.000167 *

Water depth -3.53E-01 1.16E-01 1.18E-01 2.984 0.002849 *

Epiphytic algae 2.08E-02 6.82E-02 6.92E-02 0.301 0.763477

Seagrass shoot densities

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) 5.78E-11 1.16E-01 1.18E-01 0 1

Water depth -3.56E-01 1.23E-01 1.25E-01 2.837 0.00456 *

Salinity 4.84E-02 9.77E-02 9.86E-02 0.491 0.62343

Sand 3.94E-02 9.14E-02 9.24E-02 0.426 0.66981

Dead Coral Algae -1.13E-02 5.18E-02 5.24E-02 0.215 0.82941

Epiphytic algae 9.00E-03 4.68E-02 4.74E-02 0.19 0.84951
fro
*Indicate significant p values.
(Model-averaging pre-criterion= AIC delta < 2).
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sensitive habitats (Coastal Regulation Zone Category I; ICRZ

Notification, 20216) and 2) protection under the Indian Wildlife

(Protection) Act (WLPA), 1972 (Ramesh et al., 2018). Seagrass

ecosystems in the ANI are protected as one of the environmentally

critical habitats under the Category IA of the Island Coastal

Regulation Zone (ICRZ, 20197). However, concerning are the

revisions in the ICRZ 2019 of the Island Protection Zone

Notification (2011) permitting eco-tourism and allied

development in the ICRZ- IA (200 meters changed to 20-50

meters from the High tide line, ICRZ, 20198), where majority of

seagrasses fall. We thus recommend a top-down revised approach

to strengthen the existing legislative framework to provide stronger

protection for seagrass ecosystems.
6 https://parivesh.nic.in/Notifications.aspx?id=CRZ/ (accessed on March

2023).

7 http://www.indiaenvironmentportal.org.in/content/461888/icrz-

notification2019/.

8 https://environmentclearance.nic.in/writereaddata/SCZMAD ocument/

ICRZ_Notification2019.pdf.
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4.1.2 Expand the Marine Protected
Area (MPA) Network

Less than 20% of the seagrass meadows we studied are protected

as MPAs in ANI. On the contrary, a recent review of the Southeast

Asian seagrasses (Sudo et al., 2021) suggests that the subtropical

Ryukyuan archipelago in Japan, with a coastline of 650 km (one-

third of ANI) and half the geographical expanse (~ 4600 km2) still

protects more than 99% of their seagrass beds within its MPAs. The

denoted figures shed light on the under-representation of seagrasses

as valuable ecosystems that need protection in ANI. Within the

remaining 80% of unprotected seagrasses in our study, which also

includes the critical dugong habitats, the geographical remoteness

of the islands (from human settlements) offers some level of

natural protection.

However, these beds still fall on the geological fault lines of ANI,

exposed to natural threats such as frequent cyclonic storms,

earthquakes, and tsunamis, all known to impact seagrasses

(Adulyanukosol and Poovachiranon, 2006; Sachithanandam et al.,

2014). The rise in coastal development prospects in ANI is another

matter of concern. It is likely to change seagrass ecosystems in the

future, possibly with an aligning fate as reported from China (Jiang

et al., 2020), Vietnam (Luong et al., 2012), Malaysia (Japar Sidik

et al., 2018), and Europe (de los Santos et al., 2019), to name a few.
A B

C D

FIGURE 6

Relationship between Sand with (A) seagrass cover (Z-score values), (B) seagrass Biomass (Z-score values), (C) Epiphytic Algae on seagrass cover (Z-
score values); (D) Water temperature on seagrass biomass (Z-score values).
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Thus, there is a need to extend the network of MPAs to encompass a

larger portion of seagrass beds, ensuring the conservation of these

critical ecosystems. We suggest increasing the coverage of Marine

Protected Areas (MPAs) and enforcement, following a potential

NEOLI approach (Edgar et al., 2014) to include a more significant

proportion of seagrass meadows, especially those identified as

critical dugong habitats.

4.1.3 Assess socio-ecological-economic services
Need to conduct comprehensive research to evaluate the socio-

ecological-economic services provided by seagrasses (Rahman and

Yaakub, 2020). Under the ecological context, this assessment should

focus on lesser-known fauna, such as marine invertebrates, which

are currently understudied in the region since seagrass research

is largely dugong-centrical. We further suggest investigating

local communities’ perceptions and socioeconomic dependency

on seagrass ecosystems. This should entail assessing the direct

and indirect benefits of seagrasses, including their role in

supporting fisheries, gleaning, shoreline protection, and tourism.

Understanding the socioeconomic dynamics will inform policy and

decision making (de la Torre-Castro et al., 2014; Campagne et al.,

2015; Kilminster et al., 2015), along with developing sustainable

management strategies that align with the needs and aspirations of

local communities.

4.1.4 Quantify seagrass-centric threats
Though with a limited sample size, we observed increased

sedimentation and subsequent mass die-off of coral reefs and

enhanced turbidity in the seagrass beds from Shaheed Dweep and

meadow-scarring in Swaraj Dweep, as a response to benthic

dredging (for jetty construction) and boat anchorage respectively

(personal observations). Nevertheless, these observations are

mainly descriptive, lacking quantitative details of the damage or

loss incurred. We, thus, suggest detailed studies to quantify the

threats faced by seagrass meadows in ANI to inform policy-makers

(Rahman, 2017). Assessment of the impacts of anthropogenic

activities, such as dredging and boat anchorage, on seagrass

health will help identify and develop targeted management

strategies to minimize or mitigate these threats.
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By implementing these recommendations, we can create a

robust framework for the ‘habitat-level’ management and

conservation of seagrass ecosystems in the Andaman and Nicobar

Islands. Drawing from regional case studies (Fortes et al., 2018) and

considering the unique context of ANI, these measures could be

comprehensively put into a local-scale management perspective to

create a roadmap for seagrass conservation for ANI.
5 Conclusion

Our study has provided updated information on the spatial

distribution, habitat suitability, and depth ranges of seagrass

meadows in the Andaman and Nicobar Islands (ANI). By

conducting a comprehensive assessment across a broad spatial scale

and depth gradients, we have filled significant data gaps in previously

data-deficient regions of ANI. Our findings highlight key regulatory

factors, such as water depth, influence seagrass growth, and species

distribution. The observed differences in seagrass distribution along

depth gradients can be attributed to various factors, including

variations in covariates associated with water depth, species’

adaptability to different depth regimes, and habitat heterogeneity and

substratum availability, which also change with depth. Any alterations

in the benthic habitat profile of these meadows are likely to impact

species distribution patterns and overall performance. Our study

suggests that Halodule spp. and Halophila spp. are generalist species,

capable of occupying suitable habitats across different depth regimes,

while larger-sized species like Enhalus acoroides, Thalassia hemprichii,

and Cymodocea spp. exhibit specialist characteristics. The presence of

seagrasses in deepwater regions of Ritchie’s archipelago further

confirms the availability of conducive growth environments in

deeper regimes. Replicating similar investigations in other island

groups would provide valuable insights to complement our findings.

In summary, the outcomes of this study will have significant

implications for the management and conservation of seagrass

habitats in the region. The findings will provide valuable baseline

information for policymakers, conservationists, and stakeholders and

contribute to the broader scientific understanding of seagrass

ecosystems and their responses to environmental changes.
A B C

FIGURE 7

Response of seagrass growth; (A) seagrass cover, (B) shoot densities, and (C) biomass in relation to water depth; box indicates threshold depth limits
with maximum values of response variables.
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ANNEXURE 1

Seagrass meadow characteristics of the 66 beds investigated from the

Andaman and Nicobar Islands, India. Sites in bold indicate new meadow
record. *Indicates new species distribution record for the region
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