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Low-illumination underwater
image enhancement based on
non-uniform illumination
correction and adaptive
artifact elimination

Yu Ning, Yong-Ping Jin, You-Duo Peng* and Jian Yan

National-Local Joint Engineering Laboratory of Marine Mineral Resources Exploration Equipment and
Safety Technology, Hunan University of Science and Technology, Xiangtan, Hunan, China
High-quality underwater images are used to extract information for a variety of

purposes, including habitat characterization, species monitoring, and behavioral

analysis. However, due to the limitation of non-uniform illumination

environment and equipment, these images often have the problem of local

over- or underexposure due to non-uniform illumination. Conventional

methods cannot fully correct for this, and the dark area artifacts generated in

the process of enhancing a low-light image cannot be readily fixed. Therefore,

we describe a low-illumination underwater image enhancement method based

on non-uniform illumination correction and adaptive artifact elimination. First, to

eliminate the influence of non-uniform illumination on underwater images, an

illumination equalization algorithm based on non-linear guided filtering corrects

the non-uniform bright and dark regions of underwater images, and the dark

channel prior algorithm and contrast-limited adaptive histogram equalization

algorithm are introduced to prevent excessive enhancement of images and

generation of dark regions. Then, in order to adaptively eliminate the dark area

artifacts generated during the enhancement process, an adaptive multi-scale

Retinex color fidelity algorithm with color restore is proposed to improve the

color of the image and adaptively eliminate the dark area artifacts of the image.

Then, the gray world white balance algorithm is used to adjust the color

distortion caused by the attenuation of light. Finally, a multi-scale Retinex

model parameter estimation algorithm is proposed to obtain the illumination

component and reflection component of the image, and then, the enhanced

image is obtained according to the Retinex model. The results show that the

proposed method is superior to other algorithms regarding contrast, color

restoration, and comprehensive effect, and improves low-illumination image

enhancement technology.

KEYWORDS

underwater image enhancement, non-uniform illumination, artifact, guided filtering,
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1 Introduction

With the rapid development of economy and society, the

demand for resources is becoming more and more vigorous, and

the increasing consumption of land resources has forced people to

turn their attention to the ocean. Therefore, the development and

utilization of marine resources has become a common concern of

the international community. Underwater images are an important

source for people to obtain marine information from the outside

world, and high-quality underwater images are the key to the

development and utilization of marine resources (Li et al., 2023).

Due to the limitations of the environment and equipment, people

tend to use extremely bright artificial light or take underwater

images in extremely dark environments, which will lead to the

problem of local over- or underexposure of the captured images,

especially for the deep seabed. Water and suspended particles have

absorption and scattering effects on light, making underwater

images obtained under uneven ambient light often less ideal (Yu

et al., 2022). In conventional methods, low-light images are often

considered, and the overall contrast of this image is low. However,

for underwater images taken in uneven lighting environment,

especially the halo artifacts produced in the process of enhancing

low-light images, conventional methods often cannot fully deal with

them, which leads to problems such as unnatural colors and loss of

detailed information in the enhanced underwater images, which

seriously hinder people’s information recognition of regions of

interest (Ning et al., 2023). Therefore, how to enhance the dark

area of the non-uniform low-light underwater image and suppress

the overexposed bright area, and improve the global contrast of the

image have become the focus of underwater image enhancement.

The research on this enhancement technology has wide application

value and theoretical significance. It can complete tasks such as

target detection, underwater scientific research, and hydrological

data measurement in a non-uniform low-light marine environment,

which greatly improves the efficiency of marine resource

development and utilization and provides a theoretical reference

for low-light image enhancement technology.

At present, many scholars have carried out research on low-

light underwater image enhancement methods. Among them, the

simplest and most intuitive method is histogram equalization (HE)

(Dhal et al., 2021). This method can evenly distribute the pixels of

the image, expand the dynamic range of the image pixels, and

improve the contrast of the low-light image. Based on this technical

principle, many scholars have extended it, such as CLAHE, AEPHE,

ESIHE, DHE (Abdullah-Al-Wadud et al., 2007), and CLDQHE

(Huang et al., 2021). Although these methods improve the contrast

of low-light images, they do not pay attention to the actual

illumination conditions. At the same time, more noise is

introduced in the process of improving the contrast of low-light

images. The second is a low-light image enhancement method

based on image fusion. Commonly, there are non-linear

transformation methods based on image pixel-level operations.

This method often needs to rely on non-linear transformation

functions. Common non-linear transformation functions include

gamma correction, S-type transfer function, and logarithmic

transfer function. Huang et al. (2016) proposed an adaptive
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gamma correction (AGCCH) algorithm based on cumulative

histogram. The author incorporated the cumulative histogram or

cumulative sub-histogram into the weighted distribution to

improve the contrast of local pixels. This method performs well

in brightness enhancement and detail retention. Srinivas and

Bhandari (2020) proposed a low-light image enhancement

algorithm with adaptive S-shaped transfer function. The author

combined the adaptive S-shaped transfer function (ASTF) with the

Laplace operator to obtain color and contrast-enhanced images.

Huang et al. (2012) used gamma correction and redistribution of

brightness pixels to improve the brightness of low-illumination

images. This method can effectively enhance the contrast of the

image and reduce the complexity of calculation. Kansal and

Tripathi (2019) combined adaptive gamma correction with

discrete cosine transform (DCT) to enhance the contrast of the

image. Ying et al. (2017) proposed a multi-exposure fusion

algorithm based on the human visual system (HVS). The author

synthesized the multi-exposure image through the camera response

model and fused the input image and the synthesized image

through the weight matrix to get the enhancement result. This

method can avoid over-enhancement of the image. Fu et al. (2016)

proposed a fusion-based image enhancement algorithm in weak

light. The author combined different technical advantages to adjust

the illumination components of the image and compensated the

adjusted illumination to the reflectivity to obtain an enhanced

image. This method can adapt to different lighting environments.

This kind of image enhancement method mainly performs pixel-

level operations on low-light images and has achieved certain

results. However, the parameters of the non-linear transformation

function are difficult to determine, which makes the enhancement

effect uneven. In practical applications, the fusion-based method is

often limited due to the lack of fusion sources. The third method is

low-light image enhancement based on Retinex model (Land,

1986). Retinex theory is a color perception model based on

human vision. It regards an image as composed of illumination

component and reflection component, in which the illumination

component represents the gap between low light and normal light,

and the reflection component is an inherent property of an object,

which does not change with the change in lighting conditions and

has color constancy. Therefore, the enhancement of low-light

images can be achieved by estimating the illumination

components of Retinex model. Compared with other methods,

Retinex-based algorithms have better effects in enhancing low-

light images, including classic single-scale Retinex (SSR) (Jobson

et al., 1997a) algorithm and multi-scale Retinex (MSR) (Jobson

et al., 1997b) algorithm. The classic Retinex algorithm often

considers the use of surround function for illumination

estimation, but it is difficult to have a good compromise between

dynamic range compression and color constancy in this way, and it

will also introduce halo artifacts into the enhanced image. In order

to solve these problems, many scholars have improved the Retinex

theory, mainly improving the illumination map and reflection map

of Retinex model. Fu et al. (2015) proposed an illumination and

reflection component estimation algorithm based on linear domain.

The author uses the linear domain model to represent the prior

information so that the estimated illumination and reflection
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components have better performance, and the enhanced low-light

image has a visually pleasing effect. Huang et al. (2018) proposed an

image enhancement algorithm based on reflectivity-based small-

frame regularization. This method can estimate the illumination

and reflectivity while maintaining the image details and has the

advantages of detail preservation and contrast enhancement. Li

et al. (2018) proposed a robust Retinex model. In this model, the

author considers the influence of noise and improves the robustness

of the model. Hao et al. (2020) proposed a low-light image

enhancement method based on semi-decoupled decomposition.

The author realized Retinex image decomposition in an effective

semi-decoupled way, which eliminated the noise of the image,

improved the visibility of the image, and maintained its visual

naturalness. However, these methods enhance low-light images by

eliminating illumination, resulting in the loss of image information,

and inefficient image decomposition will introduce various dark

area artifacts into the enhanced image.

The above research is mainly applied to the low light

environment on land and has achieved certain results. However,

the underwater environment is complex, water and suspended

particles have absorption and scattering effects on light, and

images taken in non-uniform illumination environments often

have local overexposure or insufficient exposure. Especially in the

process of enhancing low-light images, halo artifacts will be

generated, resulting in unnatural image color and information

loss. Therefore, a low-il lumination underwater image

enhancement method based on non-uniform illumination

correction and adaptive artifact elimination is proposed. It is

mainly composed of non-uniform illumination correction

module, adaptive artifact elimination module, and multi-scale

fusion module. First, in order to eliminate the influence of non-

uniform illumination on underwater images, a non-linear guided

filtering illumination equalization algorithm is designed to correct

the non-uniform bright and dark areas of underwater images, and

the dark channel prior theory and contrast-limited adaptive

histogram equalization (CLAHE) algorithm are introduced to

prevent the over-enhancement of images and the generation of

dark areas. Then, aiming at the halo artifacts easily produced in the

enhancement process, an adaptive multi-scale Retinex color fidelity

algorithm with color restore (MSRCR) is proposed to improve the

color of the image, and then, the gray world white balance algorithm

is used to adjust the color distortion caused by the attenuation of

light. Finally, we propose a multi-scale Retinex model parameter

estimation algorithm to estimate the illumination component and

reflection component and then obtain the enhanced underwater

image according to Retinex model. The main contributions of this

paper are summarized as follows:
Fron
(1) A low-illumination underwater image enhancement

method based on non-uniform illumination correction

and adaptive artifact elimination is proposed. It can

effectively correct the influence of non-uniform low

illumination on underwater images and eliminate halo

artifacts of underwater images, which can provide
tiers in Marine Science 03
theoretical reference for low-illumination image

enhancement technology.

(2) A non-linear guided filtering illumination equalization

algorithm is designed to correct the non-uniform bright

and dark regions of the underwater image so that the

processed image pixel distribution has a wider dynamic

range, and the overall brightness and contrast of the image

are greatly improved.

(3) An adaptive MSRCR color fidelity algorithm is proposed to

improve the color of the image and ensure that the image

will not appear artifacts and color distortion.

(4) A multi-scale Retinex model parameter estimation

algorithm is proposed to accurately estimate the

illumination component and the reflection component.

The corrected illumination component eliminates the

influence of non-uniform illumination to a certain extent,

and the corrected reflection component retains more color

information.
The structure of this paper is as follows: in Section 2, the main

ideas and theoretical basis of our proposed method are elaborated in

detail. In Section 3, the research results are analyzed and discussed

from three aspects: qualitative, quantitative, and application test. In

Section 4, the work of this paper is summarized.
2 Model and methods

The low-illumination underwater image enhancement method

proposed in this paper is mainly composed of non-uniform

illumination correction, artifact adaptive elimination, and multi-scale

image fusion module. In the non-uniform illumination correction

module, an illumination equalization algorithm based on non-linear

guided filtering is designed to correct the non-uniform bright and dark

regions of the image, and the dark channel prior theory and CLAHE

algorithm are introduced to prevent the over-enhancement and dark

region generation of low-illumination underwater images. In the

artifact adaptive elimination module, an adaptive MSRCR color

fidelity algorithm is proposed to improve the color of the image, and

then, the gray world white balance algorithm is used to adjust the image

color distortion caused by light attenuation. In the multi-scale image

fusion module, a multi-scale Retinex model parameter estimation

algorithm is proposed to obtain the illumination component and the

reflection component. It is divided into two parts. The first part is to

obtain the corrected illumination component by multi-scale fusion of

the images processed by non-uniform illumination correction, dark

channel prior, and CLAHE algorithm. The second part is the multi-

scale fusion of the images processed by the initial reflection component,

the adaptive artifact elimination, and the gray world white balance

algorithm, and the corrected reflection component is obtained. Finally,

the enhanced clear image is obtained by the Retinex model. Figure 1 is

the flow chart of the method proposed in this paper. We will introduce

each part in detail below.
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2.1 Non-uniform illumination
correction module

According to the Retinex theory, the original image can be

regarded as composed of illumination component and reflection

component. The expression is as follows:

E(x, y) = L(x, y) · R(x, y), (1)

where L(x, y) is the illumination component, which reflects the

brightness change in the scene and is related to the naturalness of

the image, and directly determines the dynamic range of pixels in

the image. R(x, y) is a reflection component, which reflects the

essential information of an object and the physical properties of its

surface, and has color constancy. Therefore, Retinex algorithm can

be used to estimate the illumination component and reflection

component of low-illumination images, so as to obtain images with
Frontiers in Marine Science 04
normal contrast. However, when Retinex algorithm is used to

enhance low-light images, color fading and noise usually occur,

and at the same time, artifacts appear, especially in the underwater

environment with uneven illumination, which is more obvious. In

order to eliminate the influence of non-uniform illumination on

underwater images, a non-linear guided filtering illumination

equalization algorithm is designed to correct the non-uniform

bright and dark areas of low-light images, in which the original

image is shown in Figure 2A. The original image is the result of

non-uniform light irradiation. The contrast in the middle of the

image is high, and the contrast in the edge part is low, and it is

blurred, which gives people a poor visual experience. Because H, S,

and V in the HSV color space are independent of each other, direct

operation on the V component will not affect the color information

of underwater images. We convert the original image from the RGB

color space to the HSV color space, and its expression is:
FIGURE 1

The flow chart of the method proposed in this paper.
B C DA

FIGURE 2

The process of non-uniform illumination correction module. Panel (A) is an underwater original image; panel (B) is the V component in the HSV
color space; panel (C) is the image refined by guided filtering; panel (D) is an image processed by a non-linear guided filtering illumination
equalization algorithm.
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V = max (R,G,B)

S = 1 −min (R,G,B)=V

H =

60� (G − B)=(V −min (R,G,B))   if  V = R

120 + 60� (B − R)=(V −min (R,G,B))   if  V = G

240 + 60� (R − G)=(V −min (R,G,B))   if  V = B

8>><
>>:

,

8>>>>>>>><
>>>>>>>>:

(2)

where R, G, and B are red, green, and blue channels in the RGB

color space, and H, S, and V are hue, saturation, and brightness

channels in the HSV color space. The V component is shown in

Figure 2B, which contains the brightness information of the image

and is independent of the other two components, so enhancing the

V component will not change the original color of the image.

Therefore, we use guided filtering (Yan et al., 2022) to operate on

the V component to obtain the initial illumination component,

which solves the problems of color fading and noise caused by

uneven illumination and better protects the edge gradient

information of the original image. Guided filtering is an

anisotropic adaptive weight filter. Assuming that the input image

is p, the output image is q, and the guide image is Iguid , there is a

local linear relationship between the output image and the guide

image in the filtering window, and its formula is as follows:

q(i, j) = p(i, j) − n(i, j), (3)

q(i, j) = �ak ∗ Iguid(i, j) + �bk,∀ (i, j) ∈ wk, (4)

where n is noise, and �ak and �bk are average coefficients of local

linear functions. wk is the filtering window, which is a rectangular

window with pixel k as the center and r as the radius. At the same

time, in order to ensure that the guided filtering can smoothen the

image while still having good edge retention ability, the value of the

window radius r is 3. When the input image p and the guide image

Iguid are equal, the guide filter can be used as an edge-preserving

filter, and ak and bk can be obtained at this time, as shown below:

ak =
s 2
k

s2
k +ϵ

bk = (1 − ak) ∗ �pk
,

8<
: (5)

where s 2
k is the variance of the window image wk, �pk is the average

of the input image p in the filtering window wk, and ϵ is the

regularization parameter, which aims to prevent ak from being too

large. Experimental research shows that when ϵ takes a small value, it

has a good enhancement effect in the environment of low visibility,

weak target scene energy, and unclear details, so the regularization

parameter ϵ in this paper takes a value of 10−6. As shown in Figure 2C,

the illumination image processed by guided filtering can better preserve

the edge information of the image and reduce the influence of noise.

However, for under- or overexposed underwater images, there will also

be over-enhancement, and it is difficult to achieve satisfactory results.

Therefore, an illumination equalization algorithm based on non-linear

guided filtering is proposed. Due to the influence of non-uniform

illumination, the illumination component of the image obtained by

guided filtering will appear in the over- and under-exposure areas and

cannot be adaptively eliminated. Therefore, we use Weber-Fechner’s
Frontiers in Marine Science 05
law for adaptive brightness correction. This method can adaptively

adjust the parameters of the enhancement function according to the

distribution profile of the illumination component in the image,

thereby effectively eliminating the influence of uneven illumination

on the underwater image. According toWeber-Fechner’s law, there is a

logarithmic linear relationship between the subjective brightness

perception and the objective brightness perception of the human eye,

that is:

I1 = b lg (Iv) + b0, (6)

where I1 is the subjective brightness perception, Iv is the

objective brightness perception, b and b0 are constants, and lg (Iv)

is the logarithmic transformation. In order to avoid increasing the

calculation amount due to logarithmic operation and at the same

time to avoid excessive enhancement of the image, we use a simple

function to fit the curve of the above formula, namely:

I1 =
Iv(255 + kad)

(max (Iv , q)) + kad
, (7)

where kad is the adjustment coefficient, and the smaller the

value of kad, the greater the adjustment range. In this paper,

according to the average value of the saturated component image

Is, the kad value can be obtained. Therefore, kad = 0:1� �Is =

0:1�o
W

i=1
Is=W , �Is is the average value of Is, and W is the sum of

image pixels. As shown in Figure 2D, the V component processed

by the illumination equalization algorithm of non-linear guided

filtering has a wider dynamic range, the overall brightness and

contrast of the adjusted image are greatly improved, and the

influence of non-uniform illumination is also effectively eliminated.

In order to deal with the non-uniform illumination area of the

image more naturally, we introduce the dark channel prior

algorithm to process the initial illumination component and

further eliminate the influence of non-uniform illumination on

the underwater image by calculating the dark channel weight map

of the initial illumination component. The overexposed area of the

image processed by the dark channel prior theory can be greatly

weakened, and it can also prevent the over-enhancement of the low-

illumination image and the generation of dark areas. The study of

Dong et al. (2010) found that the low-light image after the inversion

operation is similar to the foggy image, indicating that the dark

channel prior theory is also suitable for the processing of low-light

images. The dark channel can be expressed as:

I2(x) = min
y∈W(x)

( min
c∈ r,g ,bf g,ch∈ 1,2,3f g

(Jcch(y))), (8)

where Jc represents the color channel of the input image, W(x)

represents the vicinity of the x center, min
y∈W(x)

represents the

minimum filter, and min
c∈fr,g,bg

represents the minimum value in the

three color channels of R, G, and B. In the above operation process,

it is inevitable to introduce noise. Therefore, we divide the image

into blocks to obtain the cumulative distribution function of each

region. The sharp gray histogram is appropriately cropped, and the

number of cropped pixels is evenly distributed in the gray

histogram. The final image is represented by I3.
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2.2 Artifact adaptive elimination module

Since the reflection component retains the color information of

the image and has color constancy, color fidelity is extremely

important. However, in the complex underwater environment,

with the attenuation of light, the underwater image has the

problem of color fading, which leads to the color distortion of the

underwater image and the generation of artifacts. Therefore, we

propose an adaptive MSRCR color fidelity algorithm to adaptively

eliminate the dark area of the underwater image and preserve its

color. We first introduce the color recovery parameter Cch to adjust

the three-channel ratio of the underwater image, so as to effectively

solve the problem of color distortion in the original underwater

image. The calculation formula is as follows:

RMSRCR(x, y) = Cch(x, y)o
NS

n=1
Sl ln I(x, y) − ln½I(x, y) ∗Gns(x, y)�f gns,

(9)

Cch = bRC ln (aRCIch=o
t

ch=1

Ich), (10)

where I(x, y) is the input image; Cch(x, y) is the color recovery

parameter of the chth channel of the image, which is mainly used to

adjust the proportional relationship between different color

channels. NS is the number of scales, usually NS = 3; Slns is the

weighted coefficient of the nsth scale; Gns(x, y) is a Gaussian filter

function; and Ich is the chth channel component of the input image.

bRC and aRC are empirical parameters. We refer to the literature (Li

et al., 2021). Usually, bRC takes 46, and aRC takes 125; t is the

number of channels of the image, so t takes 3. Figure 3A is the

original underwater image. As shown in Figure 3B, the above
Frontiers in Marine Science 06
operations can improve the color information in the underwater

image, but there will also be local edge detail blurring and artifacts.

Therefore, we propose an adaptive MSRCR color fidelity algorithm.

For blurred low-light images, most of its pixels are clustered in dark

areas, so it is necessary to operate on the pixels in these dark areas.

First, we transform Figure 3B into HSV space and improve the

detail blur and artifacts of the image by dynamically adjusting

the probability density of its V components. By calculating the

probability density of each intensity level of the underwater image,

the intensity change of the image is adaptively represented, and the

formula is as follows:

PWd(l) = pmax(
pd(l) − pmin

pmax − pmin
)d , (11)

where PWd is the weighted probability density distribution; d is

the adjustment parameter, which is set to 0.3 according to

experience. It is mainly used to slightly modify the statistical

histogram and reduce the generation of unfavorable factors. pd(l)

is the probability density of image intensity l, pmax is the maximum

probability density, and pmin is the minimum probability density.

pd(l) = nl=(M · N), nl is the number of pixels in the image intensity l,

andM · N is the total number of pixels in the image. The cumulative

probability density distribution can be obtained as follows:

CWd(l) = o
lmax

l=0

PWd(l)=oPWd : (12)

Finally, the gamma parameter correction of each pixel intensity

can be expressed as:

AGT(l) = lmax(l=lmax)
1−CWd(l) : (13)
B C DA

FIGURE 3

The process of artifacts adaptive elimination module. Panel (A) is an underwater original image; panel (B) is the result of MSRCR algorithm; panel
(C) is the V component processed by an adaptive MSRCR color fidelity algorithm; panel (D) is the image converted to RGB space.
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As shown in Figure 3C, after correction by adaptive MSRCR

color fidelity algorithm, the dark region of its V component can be

processed smoothly, and the color information of the image is

preserved. Figure 3D is an image converted to RGB space. It can be

seen that the dark area of the image is eliminated to some extent,

and the color distortion is corrected.

In order to adjust the color distribution of the reflected image,

we use the Grey World white balance algorithm (Buchsbaum, 1980)

to process the reflected image, which is used to restore the true color

of the underwater image. The average gray value Kgw of the RGB

three-channel component of the color image under the standard

light source is equal. Therefore, the average gray value Kgw is

divided by the average value of each channel to calculate the

weight of each channel. Finally, the value of each channel is

multiplied by the weight to obtain the value of each channel after

adjustment. Based on this assumption, the color distribution of the

light source can be estimated by calculating the average gray value

of each color channel. The expression is:

wR =
Kgw

�R
,wG =

Kgw

�G
,wB =

Kgw

�B
, (14)

R0 = wR ∗Rkh

G0 = wG ∗Gkh

B0 = wB ∗Bkh

,

8>><
>>:

(15)

where wR, wG, and wB are the weights of red, green, and blue

channels, respectively, and �R, �G, and �B are the average values of red,

green, and blue channels, respectively; Rkh, Gkh, and Bkh are three-

channel values of R, G, and B, respectively; R0, G0, and B0 are the

adjusted gray values of RGB three channels, respectively. The image

processed by the color fidelity algorithm of the adaptive MSRCR is

represented by R1, the original reflection component of the image is

represented by R2, and the image processed by the gray world white

balance algorithm is represented by R3.
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2.3 Multi-scale image fusion module

In order to accurately obtain the illumination component and

reflection component of Retinex model, a multi-scale Retinex model

parameter estimation algorithm is proposed. First, I1, I2, and I3
obtained in the non-uniform illumination correction module are

used as the inputs of the multi-scale image fusion module, and then,

the brightness weight, color weight, and average weight of the

corresponding input images are calculated, respectively, and then,

the Laplacian values of the three input images and the Gaussian

values mapped by the corresponding weights are calculated, and

finally, the corrected illumination components are obtained by

multi-scale fusion. At the same time, we use R1, R2, and R3 in the

artifact adaptive elimination module as the input of the multi-scale

image fusion module and then calculate the Laplacian contrast

weight, dark channel weight, exposure weight, and saturation

weight of the input image, respectively (Fu et al., 2016). Then, we

calculate the Laplacian value of the corresponding input image and

the Gaussian value of the corresponding weight mapping. Finally,

multi-scale fusion is performed to obtain the corrected reflection

component. We use the corrected illumination component and

reflection component and then get the enhanced underwater clear

image according to the Retinex model.

The image processed by the non-uniform illumination module

is shown in Figure 4A. In order to accurately obtain the illumination

component of the Retinex model, the selection of the input image

weight map is particularly important. However, it is difficult to

ensure that artifacts will not be introduced through simple pixel

fusion. Therefore, we use a variety of weight maps in the fusion

process so that pixels with high weight values can be displayed

more. Brightness weight map is to distribute the pixel values in the

areas with higher or lower brightness in the image evenly, so as to

achieve the balance between color and contrast. The brightness

weight diagram is shown in Figure 4B. However, for the non-

uniform lighting environment, its weight value is not enough to
B C D EA

FIGURE 4

The process of illumination component estimation in the multi-scale fusion module. (A) The image processed by the non-uniform illumination
correction module; panel (B) is the brightness weight; panel (C) is the color degree weight; panel (D) is the fusion weight; panel (E) is the
regularization weight.
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enhance the underwater image, which has certain limitations. In

order to solve this problem, we introduce chroma weight and

control the image saturation gain by adjusting the ratio of input

image to output image in color, as shown in Figure 4C. In order to

keep the balance of illumination components in brightness and

chroma, the fusion weights of brightness weight and chroma weight

are calculated, and the fusion weight diagram is shown in Figure 4D.

Finally, the three weight maps are summed and normalized to get

the regularized weight, and the weight map is shown in Figure 4E.

The image processed by the artifact adaptive elimination

module is shown in Figure 5A. In order to preserve the edge and

detail information of the original image to a greater extent,

Laplacian contrast weight is usually introduced, which can

improve the contrast of the whole picture, and its weight diagram

is shown in Figure 5B. In order to deal with the uneven illumination

area of underwater image more naturally, we also introduce dark

channel weight and exposure weight, and weigh the pixels with high

or low brightness to improve the brightness of the image and

further smoothen the uneven pixels. The dark channel weight

diagram is shown in Figure 5C. The formula for calculating the

exposure weight can be expressed as:

WE = exp ( −
½LIkr(x, y) − 0:5�2

2s 2 ), (16)

where LIkr(x, y) is the value of the input image Rkr at the pixel

position (x, y). Since the normalized natural brightness of image

pixels is usually close to the average value of 0.5, the average value of

experimental brightness is set to 0.5, and the standard deviation s is

set to 0.25. The exposure weight is shown in Figure 5D. Saturation

weight can be used to adjust the high saturation region of the image,

which makes the fusion algorithm in this paper more suitable for

chroma information. The expression of saturation weight is as

follows:

WSATkr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
½(Rkr − Lkr)

2 + (Gkr − Lkr)
2 + (Bkr − Lkr)

2�
r

, (17)

where WSATkr is the saturation weight; Rkr , Gkr , and Bkr are

the R, G, and B three-channel images of the input image,
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respectively; Lkr is the brightness; and kr is the krth input image.

The saturation weight diagram is shown in Figure 5E.

Finally, the Gaussian pyramid GPL is used to decompose the

normalized weight �Wkr , and the input image is decomposed into

the Laplacian pyramid LPL, and then, the Laplacian input and the

Gaussian normalized weight of each pyramid level are fused.

Finally, the fused illumination component and the reflection

component are obtained by summing. The expression is

RPL = o
K

kr=1
GPL

�Wkr
� �

LPL(Ikr), (18)

where RPL represents the fused image, PL represents the

pyramid level, and kr represents the number of input images.

Using the modified illumination component and reflection

component, the enhanced underwater clear image is obtained

according to the Retinex model as shown in Figure 6. It can be

seen from Figure 6E that the method in this paper can effectively

correct non-uniform low-light underwater images. Comparing

Figures 6B, F, it can be seen that the enhanced underwater image

has a wider and more uniform RGB histogram distribution range.

As shown in Figure 6C, the corrected illumination component

eliminates the influence of non-uniform illumination to a certain

extent. As shown in Figure 6D, the modified reflection component

retains the color information of the image and ensures that the

image does not have artifacts and color distortions.
3 Experimental results and discussion

In order to verify the effectiveness and scalability of the

proposed method, we conducted qualitative and quantitative

comparisons and application test. In the qualitative and

quantitative comparisons, in order to show the advantages of the

proposed method more comprehensively, we compare the existing

classical underwater image enhancement techniques, including

UDCP (Drews et al., 2013), IBLA (Peng and Cosman, 2017), and

WCID (Jayasree et al., 2014) algorithms based on physical model,

BIMEF (Ying et al., 2017) and FWE (Fu et al., 2016) algorithms
B C D EA

FIGURE 5

The process of reflection component estimation in the multi-scale fusion module. (A) The image processed by the artifact adaptive elimination
module; panel (B) is Laplace weight; panel (C) is the dark channel weight; panel (D) is the exposure weight; and (E) is the saturation weight.
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based on image fusion, and SDD (Hao et al., 2020) algorithm based

on Retinex theory. Then, the enhancement effect of each method is

evaluated qualitatively and quantitatively. Finally, we use saliency

detection (SOD) and scale invariant feature transform (SIFT) for

application testing to verify the scalability of the proposed method.

All the underwater images in this paper come from OCEANDARK

(Porto Marques et al., 2019) and UIEBD (Li et al., 2019) datasets,

which provide real underwater scenes, including underwater images

in the environment of non-uniform illumination and dark area

artifacts. We randomly select representative images from them for

experiments. In order to ensure the fairness of comparison among

different algorithms, the experiment in this paper is carried out in

the environment of Matlab R2018b, and the hardware parameters

of the computer are Windows 10 PC Inter (R) Core (TM) i7-9700

CPU 3.00 GHz.
3.1 Qualitative comparison

In order to verify the effectiveness of the method in this paper to

restore underwater images in non-uniform illumination and low-

illumination environments, we selected underwater low-light

images with non-uniform illumination and dark area artifacts for

testing. At the same time, by comparing with the existing classical

underwater image enhancement techniques and analyzing from the

aspects of contrast, visibility, and color restoration, the processing

effects of each method are discussed. Due to the limitation of space,

we only show some of the experimental results. The qualitative

comparison results of different algorithms under non-uniform

illumination and dark area artifact environment are shown in

Figure 7. Figure 7A is an underwater original image, including

images with non-uniform illumination and dark area artifacts.

Figure 7B is the processing result of the UDCP algorithm. It can

be seen that the contrast of all images is lower than that of the

original image. At the same time, the red color deviation is
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introduced in Image3, and the green color deviation is introduced

in Image5 and Image6, indicating that the algorithm does not

accurately estimate the background light value of the underwater

image. Figure 7C is the processing result of the IBLA algorithm. It

can be seen from the figure that the contrast of all images has been

improved, but each image has introduced different degrees of color

deviation. Image1 and Image8 also have overexposure, indicating

that the algorithm cannot accurately estimate the transmittance of

the scene when processing non-uniformly illuminated underwater

images. Figure 7D is the processing result of WCID algorithm. It

can be seen from the image that there are artifacts in Image5–

Image8, and the visibility of all images is not high. Figures 7E–G are

the processing results of BIMEF, FWE, and SDD algorithms,

respectively. These three algorithms have better effects on non-

uniform low-light underwater images. The overall contrast of all

images is greatly improved, and no color deviation is introduced.

The visibility is also very good. However, these methods do not

effectively restore the color of the image, and the edge of the image

will still appear as dark area artifacts. Figure 7H is the processing

result of the proposed method. It can be seen from the image that

the contrast of all images is greatly improved compared with other

algorithms, and there is no over-bright or over-dark area. At the

same time, the contrast of the edge area of the image is also greatly

improved, and the dark area artifacts of all images are eliminated. It

shows that the proposed method can effectively deal with

underwater low-light images and can also correct non-uniform

bright and dark regions and ensure that the image does not appear

artifacts and color distortion. Compared with the other six

algorithms, the method proposed in this paper has good

universality and is more suitable for underwater environments

with non-uniform low-illumination and dark area artifacts.

Figure 8 shows the comparison of the detail enhancement

ability of different algorithms in the scene of non-uniform

illumination and dark area artifacts. From top to bottom, it is the

underwater original image, the processing result of UDCP
B C D E FA

FIGURE 6

The processing results of the multi-scale Retinex model parameter estimation module. Panel (A) is an underwater original image; (B) RGB histogram
of the original underwater image; panel (C) is the corrected illumination component; panel (D) is the corrected reflection component; panel (E) is
the enhanced image of the method proposed in this paper; panel (F) is the RGB histogram of the enhanced image.
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FIGURE 8

The detail enhancement ability of different algorithms in non-uniform illumination and dark area artifact scenes is compared. Panels (A), (C), and
(E) are three underwater images in different scenes. Panels (B), (D), and (F) are the enlarged details in the red box on the left.
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FIGURE 7

Qualitative comparison results of different algorithms in non-uniform illumination and dark area artifact environments. Panel (A) is an underwater
original image; panel (B) is the processing result of UDCP algorithm; panel (C) is the processing result of IBLA algorithm; panel (D) is the processing
result of WCID algorithm; panel (E) is the processing result of BIMEF algorithm; panel (F) is the processing result of FWE algorithm; panel (G) is the
processing result of SDD algorithm; panel (H) is the processing result of the method proposed in this paper.
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algorithm, the processing result of IBLA algorithm, the processing

result of WCID algorithm, the processing result of BIMEF

algorithm, the processing result of FWE algorithm, the processing

result of SDD algorithm, and the processing result of the method

proposed in this paper. From the detail magnification map, it can be

seen that the image contrast processed by the UDCP algorithm is

very low and the visibility is low. The image processed by IBLA

algorithm introduces color cast, especially the serious blue cast is

introduced in Image3 image. The image processed by WCID

algorithm has halo artifacts. The images processed by BIMEF,

few, and SDD algorithms are better. These three algorithms

correct the non-uniform low-light image to a certain extent, but

they are not thorough enough, and the color recovery of the image

is not enough. At the same time, the dark area of the image edge is

not well restored. The image processed by the proposed method has

better contrast and visibility, and the detail texture of the image is

clearer. Therefore, it also shows that the proposed method has

better processing effect in non-uniform illumination and low-

illumination underwater environment.
3.2 Quantitative comparison

Through qualitative comparison, it can be seen that the method

in this paper has good enhancement effect in both uneven- and low-

illumination scenes. However, everyone’s subjective feelings are

different, and the conclusions will be different. Therefore, in order

to avoid the deviation of qualitative comparison, we then objectively

evaluate the restoration effects of different algorithms on

underwater images from the aspects of color restoration, contrast,

and comprehensive effect. The spatial frequency (SF), average

gradient (AVG), effective perception rate (JND), image

naturalness evaluation (NIQE), underwater color image quality

evaluation (UCIQE) (Zhan et al., 2017), and the running time of

the algorithm are mainly used for evaluation. Spatial frequency (SF)

is used to evaluate the color restoration effect of underwater images.

The larger the value, the richer the color of enhanced images. It can

be defined as:

SF =
1

M � N o
M

g=1
o
N

h=2

½Ig,h − Ig ,h−1�2 +
1

M � N o
M

h=1
o
N

g=2
½Ig,h − Ig−1,h�2,

(19)

where M and N represent the width and height of the image,

and I(g, h) represents the pixel value at point (g, h) in the image.

Average gradient (AVG) is used to characterize the clarity of an

image. The higher the value, the clearer the image. The average

gradient can be described as:

AG =
1

(M − 1)(N − 1) o
M−1

g=1
o
N−1

h=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I(g, h) − I(g + 1, h))2 + (I(g, h) − I(g, h + 1))2

2

r
,

(20)

Effective perception rate (JND) is based on local average

brightness and local spatial frequency to evaluate the

enhancement effect, and the greater the value, the better the

enhancement effect. Image naturalness evaluation (NIQE) is used
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to characterize the naturalness of an image. The smaller the value,

the higher the naturalness of the image, which is more in line with

human visual experience. The underwater color image quality

assessment (UCIQE) is to linearly combine the chromaticity,

saturation, and contrast of the image, which is mainly used to

quantify the image degradation caused by uneven illumination,

color deviation, blur, and low contrast of the underwater image. The

calculation formula of the index is:

UCIQE = Z1 � SD + Z2 � conl + Z3 � ms (21)

where SD represents the standard deviation of chromaticity, conl
represents the contrast of brightness, and ms represents the average

saturation. Z1, Z2, and Z3 are weight coefficients, which are set to

0.4680, 0.2745, and 0.2576, respectively. Due to the limitation of space,

we only show some experimental results. Eight representative non-

uniform illumination and low-illumination underwater images were

randomly selected from the OCEANDARK and UIEBD datasets. By

calculating the running time of SF, AVG, JND, NIQE, UCIQE, and

algorithms for each image, and comparing and analyzing them, the

advantages and disadvantages of each algorithm are evaluated. Table 1

is the quantitative comparison results of non-uniform illumination and

low-illumination underwater images. The thickened value in the table

is the optimal value of the corresponding algorithm. Among them, '↑'
indicates that the larger the index value, the better, and '↓' indicates that
the smaller the index value, the better. As can be seen from Table 1, the

method in this paper is superior to the other six classical algorithms in

SF, AG, JND, NIQE, and UCIQE. It shows that the enhanced image

has more natural color recovery, good fidelity, high clarity, more

information, and better visual effect. However, the running time of

the method proposed in this paper is longer than that of BIMEF and

FWE algorithms. That is to say, the speed of image processing in this

paper is medium, which is suitable for occasions with low real-time

requirements. Comprehensive qualitative and quantitative

comparisons, the method in this paper has good adaptability to non-

uniform illumination and low-illumination underwater environment.

It can correct the influence of non-uniform illumination on the image

and can also effectively restore the brightness and color of the

underwater image and adaptively eliminate the artifacts of the image.
3.3 Application test

In order to further verify the scalability of the proposed method,

we use saliency detection (SOD) (Wu et al., 2018) and scale invariant

feature transform (SIFT) (Zhang, 2020) to test the underwater images

before and after enhancement. If the saliency of the image is more

obvious or the number of feature matching points is more, the texture

of the image is clearer, and the processing performance of the

algorithm is better. The test results are shown in Figures 9, 10.

Figure 9 shows the saliency detection results. It can be seen that the

restored image has better saliency than the original image. Figure 10

is the test results of feature matching. It can be seen that the restored

image has more feature matching points than the original image,

indicating that the image has higher clarity and better image

restoration effect. Therefore, the method proposed in this paper
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TABLE 1 Quantitative comparison results of non-uniform illumination and low-illumination underwater images.

Image Evaluation Original image UDCP IBLA WCID BIMEF FWE SDD OURS

Image 1

SF↑ 9.0978 10.5224 13.6341 12.3380 10.1328 11.0218 13.4561 16.4338

AVG↑ 4.7534 5.1151 7.5316 6.2928 5.4417 6.2370 7.2615 8.7291

JND↑ 0.075 0.0644 0.1031 0.0855 0.0845 0.0987 0.0893 0.1421

NIQE↓ 3.5214 3.4308 3.7028 3.2866 3.5671 3.5125 3.5896 3.0040

UCIQE↑ 0.5397 0.5562 0.5706 0.4458 0.4854 0.4316 0.4834 0.6074

Time(s)↓ – 8.4611 101.6068 9.4604 2.3563 4.3736 14.3983 6.3833

Image 2

SF↑ 3.9438 6.9540 9.7352 4.9537 5.2411 7.0965 6.5790 8.4680

AVG↑ 2.4147 3.7547 6.3992 2.9464 3.3066 4.5224 4.1752 5.2747

JND↑ 0.0054 0.0373 0.0334 0.0074 0.0258 0.0267 0.0280 0.0539

NIQE↓ 4.4428 4.0407 4.3282 4.2374 4.5033 4.4106 4.4928 3.3467

UCIQE↑ 0.4685 0.5253 0.4861 0.4941 0.4552 0.4646 0.4963 0.6303

Time(s)↓ – 8.5282 110.4372 9.2074 1.4735 4.4367 16.5259 6.9157

Image 3

SF↑ 6.8421 8.7682 9.7477 8.4589 7.9729 9.7866 10.9927 12.7019

AVG↑ 4.3012 5.3389 6.4914 5.2525 5.1956 6.3908 7.1616 7.5239

JND↑ 0.0196 0.0220 0.0594 0.0223 0.0488 0.0534 0.0525 0.0791

NIQE↓ 4.0155 3.9456 4.0834 3.9395 4.1259 4.1902 4.2691 3.0853

UCIQE↑ 0.5270 0.5879 0.6156 0.5607 0.5009 0.4949 0.5376 0.5685

Time(s)↓ – 8.5567 113.1802 9.2555 1.3936 4.4054 13.6873 6.5808

Image 4

SF↑ 8.3866 9.4633 15.6431 9.9052 10.2973 10.7729 13.3192 18.2576

AVG↑ 3.6132 3.7561 8.5213 4.2315 5.0038 5.6263 6.4254 8.7819

JND↑ 0.0965 0.0762 0.1107 0.0709 0.1113 0.1128 0.1221 0.1814

NIQE↓ 4.0638 4.0528 3.5846 3.8407 3.8930 3.8172 3.7344 2.6998

UCIQE↑ 0.4459 0.4315 0.4594 0.4598 0.4328 0.4274 0.4858 0.5968

Time(s)↓ – 8.6381 111.1225 9.3154 1.4657 4.5615 17.1559 6.6743

Image 5

SF↑ 4.5269 5.5604 8.4275 6.8354 4.7803 5.5112 5.8017 8.4467

AVG↑ 2.1895 2.3585 4.0960 3.2031 2.4520 2.9968 2.9398 4.1441

JND↑ 0.0460 0.0804 0.0487 0.0697 0.0356 0.0407 0.0433 0.0992

NIQE↓ 5.2375 5.0508 4.4338 5.0147 5.2097 4.3838 5.3733 3.7595

UCIQE↑ 0.5094 0.5430 0.5180 0.5467 0.4628 0.4242 0.4822 0.6079

Time(s)↓ – 8.5786 110.2138 9.9172 1.3420 4.3222 12.9923 6.7051

Image 6

SF↑ 5.4920 7.0061 7.3016 7.6919 5.7458 6.0829 6.8317 8.0211

AVG↑ 2.3117 2.6797 3.5734 3.0626 2.6582 3.0858 3.1140 3.7640

JND↑ 0.0553 0.0775 0.0637 0.0847 0.0459 0.0452 0.0492 0.0966

NIQE↓ 3.8631 4.0301 3.9307 4.0090 3.8737 3.5170 4.0077 3.0541

UCIQE↑ 0.5864 0.5137 0.6266 0.6318 0.5481 0.5185 0.5730 0.6492

Time(s)↓ – 8.5838 111.2642 9.3212 1.4273 4.5018 13.7854 6.6777

Image 7

SF↑ 6.8495 8.0411 9.0128 9.2469 7.1305 6.7643 8.3441 12.2812

AVG↑ 2.4780 2.8018 3.4903 3.6187 2.7364 2.9636 3.3137 4.9660

JND↑ 0.0990 0.1301 0.1100 0.1310 0.0683 0.0544 0.0770 0.1704

(Continued)
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can obtain more texture details in uneven- and low-illumination

scenes, and the image clarity is significantly improved. It shows that

the method in this paper can be more suitable for the underwater

environment with uneven illumination and low illumination and can

provide theoretical reference for low-illumination image

enhancement technology. At the same time, underwater acoustic
Frontiers in Marine Science 13
images are also an important means to obtain ocean information,

such as synthetic aperture sonar images (Zhang et al., 2021). The

method in this paper is mainly developed for underwater optical

images and has achieved certain results, but it cannot be adapted to

underwater acoustic images. Therefore, in the follow-up work, we

also focus on underwater acoustic image enhancement.
TABLE 1 Continued

Image Evaluation Original image UDCP IBLA WCID BIMEF FWE SDD OURS

NIQE↓ 3.6271 3.6249 4.0425 3.5963 3.6284 3.5093 3.7501 3.3214

UCIQE↑ 0.5246 0.5209 0.5445 0.5308 0.5207 0.4938 0.5536 0.5124

Time(s)↓ – 8.4824 113.5753 9.0776 1.3480 4.3675 13.8340 6.5780

Image 8

SF↑ 5.7607 7.6266 6.7566 7.3774 6.1255 6.1090 6.9756 9.7318

AVG↑ 1.9246 2.0279 2.9326 2.5556 2.1558 2.5955 2.5363 4.2012

JND↑ 0.0523 0.1223 0.0546 0.0709 0.0590 0.0545 0.0790 0.1303

NIQE↓ 3.8314 3.8920 3.6187 3.8242 3.9468 3.4945 4.0944 2.9267

UCIQE↑ 0.5859 0.5233 0.5866 0.6133 0.5577 0.5023 0.5647 0.6330

Time(s)↓ – 8.5207 109.6964 9.1019 1.4045 4.3698 13.5216 6.4655

Average

SF↑ 6.3624 7.9928 10.0323 8.3509 7.1783 7.8932 9.0375 11.7928

AVG↑ 2.9983 3.4791 5.3795 3.8954 3.6188 4.3023 4.6159 5.9231

JND↑ 0.0561 0.0763 0.0730 0.0678 0.0599 0.0608 0.0676 0.1191

NIQE↓ 4.0753 4.0085 3.9656 3.9686 4.0935 3.8544 4.1639 3.1497

UCIQE↑ 0.5234 0.5252 0.5509 0.5354 0.4955 0.4697 0.5221 0.6007

Time(s)↓ – 8.5437 110.1371 9.3321 1.5264 4.4173 14.4876 6.6226
front
B C D
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FIGURE 9

Results of saliency detection. Panels (A–D) are the original underwater image and its saliency detection results; panels (E–H) are the enhanced
images and their saliency detection results.
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4 Conclusion

A low-illumination underwater image enhancement method

based on non-uniform illumination correction and adaptive artifact

elimination is proposed, which can effectively correct the influence

of non-uniform low illumination on underwater images and

eliminate dark area artifacts of underwater images, and can

provide theoretical reference for low-illumination image

enhancement technology. The main conclusion of this method is

as follows: a non-linear guided filtering illumination equalization

algorithm is designed to correct the uneven bright and dark areas of

underwater images so that the pixel distribution of the processed

images has a wider dynamic range. An adaptive MSRCR color

fidelity algorithm is proposed to improve the color of the image and

ensure that the image will not appear artifacts and color distortion.

A multi-scale Retinex model parameter estimation algorithm is

proposed to accurately estimate the illumination component and

reflection component. The corrected illumination component

eliminates the influence of uneven illumination to a certain

extent, and the corrected reflection component retains more color

information. The results of qualitative and quantitative

comparisons and application test show that the method proposed

in this paper can widely adapt to non-uniform low-light underwater

scenes and also show that the method has important practical value

in the field of underwater image processing. However, such

methods still have shortcomings, often ignoring the physical

characteristics of underwater optical propagation. Therefore, in

the future work, we will further adjust the structure of the

algorithm to adapt to the underwater environment with color

cast. At the same time, we will also take the algorithm running

speed and underwater acoustic image enhancement as the focus

of research.
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FIGURE 10

The test results of feature matching. Panels (A–D) are the feature matching test results of the underwater original image; panels (E–H) are the test
results of feature matching for enhanced images.
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