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A model was constructed to estimate Primary production (PP) and examine the

effect of the dominant phytoplankton group on PP, using a dataset collected in

2019 in the South China Sea (SCS) based on phytoplankton absorption

coefficient at 443nm [aph(443)] and photosynthetically active radiation (PAR).

There was a significant log-log linear correlation between PP and the product of

aph(443) and PAR (aph(443)×PAR), with an adjusted R2 of 0.64. The model was

validated using K-fold cross-validation and an in situ dataset collected in 2018 in

the SCS basin. The results showed that the model had good generalisability and

was suitable across marine environments, including basin, coastal, and offshore

areas. Themodel was more sensitive to changes in PAR than changes in aph(443).

Phytoplankton in the diatom-dominant and haptophyte-dominant clusters were

in the light-limited stage, and their PP values increased with increasing aph
(443)×PAR. However, Prochlorococcus-dominant samples exhibited

photoinhibition, and the PP values decreased with increasing aph(443)×PAR,

likely due to their bio-optical characteristics. The model’s predictive power

was related to the photo-physiological state of dominant phytoplankton,

which performs well in light-limited conditions but not in cases of massive

photoinhibition. This study provides insight into the development of

phytoplankton-specific aph-based PP models.

KEYWORDS

primary production, phytoplankton absorption coefficient, photosynthetically active
radiation, phytoplankton pigments, marine optics
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1 Introduction

Marine primary production (PP) refers to the process of

assimilation and fixation of inorganic carbon and other inorganic

nutrients into organic matter by marine phytoplankton. This

process constitutes a major carbon pump and fuels the marine

food chain, making it a critical component of ocean biogeochemical

cycles that impact climate change (Falkowski et al., 1998). As the

annual productivity of the entire ocean is approximately half of the

global total (Hemsley et al., 2015), ocean PP remains an essential

ecological process deserving of continued research.

The in vivo technique with 14C proposed by Steemann Nielsen

is the conventional ship-based method used to measure PP

(Nielsen, 1952). In recent decades, satellite-based sensors have

made remote sampling of the ocean surface possible at large

spatial and temporal scales, providing a cost-effective way to

study PP at satellite-visible depths (Platt and Sathyendranath,

1988; Hilker et al., 2008). When combined with in situ

observations, it may be possible to obtain the PP of the entire

euphotic zone. Consequently, various models of PP have been or are

being proposed (Kahru, 2017) based on products that can be

obtained from water-leaving radiance in both open ocean

(Campbell et al., 2002) and coastal waters (Saba et al., 2010;

Setiawan and Habibi, 2011; Setiawan and Kawamura, 2011).

Chlorophyll a (Chl a), a well-established ocean colour product, is

the main pigment at the photochemical reaction centre in most

phytoplankton and is often considered an index of phytoplankton

biomass (Boyce et al., 2010). Since primary productivity may be

simply defined as the product of phytoplankton biomass times the

phytoplankton growth rate (Cloern et al., 2014), Chl a is frequently

involved in modeling primary productivity of the marine surface

layer, euphotic layer, or mixed layer (Eppley et al., 1985; Platt and

Sathyendranath, 1993; Antoine and Morel, 1996; Ondrusek et al.,

2001; Campbell et al., 2002; Platt et al., 2008; Westberry et al., 2008).

PP can also be defined by a combination of the phytoplankton

absorption coefficient (aph) and photosynthetically active radiation

(PAR) (Kiefer andMitchell, 1983; Barnes et al., 2014), both of which

are well-established ocean colour products, and aph can perform

better than Chl a in estimations of PP (Oliver et al., 2004; Claustre

et al., 2005; Hirawake et al., 2011). Credible global gridded aph(l)
data can be retrieved from Rrs using semianalytical algorithms

(Moore et al., 2009; Sauer et al., 2012; Werdell et al., 2013) such

as the generalized inherent optical properties (GIOP) algorithm

(Werdell et al., 2013) and quasi-analytical algorithm (QAA) (Lee

et al., 2002). As a result, aph has been considered an alternative bio-

optical proxy for estimating PP in both coastal and open ocean

waters (Lee et al., 1996; Huot et al., 2007; Marra et al., 2007; Barnes

et al., 2014; Silsbe et al., 2016). Different phytoplankton

communities have varying bio-optical characteristics and can

display different responses to various environmental variables,

including light, temperature, nutrients, etc. (Uitz et al., 2010;

Barnes et al., 2014; Brewin et al., 2017; Curran et al., 2018).

Compared to Chl a, aph(l) contains more information, such as

phytoplankton pigment concentration and composition,

phytoplankton community, and cell size (Morel and Maritorena,
Frontiers in Marine Science 02
2001; Ciotti et al., 2002; Bricaud et al., 2004; Uitz et al., 2015). The

combined response of the various environmental variables is also

reflected in aph(l) (Marra et al., 2007; Aiken et al., 2008; Brewin

et al., 2019). These characteristics extend the application scope of

aph-based models, which have been successfully applied to estimate

not only total PP (Lee et al., 1996; Marra et al., 2007; Barnes et al.,

2014; Robinson et al., 2017) but also size-fractionated PP (Hirata

et al., 2009; Barnes et al., 2014; Brewin et al., 2017; Curran et al.,

2018) in different marine environments, including the North

Atlantic Ocean (euphotic layer) (Lee et al., 1996), Arabian Sea,

Ross Sea, Equatorial Pacific (surface layer) (Marra et al., 2007),

English Channel, North Sea (surface layer) (Barnes et al., 2014),

Australian Coastal Waters (surface layer) (Robinson et al., 2017),

and eastern boundary upwelling systems (Hirata et al., 2009), using

in situ and remote sensing datasets. However, classifying

phytoplankton by size does not provide information on

taxonomic structure, and variation in phytoplankton taxonomic

structure can affect PP (Jochem et al., 1995; Kameda and

Ishizaka, 2005).

One of the primary objectives of this study is to investigate the

utility of aph as a predictor of PP within the euphotic zone of the

South China Sea (SCS). A regional aph-based PP model was built

based on an in situ dataset collected during 2019 in the SCS. To

evaluate the generalization performance of this model, we employed

K-fold cross-validation and validated it with an independent in situ

dataset collected during 2018 in the SCS (Liao et al., 2021).

Furthermore, the impact of uncertainties in the two inputs, aph(l)
and PAR, on the relationship was also analyzed. In addition, our

study seeks to partition the dataset into clusters dominated by

different phytoplankton types derived from pigment composition.

This allows us to explore the effect of each cluster on our aph-based

PP model. The model could be applied to autonomous optical

sensors and remotely sensed data in coastal, estuarine, offshore, and

basin environments of the SCS. This study provides valuable insight

into the development of phytoplankton-specific aph-based

PP models.
2 Materials and methods

2.1 Sampling site

Field observations in the western SCS were conducted at 12

stations during two cruises, from 11 June to 15 June and from 29

September to 5 October 2019 (denoted as the 2019 SCS dataset).

The sampling stations are depicted in Figure 1, which includes a

total of 12 stations denoted by blue dots and covers both coastal

(contains estuarine (S1-S7, ≤100 m) and offshore (S8-S12, >100 m)

waters. A comprehensive set of variables pertinent to productivity,

including PP, aph(l), PAR, phytoplankton pigments, temperature,

and depth, were measured at each station. In addition, we obtained

an open dataset collected by Liao et al. at 8 stations in the SCS basin

during September 2018 (Liao et al., 2021), denoted as the 2018 SCS

dataset (L1-L8, >1500 m), Which is illustrated by orange dots

in Figure 1.
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2.2 In situ sampling

2.2.1 Primary productivity
PP was determined through on-deck incubation at five light

penetration depths (100%, 56%, 22%, 7%, and 1% of the surface

PAR) at each station (49 samples in the 2019 SCS dataset and 28

samples in the 2018 SCS dataset) (Liao et al., 2021). Seawater

samples were obtained using Niskin bottles connected to a

conductivity-temperature-depth (CTD) device (Seabird SBE 911)

and were obtained in the morning, prefiltered through a 180-µm

mesh to eliminate large zooplankton. These samples were then

transferred to acid-clean polycarbonate bottles (Nalgene, USA),

with two white bottles and one black bottle collected for each layer.

After inoculation with 5-mCi of NaH14CO3, samples were incubated

in duplicate at five light levels and in the dark at in situ temperature

(± 2°C) with a water cooler for 6 h. After incubation, the samples

were filtered onto 25-mm GF/F filters (Whatman, USA), and all

filters were stored at −20°C until analysis. The filters were fumed

with HCl for 12 h to eliminate nonfixed 14C and then immersed in a

5-mL scintillation cocktail (Ultima Gold) in 20-mL scintillation

vials. Radioactivity was measured using a Tri-Carb 2810 TR liquid

scintillation analyzer (Perkin-Elmer, USA) (Knap et al., 1996).

Water samples for dissolved inorganic carbon (DIC) were

preserved with HgCl2 in amber glass bottles and analyzed using

an AS-C3 DIC analyzer (Apollo SciTech, USA) with an infrared

CO2 detector (Li-7000) following the procedure outlined by Cai
Frontiers in Marine Science 03
et al. (Cai et al., 2004). PP was then calculated using Equation 1,

where CPML and CPMD represent the counts per minute for the

white and black vial samples, respectively, CPMadd is the counts per

minute for 14C addition, and T is the incubation time in hours. To

harmonize the units of each variable, PP was converted from mg

C m–3h–1 to mol C m–3h–1.

PP = DIC� (CPML − CPMD)=CPMadd=T (1)
2.2.2 Phytoplankton absorption coefficient
To obtain aph(l), samples were filtered onto GF/F filters

(Whatman, USA), placed in cell dishes, and stored in liquid nitrogen

until the laboratory analysis took place. The absorption spectra of the

particles [ap(l)] were measured using the quantitative filter-pad

technique by the Transmittance mode (i.e., T mode) with a Lambda

650S ultraviolet–visible spectrophotometer at a 1-nm resolution

ranging from 350 to 750 nm (Yentsch, 1962). Before the

measurement, a clean GF/F filter was soaked in a 0.2-µm seawater

filtrate to obtain a blank. After removing the phytoplankton pigments

with methanol, the filters were rescanned to obtain the absorption

spectra of nonalgal particles [ad(l)] (Kishino et al., 1985). The

background signal was corrected by subtracting the absorption

values at 750 nm from the entire spectrum (Bricaud and Stramski,

1990), and the optical path amplification effect was corrected according

to the method of Stramski et al. (Stramski et al., 2015). The obtained

difference between ap(l) and ad(l) was taken to be aph(l).
FIGURE 1

Locations of the 2019 SCS dataset (blue dots) and the 2018 SCS dataset (orange dots).
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2.2.3 Phytoplankton pigments
The quantification of pigments was accomplished using high-

performance liquid chromatography (HPLC), as outlined by Zapata

et al. (Manuel et al., 2000). Following filtration onto Whatman GF/F

filters and subsequent storage in liquid nitrogen, samples were

subjected to an extraction procedure involving 1.5 ml 95%

methanol solution at 4°C for 24 hours. A mixture of 1 ml of extract

and 200 µl ultrapure water was then prepared for measurement. A

Waters 2695 HPLC system was employed, with signals being detected

by a Waters 2998 photodiode array detector. As per the methodology

of Zapata et al. (Manuel et al., 2000), pigments containing

Chlorophyll a, Chlorophyll b, Chlorophyll c1,2,3, Divinyl chlorophyll

a (DVChl a), Divinyl chlorophyll b, Peridinin, Fucoxanthin, Lutein,

Diadinoxanthin, Diatoxanthin, Antheraxanthin, Violaxanthin,

Zeaxanthin, Alloxanthin, 19′-hex-fucoxanthin, 19′-but-fucoxanthin,
Neoxanthin, and b-carotene were analyzed. Quantification was

confirmed by the standards manufactured by the Danish Hydraulic

Institute (DHI) Water and Environment, Hørsholm, Denmark. The

dominant phytoplankton within each sample was determined

through the characteristic pigment approach (Alvain et al., 2005).

To facilitate the analysis of the HPLC pigments in this study, a

grouping system was employed, wherein the pigments were

categorized into Chlorophyll, photosynthetic carotenoids (PSCs),

and photoprotective carotenoids (PPCs) (Frank and Cogdell, 1996;

Dall'Osto et al., 2007; Roy et al., 2011). Specifically, PPCs were

calculated as the sum of Violaxanthin, Diadinoxanthin,

Alloxanthin, Zeaxanthin, Lutein, and b-carotene, whereas PSCs

were calculated as the sum of Peridinin, 19′-but-fucoxanthin, 19′-
hex-fucoxanthin and Fucoxanthin.

2.2.4 PAR and temperature
A Profiler II underwater spectral profiling instrument (Satlantic,

Canada) was used to record the downwelling irradiance [Ed(l,z)] of
the water column profile during free-fall, employing a range of

wavelengths between 350-800 nm and consisting of 136 channels.

The original raw data was calibrated using ProSoft 7.7.1.6 (Satlantic,

Canada), while PAR was determined by integrating the Ed(l,z) within
the 400-700 nm wavelength range. Sampling takes place during clear

and cloudless conditions between 12:00 and 13:00 every day, in sync

with the PP incubation experiment. In Southeast Asia, between 12:00

and 18:00, PAR shows an almost linear decreasing trend (Rundel et al.,

2017; Vongcharoen et al., 2018). Simultaneously, the tropical climate

characteristics of the South China Sea and the duration of the voyage

(5 and 7 days) imply that during these days, the daily sunlight pattern

remains relatively consistent, and the daily PAR changes are relatively

stable. Thus, we simply made this assumption, PAR was multiplied by

3600 to convert its unit from umol m–2s–1 to mol m–2h–1. Here, the

calculated hourly PAR only characterizes the relative trend of PAR

changes, not the actual value of the hourly PAR. Temperature profiles

were established via a CTD device (Seabird SBE 911).
2.3 Basic model

The basic model of the aph(l)-based marine PP algorithm can

be simply expressed as Equation 2 (Barnes et al., 2014):
Frontiers in Marine Science 04
PP = f � aph(l0)� PAR (2)

aph(l0) represents the phytoplankton absorption coefficient at a

particular wavelength (443 nm being the selected wavelength for

this study). PAR is photosynthetic active radiation. The quantum

yield, represented by f is given by the slope, which denotes the

efficiency of photosynthesis in converting absorbed light energy into

organic carbon. Under varying physicochemical conditions or in

distinct marine areas, f may exhibit fluctuations concerning light

intensity, temperature, phytoplankton community structure, and

nutrients (Iluz and Dubinsky, 2013; Zoffoli et al., 2018). If Equation

2 proves to be applicable to the 2019 SCS dataset, the

regionalization of f in the SCS can be established.
2.4 Statistics

The statistical analyses were conducted using OriginPro

(OriginLab Corporation, USA) and Python 3.8.1. A probability

coefficient was employed to assess the statistical significance of the

correlation between two variables, with a p-value threshold of 0.05.

The regression model was evaluated using several statistical metrics,

including the adjusted coefficient of determination (Adj.R2) (a penalty

can be given for adding nonsignificant variables, i.e., adding an

arbitrary variable does not necessarily increase the model fit, and

Adj.R2 can be positive or negative), the mean square difference (MSD),

root mean square difference (RMSD), and the mean absolute

difference (MAD). The standard deviation (s) was used to measure

the dispersion of the data, while bias quantified the difference between

the observed and predicted values. All non-integer values, except for

the p-value were reported to two significant digits. The mathematical

expressions for these statistical metrics are provided below:

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(Yi − yi)
2

n

s
(3)

MSD = o
n
i=1(Yi − yi)

2

n
(4)

MAD = o
n
i=1 yi −m(y)j j

n
(5)

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi −m(y))2

n

s
(6)

Bias = yi − Yi (7)

where n is the number of data values, Yi is the predicted value, yi
is the data value in the set, andm(y) is the average value of the dataset.
2.5 K-fold cross-validation and
in situ data validation

K-fold cross-validation was employed to test the generalisability

of the model (Geisser, 1975), given that the total number of data
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points did not exceed 50. This technique is widely utilized to

evaluate the overall performance of models (Russell, 2010).

Specifically, the dataset was divided into K nearly equal partitions,

where K-1 partitions were employed to construct the model, and the

remaining sample was used for validation. This process was iterated

K times, resulting in K learners, with each fold serving as the

validation data (Fushiki, 2011).

The choice of K is an important consideration, as underfitting

or overfitting of learners can occur with small or large K values,

respectively, which can adversely impact the assessment of general

model performance. Although typical K values range between 5 and

10, researchers have suggested other values as well (Jung, 2018). In

this study, K values were not arbitrarily chosen, rather, the mean

MSD of K learners and the standard deviation of the mean MSD

were evaluated over a range of K values, from 2 to 49. With

increasing K, the standard deviation of the mean MSD increased,

and when K was either less than 10 or greater than 20, the mean

MSD exhibited pronounced fluctuations (Figure 2). Therefore, K

was set to 10, which resulted in a small standard deviation of the

mean MSD and a stable mean MSD across K learners. Accordingly,

a 10-fold cross-validation approach was employed in section 3.2.

In addition, the 2018 SCS dataset was used to validate the

adaptability of the model in the SCS basin waters.
2.6 Sensitivity analysis

The sensitivity of the model was tested using the Monte Carlo

method, a widely adopted statistical technique in simulation studies

(Brewin et al., 2017). In essence, a normal distribution was
Frontiers in Marine Science 05
generated through Monte Carlo simulation, with either aph(443)

or PAR serving as the mean value at any given station. To reflect

measurement error, we introduced errors of 5% for aph(443) and

10% and 20% for PAR, based on empirical measurement

estimations. Subsequently, the Monte Carlo method was

employed to generate numbers, which were then fed into the

model to obtain a new set of data. This new set of data was then

verified as normally distributed, and the standard deviation was

calculated as the index of uncertainty. In alignment with the

methodology of Brewin et al., the minimum number of iterations

required to produce a stable estimate of standard deviation was

determined to be 200 (Brewin et al., 2017).
3 Results

3.1 Model building

Upon applying Equation 2 to the 2019 SCS dataset, PP was

significantly correlated with aph(443)×PAR (Adj.R2=0.55,

p-value <0.01), Nevertheless, a direct linear regression between

aph(443)×PAR and PP suffered from heteroscedasticity. In the 2019

SCS dataset, f was not assumed to be a constant value and thus was

neither parameterized nor treated as an independent variable.

Instead, it was included in the slope (k) of Equation 8.

To raise the accuracy of a predictive model, a logarithmic

transformation of PP and aph(443)×PAR was conducted.

Subsequently, a log-log linear aph(l)-based regression model for

PP (hereafter referred to as the ‘log-log linear PP model’) was built

(Equation 8):
FIGURE 2

Changes in K and corresponding changes in the mean MSD of K learners and the standard deviation of the mean MSD.
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log (PP) = k � log (aph(443)� PAR) + b (8)

Figure 3 presents the values of k (slope) and b (intercept) for the

log-log linear PP model, which demonstrates a greater aptitude for

fitting the data, as indicated by a higher Adj.R2. Moreover, the

residual plot depicted in Figure 3 confirms homoscedasticity as a

defining feature of the model.
3.2 K-fold cross-validation and in situ data
validation in the log-log linear PP model

At K=10, the standard deviation of the mean MSDs is low

(0.13), and the mean MSD derived from cross-validation (0.18)

approximates that of the ‘log-log linear PP model’ (0.17).

Furthermore, the Adj.R2 (0.56) of the relationship between the

measured and predicted values derived from cross-validation is

quite similar to that of the log-log linear PP model (0.64).

Collectively, the results of K-fold cross-validation affirm the

commendable generalisation performance of the log-log linear

PP model.

An Independent dataset of the SCS in 2018 (2018 SCS dataset,

including the in situ aph(443), PAR, and PP) was used to verify our

model. The logarithmic bias between the predicted and measured

PP was approximately 0.077, leading to a deviation of nearly 10% in

PP estimates (Figure 4). These results corroborated the model’s

robustness and effectiveness for data collected in estuarine, coastal,

and offshore areas (2019 SCS dataset) and data collected within the

SCS basin (2018 SCS dataset).
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3.3 Sensitivity analysis of the log-log
linear PP model

The inclusion of a 5% standard deviation of aph(443) caused a

2.9% standard deviation in the predicted PP (Figure 5). Moreover,

the incorporation of 10% and 20% standard deviations of PAR

resulted in 5.1% and 11% standard deviations in the predicted PP,

respectively. This analysis reveals that the log-log linear PP model is

more sensitive to alterations in PAR than to changes in aph(443).
3.4 Identification of dominant
phytoplankton clusters

Phytoplankton groups responded differently to environmental

variables, such as temperature, light, and nutrient availability, due

to their diverse physiological characteristics. Phytoplankton species

vary with depths (e.g., sea surface and maximum chlorophyll depth)

and marine environments. Therefore, the dominant phytoplankton

species were identified to examine their impact on the log-log linear

PP model.

Based on the characteristic pigment approach as defined by

Alvain et al. (2005), five major phytoplankton species were

identified, namely diatoms (Diato), dinoflagellates (Dino),

Prochlorococcus (Pro), haptophytes (Hapto), and Synechococcus-

like cyanobacteria (SLC) (Figure 6). However, the SLC-dominant

and Dino-dominant clusters, consisting of limited sample sizes

(only two and five samples, respectively), are not discussed in

this study.
FIGURE 3

Log-log linear regression of PP and aph(443)×PAR in the euphotic zone for the 2019 SCS dataset. The dark line represents the linear regression, and
the blue band represents the 95% confidence interval. The residual plot is in the bottom-right corner. The equation, number of data points (n) and
some statistical parameters are shown in the upper-left corner.
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FIGURE 5

Results of the sensitivity analysis; orange = input of 5% aph(443) standard deviation, green = input of 10% PAR standard deviation, and purple = input
of 20% PAR standard deviation.
FIGURE 4

Plot of PP obtained from the log-log linear PP model and in situ PP from the 2018 SCS dataset (in log-scale). y = x is represented by the dark line.
The number of data points (n) and some statistical parameters are shown in the upper-left corner.
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4 Discussion

4.1 Bio-optical characteristics of different
dominant phytoplankton clusters

Table 1 lists statistical results for the varied bio-optical

parameters of Diato-, Hapto-, and Pro-dominant phytoplankton

clusters, which exhibit differences in their response to

environmental variables and physiological characteristics.

The Diato-dominant cluster has the largest average aph(443),

average PAR, and average PP values, as well as the largest range of

variable variations. In contrast, the Pro-dominant cluster has a

smaller average PAR value than the Diato-dominant cluster, but the

smallest mean aph(443) value and a limited range of variation,

especially for PP. The Hapto-dominant cluster presents the lowest

average values for PAR and PP, with a mid-range variability. These

distinct bio-optical characteristics of the dominant phytoplankton

clusters are reflected in their different distribution patterns as seen

in Figure 6, which in turn impacts the statistical properties of the

log-log linear PP model. To delve deeper into these effects, a linear

regression was performed for each cluster in Figure 6.

To identify the photophysiological state of the dominant

phytoplankton, we examined their pigment composition.

Pigments play a crucial role in phytoplankton photosynthesis.

Roy et al. illustrated that phytoplankton can modify their pigment

pool which comprises two functional classes: photosynthetic

carotenoids (PSCs) and photoprotective carotenoids (PPCs), in

response to variable light intensities (Roy et al., 2011). PPCs
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primarily dissipate excess light energy in the form of heat and to

protect photosynthetic organs, while PSCs mainly transmit light

energy. According to previous studies (Frank and Cogdell, 1996;

Dall'Osto et al., 2007; Roy et al., 2011), the pigments in this study

were categorized into Chlorophyll, PPC and PSC and subsequently

normalized to TChl a (Table 1).
4.2 Pro-dominant cluster

Figure 6 displays a negative fitting slope for the Pro-dominant

cluster, which contrasts with the fitting slope of the whole dataset.

To understand this phenomenon, we examined the relationships of

aph(443) with PP (in order to estimate the impact of biomass on PP)

and PAR with PP/TChl a (in order to estimate the impact of PAR

on PP. Additionally, to eliminate the impact of biomass on PP, PP

was normalized to TChl a) (Figure 7).

aph(443) does not exhibit a significant relationship with PP (p-

value > 0.05) in Figure 7A. However, the ratio of PP/TChl a decreases

with an increase in PAR (Figure 7B), which is comparable to the

relationship between aph(443)×PAR and PP (Figure 7C).

The Pro-dominant cluster has a significantly higher PPC/TChl

a and a much lower PSC/TChl a than the other two clusters

(Table 1), Since most of the samples within the Pro-dominant

cluster results from the surface and in the upper layer (shallower

than the maximum chlorophyll a layer), the negative correlation

between PAR and PP/TChl a in the Pro-dominant cluster may be

attributed to the photoinhibition of phytoplankton.
FIGURE 6

Different dominant phytoplankton samples are represented by various colours and shapes. Log-log linear regressions of PP and aph(443)×PAR of the
whole dataset and three phytoplankton-dominant clusters in the euphotic zone for the 2019 SCS dataset; black line = whole dataset, blue line =
Diato-dominant cluster, orange line = Hapto-dominant cluster, green line = Pro-dominant cluster. Equations, numbers of data points (n), and some
statistical parameters of Pro-, Hapto- and Diato-dominant clusters are shown in the upper-left corner.
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For Prochlorococcus photosynthesis, Hess et al. suggested that

the optimum irradiance is 200 mmol photons m–2 s–1 for the surface

and 30–50 mmol photons m–2 s–1 for deeper water, respectively

(Hess et al., 2001). However, all of the PAR values in our dataset are

beyond the suggested optimum irradiance for both at the sea surface

and deeper water. Additionally, temperatures in waters with the

Pro-dominant cluster were high (28–29°C). The photoinhibition of

Prochlorococcus is generally more pronounced in high temperature

than in low temperature ranges at the same irradiance (Xiao

et al., 2019).

Ultraviolet light and high light intensity increase the production

of reactive oxygen species, which damages the PSII reaction centre

and antenna complexes (Dring et al., 2001; Van De Poll et al., 2001;
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He and Häder, 2002; Sarvikas et al., 2006; Rastogi et al., 2010; Mella-

Flores et al., 2012). PPC/TChl a in the Pro-dominant cluster does

not exhibit an obvious upward trend with increasing PAR (Figure 8)

likely since that Prochlorococcus has a limited mechanism for

nonphotochemical quenching (NPQ) (Rocap et al., 2003; Xu

et al., 2017; Xu et al., 2018). Moreover, the PSII repair capacity of

Prochlorococcus reaches a maximum of approximately 400 mmol

photons m–2 s–1 (Mella-Flores et al., 2012). Thus, it appears that the

Pro-dominant cluster, when exposed to high light intensity, has a

constrained ability for self-protection and self-repair, making it

more susceptible to photoinhibition.

During photoinhibition, both the quantum efficiency (f) and
the maximum photosynthetic efficiency decrease (Cullen and

Renger, 1979; Powles, 1984; Lesser et al., 1994; Behrenfeld et al.,

1998; Marshall et al., 2000; Andersson and Aro, 2001; Oliver et al.,

2003; Ross et al., 2008). As a consequence, PP values also diminish.
4.3 Hapto-dominant cluster and
Diato-dominant cluster

The significant positive correlations between aph(443) ×PAR

and PP were observed in both Hapto-dominant cluster (Figure 9C)

and Diato-dominant cluster (Figure 10C).

In addition, no significant relationship exists between aph(443)

and PP (p-value>0.05) (Figure 9A), while there is a significant

positive correlation between PAR and PP/TChl a (Figure 9B),

similar to the trend observed between aph(443) ×PAR and PP

(Figure 9C). These results implied that PAR plays a pivotal role in

regulating PP in this cluster. Interestingly, the Hapto-dominant

cluster exhibits a considerably higher level of PSC/TChl a than the

other two clusters (Table 1), indicating that phytoplankton in the

Hapto-dominant cluster may be light-limited. This suggestion is in

agreement with the observation that phytoplankton in this cluster

inhabit deeper regions with low light intensity beneath the mixed

layer. Therefore, the higher PSC/TChl a ratio in the Hapto-dominant

cluster may be an adaptive strategy to enhance its light absorption

and utilization under conditions of limited light availability.

The Diato-dominant cluster displays positive covariance

between aph(443) and PP (Figure 10A), as well as between PAR
A B C

FIGURE 7

Relationships between aph(443) and PP (A), PAR and PP/TChl a (B), and aph(443)×PAR and PP (C) in the euphotic zone for the Pro-dominant cluster
in the 2019 SCS dataset. Colorbar represents depth. Equations and some statistical parameters are also shown.
TABLE 1 Statistical results for the bio-optical parameters of each
dominant phytoplankton cluster.

Diato-
dominant
cluster

Hapto-
dominant
cluster

Pro-domi-
nant
cluster

Average PAR (mol
m–2 h–1)

0.86 0.035 0.79

Range of PAR
(mol m–2 h–1)

[0.0062, 3.8] [0.0019, 0.096] [0.080, 1.9]

Average aph
(443) (m–1)

0.052 0.019 0.0061

Range of aph
(443) (m–1)

[0.011, 0.13] [0.0084, 0.026]
[0.0041,
0.0097]

Average PP
(mol C m–3 h–1)

3.5×10–4 1.4×10–5 4.0×10–5

Range of PP
(mol C m–3 h–1)

[3.6×10–6,
9.4×10–4]

[2.0×10–6,
3.6×10–5]

[1.0×10–5,
5.7×10–5]

Average TChl
a (mg m–3)

1.2 0.40 0.095

Average PPC/TChl
a (mg m–3)

0.20 0.20 0.92

Average PSC/TChl
a (mg m–3)

0.65 0.92 0.34
* TChl a = Chl a+DVChl a; PPC = Violaxanthin+ Diadinoxanthin+ Alloxanthin+
Zeaxanthin+ Lutein+ (b-carotene); PSC = Peridinin+ (19′-but-fucoxanthin)+ (19′-hex-
fucoxanthin)+ Fucoxanthin.
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and PP/TChl a (Figure 10B). These relationships are consistent with

the significant correlation observed between aph(443) ×PAR and

PP (Figure 10C).

Phytoplankton within the Diato-dominant cluster mainly

appeared at both the surface and in deeper water layers in coastal

and estuarine areas. The level of the PPC/TChl a of the Diato-

dominant cluster is similar to that of the Hapto-dominant cluster,

but higher than that of PSC/TChl a. It is reasonable to infer that

most samples in the Diato-dominant cluster are also in a light-

limited stage, with several diatom-dominated samples appearing to

be light-saturated. Remarkably, despite some samples in the Diato-

dominant cluster being subjected to much stronger light intensities

than those in the Pro-dominant cluster, photoinhibition does not
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occur in this cluster. Unlike the Pro-dominant cluster, the PPC/

TChla of the Diato-dominant cluster increases significantly with the

enhancement of light intensity (Figure 11), which likely protects it

from the damage caused by photoinhibition. Furthermore, the

mechanism of small photoregulation movements, the xanthophyll

cycle and non-photochemical quenching (NPQ) may also safeguard

diatoms from high light intensity to some extent (Prins et al., 2020).
5 Conclusions

A log-log linear primary production (PP) model based on the

regional phytoplankton absorption coefficient [aph(l)] was
A B C

FIGURE 9

Relationships between aph(443) and PP (A), PAR and PP/TChl a (B), and aph(443)×PAR and PP (C) in the euphotic zone for the Hapto-dominant
cluster in the 2019 SCS dataset. Colorbar represents depth. Equations and some statistical parameters are also shown.
FIGURE 8

Relationships between PAR and PPC/TChl a, PAR and PSC/TChl a in the euphotic zone for the Pro-dominant cluster in the 2019 SCS dataset. Linear
regression for PAR and PSC/TChl a (purple dotted line) and linear regression for PAR and PPC/TChl a (green line). Equations and some statistical
parameters are also shown (green text for green line, purple text for purple dotted line).
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developed for the South China Sea (SCS), using an in situ dataset

complied from the observation data collected in 2019. The

predictive capacity of the model was evaluated by statistical

analysis, K-fold cross validation, and in situ data validation,

indicating that it can well predict PP across marine environment,

ranging from estuarine to offshore and basin. The model’s response

is more sensitive to changes in photosynthetically active radiation

(PAR) than to changes in aph(443).

To account for the bio-optical characteristics of different

dominant phytoplankton in the SCS, the dataset was divided into

five dominant phytoplankton clusters. The study analyzed the
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effects of environmental variables and physiological characteristics

on the log-log linear PP model for the Diato-dominant, Hapto-

dominant, and Pro-dominant clusters. The Diato-dominant and the

Hapto-dominant clusters are mostly in the light-limited stage.

Although some samples in the Diato-dominant clusters were

exposed to extremely high light intensity, diatoms have efficient

pigment regulation mechanisms and other ways to adapt to high

light intensity. The Hapto-dominant cluster appeared below the

mixed layer, where light is undersaturation. As a result, an increase

in light levels, as indicated by aph(443)×PAR, leads to a

corresponding increase in PP for both clusters. In contrast, the
FIGURE 11

Relationships between PAR and PPC/TChl a and between PAR and PSC/TChl a in the euphotic zone for the Diato-dominant cluster in the 2019 SCS
dataset. Linear regression for PAR and PSC/TChl a (purple dotted line) and log regression for PAR and PPC/TChl a (blue line). Equations and some
statistical parameters are also shown (blue text for blue line, purple text for purple dotted line).
A B C

FIGURE 10

Relationships between aph(443) and PP (A), PAR and PP/TChl a (B), and aph(443)×PAR and PP (C) in the euphotic zone for the Diato-dominant
cluster in the 2019 SCS dataset. Colorbar represents depth. Equations and some statistical parameters are also shown.
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Pro-dominant cluster exhibited an opposite trend, suggesting that

this cluster undergoes photoinhibition due to samples exposure to

extremely high l ight intensi ty and the lack of se l f -

protection mechanism.

Therefore, the accuracy of the log-log linear PP model depends

on the photo-physiological state of the phytoplankton. In natural

marine environment, dominant phytoplankton assemblages may be

in different physiological states, varying from light inhibition to

light limitation simultaneously. Large-scale photoinhibition may

lead to inaccurate PP predictions. However, if phytoplankton are

light-limited, the log-log linear PP model can well predict PP. Our

findings provide insights into the establishment of phytoplankton-

specific primary productivity models in marine environments.
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Ciotti, Á. M., Lewis, M. R., and Cullen, J. J. (2002). Assessment of the relationships
between dominant cell size in natural phytoplankton communities and the spectral
shape of the absorption coefficient. Limnol. Oceanogr. 47 (2), 404–417. doi: 10.4319/
lo.2002.47.2.0404

Claustre, H., Babin, M., Merien, D., Ras, J., Prieur, L., Dallot, S., et al. (2005). Toward a
taxon-specific parameterization of bio-optical models of primary production: A case study
in the North Atlantic. J. Geophys. Res.: Oceans 110 (C7). doi: 10.1029/2004JC002634

Cloern, J. E., Foster, S., and Kleckner, A. (2014). Phytoplankton primary production
in the world's estuarine-coastal ecosystems. Biogeosciences 11 (9), 2477–2501.
doi: 10.5194/bg-11-2477-2014

Cullen, J. J., and Renger, E. H. (1979). Continuous measurement of the DCMU-
induced fluorescence response of natural phytoplankton populations.Mar. Biol. 53 (1),
13–20. doi: 10.1007/BF00386524

Curran, K., Brewin, R. J. W., Tilstone, G. H., Bouman, H. A., and Hickman, A.
(2018). Estimation of size-fractionated primary production from satellite ocean colour
in UK shelf seas. Remote Sens. 10 (9). doi: 10.3390/rs10091389

Dall'Osto, L., Cazzaniga, S., North, H., Marion-Poll, A., and Bassi, R. (2007). The
Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection
against Photooxidative Stress. Plant Cell 19 (3), 1048–1064. doi: 10.1105/
tpc.106.049114

Dring, M. J., Wagner, A., and Lüning, K. (2001). Contribution of the UV component
of natural sunlight to photoinhibition of photosynthesis in six species of subtidal brown
and red seaweeds. Plant Cell Environ. 24 (11), 1153–1164. doi: 10.1046/j.1365-
3040.2001.00765.x

Eppley, R. W., Stewart, E., Abbott, M. R., and Heyman, U. (1985). Estimating ocean
primary production from satellite chlorophyll. Introduction to regional differences and
statistics for the Southern California Bight. J. Plankton Res. 7 (1), 57–70. doi: 10.1093/
plankt/7.1.57

Falkowski, P. G., Barber, R. T., and Smetacek, V. (1998). Biogeochemical controls
and feedbacks on ocean primary production. Science 281 (5374), 200–206. doi: 10.1126/
science.281.5374.200

Frank, H. A., and Cogdell, R. J. (1996). Carotenoids in photosynthesis. Photochem.
Photobiol. 63 (3), 257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x

Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation.
Stat. Comput. 21 (2), 137–146. doi: 10.1007/s11222-009-9153-8

Geisser, S. (1975). The predictive sample reuse method with applications. J. Am. Stat.
Assoc. 70 (350), 320–328. doi: 10.1080/01621459.1975.10479865

He, Y.-Y., and Häder, D.-P. (2002). Reactive oxygen species and UV-B: effect on
cyanobacteria. Photochem. Photobiol. Sci. 1 (10), 729–736. doi: 10.1039/B110365M

Hemsley, V. S., Smyth, T. J., Martin, A. P., Frajka-Williams, E., Thompson, A. F.,
Damerell, G., et al. (2015). Estimating oceanic primary production using vertical
irradiance and chlorophyll profiles from ocean gliders in the North Atlantic. Environ.
Sci. Technol. 49 (19), 11612–11621. doi: 10.1021/acs.est.5b00608

Hess, W. R., Rocap, G., Ting, C. S., Larimer, F., Stilwagen, S., Lamerdin, J., et al.
(2001). The photosynthetic apparatus of Prochlorococcus: Insights through
comparative genomics. Photosynth. Res. 70 (1), 53–71. doi: 10.1023/A:1013835924610

Hilker, T., Coops, N. C., Wulder, M. A., Black, T. A., and Guy, R. D. (2008). The use
of remote sensing in light use efficiency based models of gross primary production: A
review of current status and future requirements. Sci. Total Environ. 404 (2), 411–423.
doi: 10.1016/j.scitotenv.2007.11.007

Hirata, T., Hardman-Mountford, N. J., Barlow, R., Lamont, T., Brewin, R., Smyth, T.,
et al. (2009). An inherent optical property approach to the estimation of size-specific
photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour:
An initial assessment. Prog. Oceanogr. 83 (1), 393–397. doi: 10.1016/
j.pocean.2009.07.019

Hirawake, T., Takao, S., Horimoto, N., Ishimaru, T., Yamaguchi, Y., and Fukuchi, M.
(2011). A phytoplankton absorption-based primary productivity model for remote
sensing in the Southern Ocean. Polar Biol. 34 (2), 291–302. doi: 10.1007/s00300-010-
0949-y

Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., and Claustre, H.
(2007). Relationship between photosynthetic parameters and different proxies of
phytoplankton biomass in the subtropical ocean. Biogeosciences 4 (5), 853–868.
doi: 10.5194/bg-4-853-2007

Iluz, D., and Dubinsky, Z. (2013). “Quantum yields in aquatic photosynthesis,” in
Photosynthesis (Intech Rijeka), 135–158.
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(2012). Prochlorococcus and synechococcus have evolved different adaptive
mechanisms to cope with light and UV stress. Front. Microbiol. 3. doi: 10.3389/
fmicb.2012.00285

Moore, T. S., Campbell, J. W., and Dowell, M. D. (2009). A class-based approach to
characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product.
Remote Sens. Environ. 113 (11), 2424–2430. doi: 10.1016/j.rse.2009.07.016

Morel, A., and Maritorena, S. (2001). Bio-optical properties of oceanic waters: A
reappraisal. J. Geophys. Res.: Oceans 106 (C4), 7163–7180. doi: 10.1029/2000JC000319

Nielsen, E. S. (1952). Use of radio-active carbon (/sup 14/C) for measuring organic
production in the sea. ICES J. Mar. Sci. 18, 2. doi: 10.1093/icesjms/18.2.117

Oliver, M. J., Schofield, O., Bergmann, T., Glenn, S., Orrico, C., and Moline, M.
(2004). Deriving in situ phytoplankton absorption for bio-optical productivity
models in turbid waters. J. Geophys. Res.: Oceans 109 (C7). doi: 10.1029/
2002JC001627

Oliver, R. L., Whittington, J., Lorenz, Z., and Webster, I. T. (2003). The influence of
vertical mixing on the photoinhibition of variable chlorophyll a fluorescence and its
inclusion in a model of phytoplankton photosynthesis. J. Plankton Res. 25 (9), 1107–
1129. doi: 10.1093/plankt/25.9.1107

Ondrusek, M. E., Bidigare, R. R., Waters, K., and Karl, D. M. (2001). A predictive
model for estimating rates of primary production in the subtropical North Pacific
Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 48 (8), 1837–1863. doi: 10.1016/
S0967-0645(00)00163-6

Platt, T., and Sathyendranath, S. (1988). Oceanic primary production: estimation by
remote sensing at local and regional scales. Science 241 (4873), 1613–1620.
doi: 10.1126/science.241.4873.1613

Platt, T., and Sathyendranath, S. (1993). Estimators of primary production for
interpretation of remotely sensed data on ocean color. J. Geophys. Res.: Oceans 98 (C8),
14561–14576. doi: 10.1029/93JC01001

Platt, T., Sathyendranath, S., Forget, M.-H., White, G. N., Caverhill, C., Bouman, H.,
et al. (2008). Operational estimation of primary production at large geographical scales.
Remote Sens. Environ. 112 (8), 3437–3448. doi: 10.1016/j.rse.2007.11.018

Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light.
Annu. Rev. Plant Physiol. 35 (1), 15–44. doi: 10.1146/annurev.pp.35.060184.000311

Prins, A., Deleris, P., Hubas, C., and Jesus, B. (2020). Effect of light intensity and light
quality on diatom behavioral and physiological photoprotection. Front. Mar. Sci. 7.
doi: 10.3389/fmars.2020.00203

Rastogi, R. P., Singh, S. P., Häder, D.-P., and Sinha, R. P. (2010). Detection of reactive
oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein
diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res.
Commun. 397 (3), 603–607. doi: 10.1016/j.bbrc.2010.06.006

Robinson, C. M., Cherukuru, N., Hardman-Mountford, N. J., Everett, J. D.,
McLaughlin, M. J., Davies, K. P., et al. (2017). Phytoplankton absorption predicts
patterns in primary productivity in Australian coastal shelf waters. Estuarine Coast.
Shelf Sci. 192, 1–16. doi: 10.1016/j.ecss.2017.04.012

Rocap, G., Larimer, F. W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N. A., et al.
(2003). Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche
differentiation. Nature 424 (6952), 1042–1047. doi: 10.1038/nature01947

Ross, O. N., Moore, C. M., Suggett, D. J., MacIntyre, H. L., and Geider, R. J. (2008). A
model of photosynthesis and photo-protection based on reaction center damage and
repair. Limnol. Oceanogr. 53 (5), 1835–1852. doi: 10.4319/lo.2008.53.5.1835
frontiersin.org

https://doi.org/10.4319/lo.2002.47.2.0404
https://doi.org/10.4319/lo.2002.47.2.0404
https://doi.org/10.1029/2004JC002634
https://doi.org/10.5194/bg-11-2477-2014
https://doi.org/10.1007/BF00386524
https://doi.org/10.3390/rs10091389
https://doi.org/10.1105/tpc.106.049114
https://doi.org/10.1105/tpc.106.049114
https://doi.org/10.1046/j.1365-3040.2001.00765.x
https://doi.org/10.1046/j.1365-3040.2001.00765.x
https://doi.org/10.1093/plankt/7.1.57
https://doi.org/10.1093/plankt/7.1.57
https://doi.org/10.1126/science.281.5374.200
https://doi.org/10.1126/science.281.5374.200
https://doi.org/10.1111/j.1751-1097.1996.tb03022.x
https://doi.org/10.1007/s11222-009-9153-8
https://doi.org/10.1080/01621459.1975.10479865
https://doi.org/10.1039/B110365M
https://doi.org/10.1021/acs.est.5b00608
https://doi.org/10.1023/A:1013835924610
https://doi.org/10.1016/j.scitotenv.2007.11.007
https://doi.org/10.1016/j.pocean.2009.07.019
https://doi.org/10.1016/j.pocean.2009.07.019
https://doi.org/10.1007/s00300-010-0949-y
https://doi.org/10.1007/s00300-010-0949-y
https://doi.org/10.5194/bg-4-853-2007
https://doi.org/10.1007/BF00239714
https://doi.org/10.1080/10485252.2017.1404598
https://doi.org/10.1002/2016GB005582
https://doi.org/10.1007/s10872-005-0074-7
https://doi.org/10.4319/lo.1983.28.4.0770
https://doi.org/10.013/epic.27912
https://doi.org/10.1364/AO.41.005755
https://doi.org/10.1364/AO.35.000463
https://doi.org/10.1111/j.0022-3646.1994.00183.x
https://doi.org/10.1029/2020JC016986
https://doi.org/10.3354/meps195029
https://doi.org/10.1016/j.dsr.2006.12.001
https://doi.org/10.1046/j.1469-8137.2000.00575.x
https://doi.org/10.3389/fmicb.2012.00285
https://doi.org/10.3389/fmicb.2012.00285
https://doi.org/10.1016/j.rse.2009.07.016
https://doi.org/10.1029/2000JC000319
https://doi.org/10.1093/icesjms/18.2.117
https://doi.org/10.1029/2002JC001627
https://doi.org/10.1029/2002JC001627
https://doi.org/10.1093/plankt/25.9.1107
https://doi.org/10.1016/S0967-0645(00)00163-6
https://doi.org/10.1016/S0967-0645(00)00163-6
https://doi.org/10.1126/science.241.4873.1613
https://doi.org/10.1029/93JC01001
https://doi.org/10.1016/j.rse.2007.11.018
https://doi.org/10.1146/annurev.pp.35.060184.000311
https://doi.org/10.3389/fmars.2020.00203
https://doi.org/10.1016/j.bbrc.2010.06.006
https://doi.org/10.1016/j.ecss.2017.04.012
https://doi.org/10.1038/nature01947
https://doi.org/10.4319/lo.2008.53.5.1835
https://doi.org/10.3389/fmars.2023.1249802
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2023.1249802
Roy, S., Llewellyn, C. A., Egeland, E. S., and Johnsen, G. (2011). Phytoplankton
pigments: characterization, chemotaxonomy and applications in oceanography
(Cambridge: Cambridge University Press).

Rundel, P. W., Boonpragob, K., and Patterson, M. (2017). Seasonal water relations
and leaf temperature in a deciduous dipterocarp forest in Northeastern Thailand.
Forests 8 (10), 368. doi: 10.3390/f8100368

Russell, S. J. (2010). Artificial intelligence a modern approach (New Jersey: Pearson
Education, Inc).

Saba, V. S., Friedrichs, M. A. M., Carr, M.-E., Antoine, D., Armstrong, R. A.,
Asanuma, I., et al. (2010). Challenges of modeling depth-integrated marine primary
productivity over multiple decades: A case study at BATS and HOT. Global
Biogeochem. Cycles 24 (3). doi: 10.1029/2009GB003655

Sarvikas, P., Hakala, M., Pätsikkä, E., Tyystjärvi, T., and Tyystjärvi, E. (2006). Action
Spectrum of Photoinhibition in Leaves of Wild Type and npq1-2 and npq4-1 Mutants
of Arabidopsis thaliana. Plant Cell Physiol. 47 (3), 391–400. doi: 10.1093/pcp/pcj006

Sauer, M. J., Roesler, C. S., Werdell, P. J., and Barnard, A. (2012). Under the hood of
satellite empirical chlorophyll a algorithms: revealing the dependencies of maximum
band ratio algorithms on inherent optical properties. Optics Express 20 (19), 20920–
20933. doi: 10.1364/OE.20.020920

Setiawan, R. Y., and Habibi, A. (2011). Satellite detection of summer chlorophyll-a
bloom in the Gulf of Tomini. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 4
(4), 944–948. doi: 10.1109/JSTARS.2011.2163926

Setiawan, R. Y., and Kawamura, H. (2011). Summertime phytoplankton bloom in the
South Sulawesi Sea. IEEE J. Selected Topics Appl. Earth Observ. Remote Sens. 4 (1), 241–
244. doi: 10.1109/JSTARS.2010.2094604

Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., and Westberry, T. K.
(2016). The CAFE model: A net production model for global ocean phytoplankton.
Global Biogeochem. Cycles 30 (12), 1756–1777. doi: 10.1002/2016GB005521

Stramski, D., Reynolds, R. A., Kaczmarek, S., Uitz, J., and Zheng, G. (2015).
Correction of pathlength amplification in the filter-pad technique for measurements
of particulate absorption coefficient in the visible spectral region. Appl. Optics 54 (22),
6763–6782. doi: 10.1364/AO.54.006763

Uitz, J., Claustre, H., Gentili, B., and Stramski, D. (2010). Phytoplankton class-specific
primary production in the world's oceans: Seasonal and interannual variability from
satellite observations. Global Biogeochem. Cycles 24 (3). doi: 10.1029/2009GB003680
Frontiers in Marine Science 14
Uitz, J., Stramski, D., Reynolds, R. A., and Dubranna, J. (2015). Assessing
phytoplankton community composition from hyperspectral measurements of
phytoplankton absorption coefficient and remote-sensing reflectance in open-ocean
environments. Remote Sens. Environ. 171, 58–74. doi: 10.1016/j.rse.2015.09.027

Van De Poll, W. H., Eggert, A., Buma, A. G. J., and Breeman, A. M. (2001). Effects of
Uv-B-induced Dna damage and photoinhibition on growth of temperate marine red
macrophytes: habitat-related differences in Uv-B tolerance. J. Phycol. 37 (1), 30–38.
doi: 10.1046/j.1529-8817.2001.037001030.x

Vongcharoen, K., Santanoo, S., Banterng, P., Jogloy, S., Vorasoot, N., and
Theerakulpisut, P. (2018). Seasonal variation in photosynthesis performance of
cassava at two different growth stages under irrigated and rain-fed conditions in a
tropical savanna climate. Photosynthetica 56 (4), 1398–1413. doi: 10.1007/s11099-018-
0849-x

Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. E., et al.
(2013). Generalized ocean color inversion model for retrieving marine inherent optical
properties. Appl. Optics 52 (10), 2019–2037. doi: 10.1364/AO.52.002019

Westberry, T., Behrenfeld, M. J., Siegel, D. A., and Boss, E. (2008). Carbon-based
primary productivity modeling with vertically resolved photoacclimation. Global
Biogeochem. Cycles 22 (2). doi: 10.1029/2007GB003078

Xiao, W., Laws, E. A., Xie, Y., Wang, L., Liu, X., Chen, J., et al. (2019). Responses
of marine phytoplankton communities to environmental changes: New insights from
a niche classification scheme. Water Res. 166, 115070. doi: 10.1016/j.watres.2019.
115070

Xu, K., Grant-Burt, J. L., Donaher, N., and Campbell, D. A. (2017). Connectivity
among Photosystem II centers in phytoplankters: Patterns and responses. Biochim.
Biophys. Acta (BBA) - Bioenerget. 1858 (6), 459–474. doi: 10.1016/j.bbabio.2017.03.003

Xu, K., Lavaud, J., Perkins, R., Austen, E., Bonnanfant, M., and Campbell, D. A.
(2018). Phytoplankton sPSII and excitation dissipation; implications for estimates of
primary productivity. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00281

Yentsch, C. S. (1962). Measurement of visible light absorption by particulate matter
in the Ocean1. Limnol. Oceanogr. 7 (2), 207–217. doi: 10.4319/lo.1962.7.2.0207

Zoffoli, M. L., Lee, Z., and Marra, J. F. (2018). Regionalization and dynamic
parameterization of quantum yield of photosynthesis to improve the ocean primary
production estimates from remote sensing. Front. Mar. Sci. 5. doi: 10.3389/
fmars.2018.00446
frontiersin.org

https://doi.org/10.3390/f8100368
https://doi.org/10.1029/2009GB003655
https://doi.org/10.1093/pcp/pcj006
https://doi.org/10.1364/OE.20.020920
https://doi.org/10.1109/JSTARS.2011.2163926
https://doi.org/10.1109/JSTARS.2010.2094604
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1364/AO.54.006763
https://doi.org/10.1029/2009GB003680
https://doi.org/10.1016/j.rse.2015.09.027
https://doi.org/10.1046/j.1529-8817.2001.037001030.x
https://doi.org/10.1007/s11099-018-0849-x
https://doi.org/10.1007/s11099-018-0849-x
https://doi.org/10.1364/AO.52.002019
https://doi.org/10.1029/2007GB003078
https://doi.org/10.1016/j.watres.2019.115070
https://doi.org/10.1016/j.watres.2019.115070
https://doi.org/10.1016/j.bbabio.2017.03.003
https://doi.org/10.3389/fmars.2018.00281
https://doi.org/10.4319/lo.1962.7.2.0207
https://doi.org/10.3389/fmars.2018.00446
https://doi.org/10.3389/fmars.2018.00446
https://doi.org/10.3389/fmars.2023.1249802
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Estimation of primary production from the light absorption of phytoplankton and photosynthetically active radiation in the South China Sea
	1 Introduction
	2 Materials and methods
	2.1 Sampling site
	2.2 In situ sampling
	2.2.1 Primary productivity
	2.2.2 Phytoplankton absorption coefficient
	2.2.3 Phytoplankton pigments
	2.2.4 PAR and temperature

	2.3 Basic model
	2.4 Statistics
	2.5 K-fold cross-validation and in situ data validation
	2.6 Sensitivity analysis

	3 Results
	3.1 Model building
	3.2 K-fold cross-validation and in situ data validation in the log-log linear PP model
	3.3 Sensitivity analysis of the log-log linear PP model
	3.4 Identification of dominant phytoplankton clusters

	4 Discussion
	4.1 Bio-optical characteristics of different dominant phytoplankton clusters
	4.2 Pro-dominant cluster
	4.3 Hapto-dominant cluster and Diato-dominant cluster

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References


