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1BK21 School of Earth and Environmental System, Pusan National University, Busan, Republic of
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In the East China Sea (ECS), the sea surface salinity (SSS) changes as the

Changjiang Diluted Water (CDW) propagates toward the Korean Peninsula via

the ocean current and winds every summer annually. Although the vertical

stratifications resulting from the CDW volume changes are important, it has

not been analyzed yet. Therefore, in this study, we aimed to estimate the salinity

at a depth of 10 m (S10m) using convolutional neural network (CNN) model based

on multi-satellite measurements and analyze CDW volume variations. The main

CDW mass in the ECS reaches approximately 10 m in depth; thus, the CNN

model was developed using sea surface physical factors as input and in situ S10m
obtained from the National Institute of Fisheries Science (NIFS) as ground truth

data from 2015 to 2021. The CNN tests result showed a determination coefficient

(R2) of 0.81, root mean square error (RMSE) of 0.63 psu, and relative RMSE

(RRMSE) of 2.00%. Unlike the sea surface distribution, the spatial distribution of

S10m showed that the CDW was predominantly present in the center of the ECS.

From SHapley Additive exPlanations (SHAP) analysis, SSS exhibited a strong

positive relationship with S10m, and the sea level anomaly showed a strong

negative relationship. After calculating the volume of the CDW from the

surface to a depth of 10 m, the maximum (3.01×1012 m3) and minimum

volumes (1.31×1012 m3) were represented in 2016 and 2018, respectively.

Finally, the warming effect induced by the CDW volume changes was analyzed

in two different years: 2016 and 2018. Specifically, in 2016, the sea surface

temperature increased by more than 4.79 °C in the Ieodo location, while in 2018,

it increased by 2.19 °C. Thus, our findings can obtain information about the

volume variation of the CDW and its effect on the ECS in summer.

KEYWORDS

Changjiang diluted water, deep learning, East China Sea, Changjiang river discharge,
subsurface salinity
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1 Introduction
Salinity plays a significant role in the marine physical-

biogeochemical environment. It determines the density of

seawater, along with temperature and thus highly related to ocean

stratification. Various factors contribute to changes in salinity, such

as river discharge, precipitation, evaporation, and melting sea ice.

Coastal areas near large rivers experience significant salinity

variations owing to its mixing with freshwater (Rao and

Sivakumar, 2003; Wu et al., 2006; Bao et al., 2019). The

Changjiang River is the fifth largest river in the world, based on

river discharge. It transports a large amount of freshwater into the

East China Sea (ECS). The ECS experiences significant salinity

variations during the summer, which is mainly caused by large

amounts of incoming water from the Changjiang River discharge

(CRD) due to heavy rainfall, especially in the summer. The CRD

generates the Changjiang Diluted Water (CDW) by mixing

freshwater with ambient saline water (Beardsley et al., 1985; Lie

et al., 2003; Chen et al., 2008; Moon et al., 2010). The CDW typically

has a salinity of < 31 psu (Chen, 2009; Bai et al., 2014; Kim et al.,

2022). It extends to the southward of the Korean Peninsula

approximately 12 to 17 km per day via wind and surface currents

(Chang and Isobe, 2003; Chen et al., 2008; Moon et al., 2010). The

CDW exists at a depth of approximately 0–20 m during the summer

owing to its low-density characteristics (Lie et al., 2003; Moon et al.,

2019; Hong et al., 2022; Zhu et al., 2022). The CDW enhances

strong stratification, leading to anomalous sea surface warming and

hypoxia, which causes significant damage to fisheries (Park et al.,

2011; Moon et al., 2019; Wei et al., 2021; Hong et al., 2022).

The summer marine environment of the ECS is influenced by

various factors, including the El Niño-Southern Oscillation

(ENSO), monsoons, and typhoons, in addition to the influence of

the CDW. For example, ENSO-induced changes in precipitation

can determine the amount of CRD entering the ECS (Siswanto et al.,

2008; Park et al., 2011; Park et al., 2015). Monsoons determine the

direction of currents and typhoons, which induce strong vertical

mixing, lead to rapid changes in the marine environment (Bai et al.,

2014; Lee et al., 2017). Therefore, these factors can lead to variations

in the CDW volume, which, in turn, regulates the intensity and

duration of ocean stratification. However, while there have been

extensive studies on the physical mechanisms of CDW (Chang and

Isobe, 2003; Lie et al., 2003; Chen et al., 2008; Bai et al., 2014),

research specifically focusing on its volume has been relatively

limited. Therefore, monitoring sea surface salinity (SSS) and

subsurface salinity is essential for understanding the effects of

CDW and determining ver t ica l s t ra t ificat ion in the

marine environment.

To date, the salinity observing system in the ECS currently

utilizes both in-situ and satellite measurements. While in-situ

observation is limited in its ability to monitor the rapidly

changing marine environment because of its coarse spatial and

temporal resolution, satellite observations allow for a wide spatial

resolution and continuous observations. The Soil Moisture and

Ocean Salinity (SMOS) satellite of the European Space Agency

(ESA) since 2010 and the Soil Moisture Active Passive (SMAP)
Frontiers in Marine Science 02
satellite of the National Aeronautics and Space Administration

(NASA) since 2015 were developed to observe SSS. However,

there are the limitations for monitoring SSS in the ECS because

these missions were primarily designed for mapping SSS in the open

ocean. Due to sensor errors such as Land-Sea Contamination (LSC)

and Radio Frequency Interference (RFI), the SMOS cannot provide

SSS for costal ECS (Olmedo et al., 2018; Jang et al., 2021; Jang et al.,

2022). Therefore, SMAP is currently the only source of satellite

based SSS measurements for the ECS. However, because satellite

sensors cannot directly detect subsurface information, SMAP data

only provides information about the sea surface layer and not below

it (Klemas and Yan, 2014; Wang et al., 2021; Meng and Yan, 2022).

Obtaining subsurface information is possible through reanalysis

data (i.e., HYbrid Coordinate Ocean Model [HYCOM] and

Copernicus Marine Environment Monitoring Service [CMEMS]).

However, these datasets focus on open ocean and have limited

accuracy in regions with rapidly changing low salinity water such as

the ECS. Reanalysis data have reported R2 values of less than 0.3 and

RMSE of over 3 psu compared to in-situ salinity in the ECS during

summer. Owing to limited access to extensive temporal and spatial

resolution data for subsurface salinity in the ECS, accurately

estimating CDW volume is challenging.

To overcome the limitation of sparse subsurface data,

researchers have employed Deep Ocean Remote Sensing (DORS)

techniques using satellite observations and artificial intelligence

methods. DORS relies on the physical relationships between the

surface and subsurface ocean, which enables us to estimate

subsurface information based on surface observations (Meng and

Yan, 2022). Previous studies have mainly focused on estimating

subsurface temperature using various methods. For example, to

reconstruct subsurface temperatures in the global ocean, Lu et al.

(2019) used a clustering-neural network method; Su et al. (2021)

proposed a bi-directional long-short term memory (Bi-LSTM)

neural network; and Su et al. (2022) developed a convolutional

long-short term memory (ConvLSTM) model. In the case of

subsurface salinity, Tian et al. (2022) adopted a feed-forward

neural network (FFNN) approach in the global ocean; Bao et al.

(2019) estimated the Pacific Ocean salinity profiles using a fruit fly

optimization algorithm generalized regression neural network

(FOAGRNN). Dong et al. (2022) reconstructed the subsurface

salinity structure in the South China Sea, by developing a light

gradient boosting machine (LightGBM)-based deep forest (LGB-

DF) method. Meng et al. (2021b) developed a CNN model to

reconstruct subsurface salinity and temperature.

Moreover, previous studies focused more on estimating

subsurface temperature than subsurface salinity (Lu et al., 2019;

Meng et al, 2021b; Su et al., 2021; Wang et al., 2021; Su et al., 2022),

and they mainly used Argo gridded monthly data for their analyses

(Lu et al., 2019; Meng et al, 2021b; Su et al., 2021; Wang et al., 2021;

Dong et al., 2022; Su et al., 2022). In many studies, there are two

main limitations in using Argo data as ground truth data. First, the

ECS is not included in the Argo observation area, resulting in a lack

of subsurface information for this region. Second, the monthly

temporal resolution of Argo data makes it difficult to capture the

rapidly changing marine environment in the ECS, particularly

regarding significant changes in the CDW and its rapid
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movement of over short periods. Therefore, it is essential to obtain

daily information about the subsurface salinity to understand the

ocean processes responsible for CDW volume variations.

In this study, we aimed to estimate the volume variation of the

CDW using deep learning based on multi-satellite measurements in

the ECS. Then, we investigated the changes in the coastal marine

environment based on CDW volume variations. Therefore, we

developed a CNN model for estimating subsurface salinity at a

depth of 10 m (S10m). In addition, we investigated the contribution

of sea surface parameters affecting S10m and analyzed CDW volume

variation and sea surface warming caused by CDW volume changes.

Finally, we discussed the importance of geographical factors to

estimate salinity at 10 m depth (S10m), additional environmental

factors that can change CDW volume, and different ocean

conditions in 2016 and 2018.
2 Data and methods

2.1 Data

2.1.1 Satellite data
To train the CNN model, we used sea surface data from multi-

satellite observations as input data, such as sea surface temperature

(SST), sea level anomaly (SLA), sea surface salinity (SSS), and sea

surface wind (SSW), combined with geographical information

(longitude and latitude). We used SST data from the operational SST

and sea ice analysis data (OSTIA L4 SST), obtained from the NASA

Physical Oceanography Distributed Active Archive Center

(PO.DAAC) (https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-

G LOB-v2.0). The data are based on a combination of satellite and

in-situ measurements. They are currently available from 2007 to the

present day, with a daily temporal resolution and a spatial resolution of

0.05° × 0.05°. The altimeter satellite gridded SLA downloaded from the

CMEMS was combined with various altimeter missions. The SLA was

computed for a twenty-year (1993–2012) mean. The dataset had a

spatial resolution of 0.25° × 0.25° and a daily temporal resolution

(https://data.marine.copernicus.eu/product/ SEALEVEL_GLO_PH

Y_L4_MY_008 _047/services). The SSW data, specifically the

eastward (U-wind) and northward (V-wind) components of the

10 m wind datasets were provided from the European Center for

Medium-range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5),

which have a spatial resolution of 0.25° × 0.25° and an hourly temporal

resolution (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-

reanalysis-v5). The SSS data were obtained from the Soil Moisture

Active Passive (SMAP) satellite. The SMAP level 3 product has a 25 km

spatial resolution and a daily temporal resolution (8-day running

average) (https://podaac.jpl.nasa.gov/SMAP). The dataset covers the

period from April 2015 to present, except from June 19th to July 26th,

2019, during which there were missing values due to a safe mode event

that caused all instruments to shut down.

To investigate the influence of precipitation on CDW volume, we

used an integrated multi-satellite retrieve for GPM (IMERG) daily final

run (GPM_3IMERGDF) product, with a daily resolution of 0.1° × 0.1°

(https://gpm.nasa.gov/data/imerg). The IMERG combines information

from the global precipitation measurement (GPM) satellite, microwave
Frontiers in Marine Science 03
satellite, and gauge observations to estimate precipitation over most of

the Earth’s surface. It has an advantage in oceans without ground level

precipitation-measuring instruments. All sea surface products (SST,

SLA, SSS, and SSW) were resampled into 25 km spatial and daily

temporal resolutions for model training. This study focuses on the

summer period (May to September) from 2015 to 2021, specifically

targeting the middle ECS area (119–131°E, 29–37°N) to investigate the

effect of CDW volume changes.
2.1.2 In-situ data
The National Institute of Fisheries Science (NIFS) has been

conducting serial hydrographic cruises around the Korean Peninsula

four to six times annually. The datasets are collected using

conductivity-temperature-depth (CTD) sensors at each station for

specific depths, such as 0, 10, and 20 m, etc. The observation stations

consist of 207 points in 25 lines. In this study, we used 138 points in 17

lines, excluding the East Sea (Japan Sea), because we focused on the

CDW’s effects on the ECS. The CDW exists at a depth of

approximately 0–20 m during summer (Lie et al., 2003; Moon et al.,

2019; Hong et al., 2022; Zhu et al., 2022).

Table 1 shows the number of in-situ salinity measurements

recorded by the NIFS at three different depths (0, 10, and 20 m)

from 2015 to 2021. Of the total 1,892 data points, 284 (15.01%) were

identified as CDW (salinity< 31 psu) at a depth of 10 m, while only

62 (3.28%) were identified as CDW at a depth of 20 m. Therefore,

the salinity at a depth of 10 m (S10m) was considered more suitable

for the CDW compared to 20 m. Of the 1,892 data points, we used

1,310 in-situ salinity data points at 10 m, matching the input data as

ground truth data for model training.

Figure 1 shows the location of each station used for this study.

Other validation datasets for S10m were collected from the Ieodo

Ocean Research Station (I-ORS) and the Korea Meteorological

Administration (KMA). The geographical location of the I-ORS

(32.07° N, 125.10° E) makes it an ideal observation site for

monitoring the expansion of low salinity water from the

Changjiang River. The I-ORS estimates salinity at various depths,

including 10 m. Therefore, we used the I-ORS S10m from 2020 to

validate the model performance. The KMA provided CTD

observation data around the Yellow Sea and ECS. Since that area

plays an important role in meteorology and climatology, serial

observations using shipboard were conducted every two months

since January 2016 to observe changes in the marine environment;

thus, we used summertime data (May to September) from 2016 to

2021. The observation point was selected to monitor the influence

of the Yellow Sea Bottom Cold Water and CDW.

In addition, to investigate the effect of Changjiang River

discharge (CRD) on CDW volume, the daily flow rate of the

Changjiang River, measured by the Datong Station, was collected

from 2015 to 2021 (www.cjh.com.cn). The Datong station is

approximately 624 km from the Changjiang River Estuary. It is

the first hydrometric station in the mainstream of the Changjiang

River to the estuary and the uppermost boundary of the ocean tide.

The discharge at the Datong hydrometric station generally

represents the CRD streaming down to the ECS (Erfeng et al.,

2003). Table 2 summarizes the datasets used in this study.
frontiersin.org
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2.2 Method

To estimate the CDW volume, a CNN model was trained using

a combination of satellite and in-situ data. The model was utilized to

predict the salinity depth at S10m, a proxy for CDW volume. The

contributions of each input variable to the S10m were evaluated

using SHAP analysis. The distribution maps of S10m were created

for the entire study period. Based on these maps and SMAP SSS, the

volume of CDW was calculated. This approach allowed for a

comprehensive assessment of CDW volume using a combination

of the CNN model and satellite observations.

2.2.1 Convolution neural network
In this study, we developed a CNN model to estimate the S10m.

The CNN method has been demonstrated to be superior to other

deep learning methods in remote sensing applications, owing to its

ability to capture spatial feature information and achieve high
Frontiers in Marine Science 04
accuracy in spatial distribution (Yamashita et al., 2018; Meng

et al, 2021a; Zuo et al., 2021; Shin et al., 2022). We constructed a

CNN structure for feature extraction with one input layer, three

convolution layers, three max pooling layers, three dropout layers,

and one regression layer as the output layer. Rectified linear unit

(ReLU) layers were used as activation functions (Figure 2).

For the training dataset of CNN model, we generated patch

pairs between sea surface parameters and geographical factors

(latitude and longitude) as input and the corresponding in-situ

S10m as the ground truth data. Each patch was generated with a size

of 8 × 8 × 7 pixels utilizing the nearest pixels of the satellite gridded

dataset (25 km at daily) extracted from the corresponding in-situ

salinity. Patches that did not fill at least half of the 8 × 8 pixels were

excluded from the training set. The z-score standardization method

was applied to process the sea surface data to weight all variables

equally. A total of 1,310 coupled patches of in-situ salinity and

multi-satellite data were randomly divided into two groups for
TABLE 1 The number of in-situ salinity data points (< 31 psu) at three depths (0, 10, and 20 m) obtained from the National Institute of Fisheries
Science (NIFS) from 2015 to 2021.

May Jun Aug Sep Total data (%)

0 m (< 31 psu) 7 43 274 41 365 (19.29 %)

10 m (< 31 psu) 1 26 224 33 284 (15.01 %)

20 m (< 31 psu) 1 0 52 9 62 (3.28 %)
From 1,892 data points, 15.01% of the CDW exists at a depth of 10 m but only 3.28% at a depth of 20 m.
FIGURE 1

Study area and matching stations for the in-situ and satellite data from 2015 to 2021. The serial shipboard observation stations from National
Institute of Fisheries Science (NIFS) are marked by a green cross sign. The blue and red diamonds indicate the CTD location of Korea Meteorological
Administration (KMA), and Ieodo Ocean Research Station (I-ORS) used for the model validation. The black solid box is the region where the CDW
volume is calculated in Section 3.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1247462
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2023.1247462
training and test. The proportions of patch pairs for the training

and the validation were 70 and 30%, respectively. Additionally, in-

situ data sources (i.e., I-ORS and KMA) were used to evaluate the

effects of different data sources on model performance. We

evaluated the performance of the CNN model with in-situ salinity

using various statistical values such as the determined coefficient

(R2), root mean square error (RMSE), and relative RMSE (RRMSE).

2.2.2 Contributions of each input based on SHAP
We used the SHAP method to investigate the contribution

between sea surface parameters and S10m. The SHAP is one of the

eXplainable Artificial Intelligence (XAI) methods developed to
Frontiers in Marine Science 05
interpret complex black-box, artificial intelligence models. The

SHAP values quantify the impact of each input feature on the

model output, explaining the individual predictions of how much

each input contributes to the prediction. It has the advantage of

providing not only the relative importance of each input variable

but also the positive or negative relationship on the output

(Lundberg and Lee, 2017; Mangalathu et al., 2020; Tian et al.,

2022). SHAP has been widely used in machine learning in marine

science to interpret nonlinear or indirect relationships between

input and output variables. It also helpful for examining complex

interactions between multiple variables in such systems (Jang et al.,

2021; Jang et al., 2022; Tian et al., 2022). The SHAP value was
FIGURE 2

Schematic diagram of a convolutional neural network (CNN) model, Shapley Additive exPlanations (SHAP) analysis and CDW volume estimation.
There are three steps: (1) developing a CNN architecture for estimating salinity at a depth of 10 m (S10m), (2) conducting SHAP analysis to investigate
the importance of input parameters and their interactions, and (3) calculating CDW volume based on S10m maps generated by the CNN.
TABLE 2 Summary of the data used in this study.

Parameter Source Usage in This Study

Satellite data

SST OSTIA

Training set/Test set
SLA CMEMS

SSW ECMWF

SSS SMAP

Precipitation IMERG Analysis

In-situ data

10 m salinity
(S10m)

NIFS Training set/Test set

I-ORS
Validation

KMA

CRD Datong Station Analysis
All datasets were obtained during the summer (May to September) from 2015 to 2021. The satellite data were resampled to the same resolution (spatial, 25 km; temporal, daily). Each acronym is
defined in manuscript. For specific data sources, see Section 2.
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calculated using the following equation (Eq. 1):

SHAPi =oz∈N if g
zj j ! (M − zj j − 1) !

M !
 ½fz∪  if g(xz∪  if g) − fz(xz)� (1)

where z indicates the subset of input parameters, N is all input

parameters, M is the number of input parameters, fz∪ fig(xz∪ fig)   is
output with ith parameter, and fz(xz) is output without i

th parameter

(Lundberg and Lee, 2017; Mangalathu et al., 2020; Jang et al., 2021).

We can better understand the relationships between input and

output by comparing the SHAP value for each input.

2.2.3 Estimation of CDW volume
The CDW volume (VCDW) was calculated using Eq. 2:

VCDW   =
Z 0

d
A(z)dz, (2)

where d is the depth (here d = 10 m), A(z) is CDW area (defined

as< 31 psu). We used SMAP data for the A(0) and the results of the

CNN model for the A(10). The density-based spatial clustering of

applications with noise (DBSCAN) method was used to isolate the

area (A(z)) of CDW in gridded data. DBSCAN is a data clustering

algorithm that determines the noise points or outliers and detects

dense spatial points (Ester et al., 1996). We applied this method to

remove outliers and extract the A(z) at each depth. To calculate the

VCDW, we used the alpha shape method, a computational geometry

algorithm that creates a bounding area or volume around a given set

of points (Edelsbrunner and Mücke, 1994). Since the Changjiang

River plume spreads eastwards over the broad area of the ECS,

reaching as far as Jeju Island, we estimated the VCDW over a limited

area affected by CDW (119–128°E, 29–35°N).
3 Results

3.1 Performance of CNN model

Figure 3 shows the performance comparison of the CNN model

using various datasets. Figures 3A and B show the training and test

results, respectively. In the case of the test results, the R2, RMSE, and

RRMSE were 0.81, 0.63 psu, and 2.00%, respectively. To validate the

model results based on different data sources, we utilized in-situ

data from KMA and I-ORS. The locations of each station are shown

in Figure 1. Using KMA data with 181 matched datasets, the

validation results showed a good level with an R2, RMSE, and

RRMSE of 0.65, 0.65 psu, and 2.06%, respectively (Figure 3C). We

determined that the model performed well with an RMSE of< 1 psu.

Figure 3D compares daily values measured by I-ORS between May

and September 2020. The R2, RMSE, and RRMSE was 0.80, 0.82

psu, and 2.64%, respectively. Since there were insufficient data

points below 31 psu, errors were often present within this range,

but overall results showed good performance with an RMSE below 1

psu. In addition, we compared the CNN results, HYCOM, and

CMEMS with KMA in-situ data observed from 2016 to 2019. It was

found that HYCOM tended to overestimate S10m with an R2, RMSE,

and RRMSE of 0.11, 1.68 psu, and 5.10%. Similarly, CMEMS also

showed low accuracy with an R2, RMSE, and RRMSE of 0.23, 1.48
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psu, and 4.71%. In contrast, the CNNmodel developed in this study

demonstrated high accuracy with an R2, RMSE, and RRMSE of 0.68,

0.71 psu, and 2.26%.

Figure 4 shows monthly spatial distributions of SMAP SSS,

CNN result of S10m, and DS (SSS–S10m) from 2015 to 2021. The

solid black and red lines represent the 31 psu isohalines at the

surface and at a depth of 10 m, respectively. The CDW represents in

the center of the ECS and mainly transported eastward and

northeastward. The SSS showed that an increase in CDW area

over time and particularly extremely low salinity values (< 28 psu)

always existed near the coastal region during the summer

(Figure 4A). However, S10m was generally higher than the sea

surface, and the areas with salinity below 31 psu were narrower

than SSS (Figure 4B). Another significant finding was that, unlike

SSS, relatively low salinity was present in the center of the ECS

rather than in the coastal areas. Because of tidal mixing, low salinity

was not observed near the coastal area at a depth of 10 m (Moon

et al., 2009; Yu et al., 2020). The DS represents the difference in

salinity, with a maximum difference of –2.59 psu in May and a

minimum difference of –1.08 psu in September (Figure 4C). The red

shaded areas indicate regions where both SSS and S10m have a

salinity of ≤ 31 psu, indicating the presence of CDW at depths

greater than 10 m and its movement towards Jeju Island over time.

It confirms the difference in the spatial distribution of CDW

between sea surface and a depth of 10 m.
3.2 Contribution of sea surface physical
factors to S10m

Using the SHAP approach, the effect of input on the output can be

quantified. By comparing the SHAP values, the contribution of each

input toward the output can be evaluated. Figure 5 shows the

contribution of input variables affecting S10m. The SSS was the

highest at 48.42%, followed by SLA, latitude, SST, longitude, V-wind,

U-wind at 13.22, 10.59, 9.31, 8.08, 5.48, and 4.90%, respectively. A

negative value on the x-axis (SHAP value) indicates that the model

predicts a relatively low S10m, whereas a positive value indicates the

opposite. The SSS was themost influential factor as it directly affects the

S10m and has a strong positive relationship with it. The second most

important variable was SLA, which changes according to water mass

and thermal expansion (Cabanes et al., 2001; Kuang et al., 2017).

During the summer in the ECS, the discharge of the Changjiang River

leads to an increase in watermass, which can be reflected in SLA. At the

same time, the strengthening of stratification causes an increase in SST

simultaneously (Park et al., 2011; Moon et al., 2019; Gao et al., 2020;

Hong et al., 2022; Kim et al., 2022). Therefore, there was an inverse

relation between SLA and S10m due to low salinity inmass changes. The

SSW is critical for north-eastward CDW transport because of the

Ekman flow (Chang and Isobe, 2003; Siswanto et al., 2008; Moon et al.,

2010). However, when predicting the S10m, it did not show a clear

relationship and had a very low contribution compared to other

variables (< 6%). The SSW has a significant impact on the CDW

extension but not on salinity. Hence, the SHAP analysis results

suggested that the CNN model considers more realistic physical

relationships between each input variable and S10m.
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3.3 Variation of the CDW volume

The CDW volume was calculated by combining the S10m map

obtained from CNN with the SMAP SSS. It was created daily during

the summer (May to September) from 2015 to 2021 (Figure 6A).

When compared annually, the CDW volume was highest in 2016

(3.01×1012 m3), followed by 2020 (2.46×1012 m3) and 2015

(2.32×1012 m3). However, in 2018, the CDW reached a minimum

volume (1.31×1012 m3). The CDW volume showed a seasonal trend,

with relatively low values from May to early June and an increasing

trend from June to August (Figure 6B). The lowest value was

recorded in May at approximately 0.30×1012 m3, while the

highest was in August at 1.74×1012 m3 and then decreased to

1.05×1012 m3 in September. On average, there is a variation of

1.44×1012m3 in CDW volume during the summer season.

We investigated the spatial distribution of CDW volume at a

depth of 10 m. Figure 7 shows the percentage of pixels included

when calculating the volume of CDW that exists at depths of ≥

10 m. The percentage represents the frequency of the pixels that
Frontiers in Marine Science 07
were used to calculate the volume at 10 m each month. For example,

pixels indicating 100% represent the presence of CDW at depths ≥

10 m throughout the month in the corresponding locations.

Figures 7A, B show the pixels for 2016 and 2018, which recorded

the highest and lowest CDW volumes, respectively. In 2016, when

the volume was more extensive, it was observed that CDW existed

at depths > 10 m and gradually moved towards the Jeju coast over

time. CDW in July spread extensively in the ECS throughout the

month. In contrast, CDW in 2018 was located in a relatively narrow

area. The spatial distribution of CDW at a depth of 10 m varied

significantly depending on the volume.
3.4 Sea surface warming caused by
different CDW volume

To investigate the impact of CDW on SST, we compared S10m
values and sea surface temperature anomaly (SSTA) in 2016 and

2018, when the CDW volume was at its maximum (3.01 × 1012 m3)
B

C D

A

FIGURE 3

Density scatter plots between in-situ and estimated S10m derived from CNN. (A, B) are the results of training and test sets, respectively.
(C, D) represent the results using KMA and I-ORS data, respectively.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1247462
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kim et al. 10.3389/fmars.2023.1247462
and minimum (1.31 × 1012 m3), respectively. Figures 8A, D depict

the time series of DS (SSS–S10m) and SSTA from I-ORS. The DS
represents the difference in between surface salinity and S10m,

demonstrating the degree of stratification caused by salinity. The

black box denotes the period corresponding to CDW, which

persisted for 117 days in 2016. Throughout this period, DS
consistently indicated negative values, indicating the presence of

salinity stratification induced by CDW. Consequently, there was an

overall increase of 4.79 °C in SSTA. These findings support the

conclusion by Moon et al. (2019) that strong stratification caused by

low salinity water significantly increases SST. In contrast, in 2018,

the influence of CDW continued for 44 days and increased SSTA by
Frontiers in Marine Science 08
2.19 °C (Figure 8D). The low increase in SSTA observed in 2018

compared to 2016 can be attributed to a decrease in the CDW

volume, leading to a shorter period of low salinity effects. The

spatial distribution of DS and SSTA are shown in Figures 8B, C,

respectively. During 2016, the low values of DS indicated strong

stratification caused by salinity, particularly in the center of the ECS

(yellow lines). The distribution of SSTA also showed high values in

areas adjacent to regions with low DS values, and it corresponds to

the CTD observation results reported by Moon et al. (2019). It is

possible that CDW contributed to the increase in SST, as suggested

by previous studies (Park et al., 2011; Moon et al., 2019; Gao et al.,

2020; Park et al., 2020; Hong et al., 2022). However, DS was mostly
B

C

A

FIGURE 4

The monthly spatial distributions (A) SMAP SSS (B) CNN result of S10m and (C) DS (SSS–S10m) from 2015 to 2021. The solid black lines and red lines
represent the 31 psu isohalines at the surface and at a depth of 10 m, respectively. Red shading indicates location where CDW exists deeper than
10 m.
FIGURE 5

The summary plot of SHAP values for the CNN model. The x-axis indicates the impact of each feature to the model. The points are distributed
horizontally along the x-axis according to their SHAP value. The color of dots is the value of each input variable, from low (blue) to high (red). Input
variables with larger contribution are placed in ascending order.
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zero in 2018, suggesting a well-mixed condition, and SSTA showed

low values (Figures 8E, F). Unlike in 2016, there was no clear

relationship between salinity and SSTA.
4 Discussion

4.1 Importance of geographical factors

We selected physically related variables and geographic

information as input factors to estimate the S10m as sea surface

parameters. To investigate the importance of geographic

information, we compared the results of the model trained with

only physical factors with the model with geographic information

included. The results showed that the model without geographic

information had lower accuracy, with an R2, RMSE, and RRMSE of

0.79, 0.67 psu, and 2.13%, respectively, in the test set compared to

the model with geographic information included. The SHAP

analysis applied to this model revealed that the contribution of

each variable was as follows: SSS (56.36%), SLA (17.07%), SST

(12.67%), V-wind (7.48%), and U-wind (6.42%). When

geographical information was excluded, the relative importance of
Frontiers in Marine Science 09
other variables increased, but the order of variable importance

remained the same (Figure 5). The geographical information

represents the significance of the Changjiang River location in

this study. The Changjiang River is a dominant source of

freshwater in the ECS and is located southwest of our study area.

As the latitude and longitude decrease (blue), it gets closer to the

mouth of the Changjiang River, resulting in low S10m values. In

addition, the results suggest that latitude has a more significant

impact than longitude. The CDW from the Changjiang River tends

to spread eastward and therefore exists over a relatively wide range

of longitudes (Figure 4). Therefore, changes in latitude have a more

significant effect on S10m changes than that in longitude. It allows us

to recognize that physical and geographical factors both have a

significant impact on model performance.
4.2 Additional environmental factors

In addition to physical surface parameters used as input data,

there are other environmental factors that can influence the volume

of CDW. The primary factors responsible for decreasing the salinity

of seawater are river inflows and precipitation. In particular, the
BA

FIGURE 6

Time series of (A) daily and (B) monthly CDW volumes from 2015 to 2021. The black line indicates the annual mean value.
B

A

FIGURE 7

Percentage of pixels included in the volume calculation by month, where CDW exists in deeper than 10 m. (A) The maximum volume in 2016 and
(B) the minimum volume in 2018. A value of 100% indicates that CDW is always present in the area during the month.
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ECS is highly affected by the Changjiang River, monsoon systems,

and typhoons in the summer (Beardsley et al., 1985; Chen et al.,

1994; Chang and Isobe, 2003; Lie et al., 2003; Kim et al., 2009; Son et

al., 2020; Hong et al., 2022; Jung et al., 2022). Therefore, we

addressed the CDW volume changes due to the influence of CRD

and precipitation, which directly increases the freshwater in the

ocean. Furthermore, we analyzed the impact of Typhoon Bavi

(occurred in 2020).

4.2.1 Relationship between CRD and
CDW volume

We analyzed the relationship between the CDW volume and

CRD, which is the main controlling factor for CDW (Figure 9)

(Beardsley et al., 1985; Lie et al., 2003; Chen et al., 2008; Siswanto

et al., 2008). In spring (May to early June), the CDW volume was

close to zero and peaked in July as the CRD increased. It should be

noted that there was a time lag of 34 ± 15 days between the CDW

volume and CRD. This is consistent with previous studies

demonstrating that the CDW extends eastward in June with

increasing CRD and reaches Jeju Island after 1–2 months (Chen

et al., 2008; Kim et al., 2009; Son and Choi, 2022). Moreover, the

years with the maximum volume in July (2016, 2017, 2018, and

2019) had an average time lag of 24.3 days, while the years with the

maximum volume in August (2015, 2020, and 2021) had a longer

time lag of 46.3 days. It does seem to depend on different

mechanisms affecting the movement of CDW, such as wind and

ocean currents. Particularly in 2021, CRD appeared to be different

from other years, and it seemed to be artificially adjusted. It can be

occurred by the impact of the Three Gorge Dam.
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4.2.2 Effects of freshwater inflow by CRD
and precipitation

We conducted a comparison between the monthly cumulative

sum of CRD (QCRD) and the monthly average volume to examine

the variation in CDW volume with respect to the inflow of CDW

(Table 3). QCRD revealed an increasing trend and reached its

maximum (9.73×1010 m3) in July and then decreased from

August. With a 1,000-times difference in units between CDW

volume and QCRD, we converted the values into a range between

0 and 1 using minimum-maximum (min-max) scaling and

conducted regression analysis. Figure 10A displays the scatter plot

for the entire period. It was observed that CDW volume and CRD

have a positive correlation (Beardsley et al., 1985; Lie et al., 2003;

Chen et al., 2008; Siswanto et al., 2008; Bai et al., 2014). We

conducted the monthly regression coefficients to compare the

impact of each month (Figure 10B). The influence of QCRD on

volume increased over time, with a maximum impact (1.32) in

August. This may be due to the one-month time lag from when

CRD reached its maximum in July to the study area. It suggested

that the rapid decrease in QCRD after July contributed significantly

to the decrease in CDW volume after August.

Another factor, precipitation was calculated using Eq. 3:

QPRE =oA� P (3)

where A is CDW area, which is the region with SSS< 31 psu, and

P represents the precipitation that falls in area A. Precipitation

immediately enters the ocean; thus, the inflow of precipitation to the

CDW area was calculated as the monthly cumulative sum of

precipitation (QPRE). As shown in Table 3, the highest values of
B C

D E F

A

FIGURE 8

Time series of DS (SSS–S10m) and SSTA from I-ORS in (A) 2016 and (D) 2018, respectively. The black box represents the length of time CDW has
existed. (B, C) are the spatial distribution of DS and SSTA on August 18, 2016, respectively, while (E, F) show the same for August 18, 2018.
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QPRE were observed in August (5.65×107 m3) which can be

attributed to heavy precipitation caused by typhoons. During the

entire study period, 12 typhoons passed through the area, and 10 of

them occurred in August and September (reported by KMA). To

investigate the influence of QPRE on volume fluctuations, we applied

min-max scaling and conducted a regression analysis (Figure 10C).

In Figure 10D, the monthly contribution was highest in July, with a

coefficient of 1.14, followed by August, with 1.01. From the results,

it is clear that the precipitation, particularly during the monsoon

season, significantly affects CDW volume fluctuations.

In summary, while the monthly trends showed a one-month

time lag between CRD and CDW volume changes, precipitation

had a more immediate effect on CDW volume due to its direct entry

into the ocean (Table 3). Regression analysis determined the extent

to which each factor affected CDW volume. By comparing monthly

regression coefficients, the CRD had the most significant influence

in August, while precipitation had the greatest impact in July. These

results demonstrated that the influence of CRD and precipitation

on CDW volume variation differs from month to month.

Furthermore, the QCRD was 1,000 times larger than the QPRE.

However, the study only measured precipitation within the CDW

region and did not consider horizontal dispersion, which may have

led to an underestimation of the influence of freshwater input. To

obtain a more comprehensive understanding, further investigation

into the impact of freshwater input and additional factors

is required.
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4.2.3 Effects of typhoon on CDW volume
changes in 2020

When the highest CRD was recorded in 2020, we compared the I-

ORS S10m with the CNN S10m (Figure 11A). The variation patterns of

S10m (blue lines) were similar for the entire period, and a rapid decrease

in S10m occurred in August 2020 due to a large amount of freshwater

flowing into the ECS. It was confirmed that the CDW volume (orange

line) also increased accordingly. To identify the effect of CDW near the

I-ORS, the S10m spatial distributions were generated before the salinity

decrease, during the intrusion of CDW, and after salinity recovery

following Typhoon Bavi (Figures 11B–D). During August 24–26

(shown as gray shading in Figure 11A), Typhoon Bavi moved

northward and passed through near the I-ORS as a super typhoon

with a strong wind speed (maximum of 66.1 m/s reported by the

KMA). A rapid increase in salinity occurred in SSS (8 psu reported by

KMA) and S10m (2.61 psu) after the typhoon passed on August 26.

Regarding CDWvolume, an extreme decrease (0.77×1012 m3) occurred

during the same period. This result demonstrated that extreme vertical

mixing induced by the typhoon as reported by Hong et al. (2022). In

addition, it should be noted that CDWwas eliminated and divided into

two patches along the typhoon track (Figure 11D). Lee et al. (2017)

suggested that the impact of typhoons inhibited the spread of CDW

and induced vertical mixing, preventing its persistence. Therefore,

although the CRD was highest in 2020, the relatively small CDW

volume compared to 2016 (Figure 9) could be due to the dissipation of

CDW caused by the typhoon.
TABLE 3 Monthly CDW volume, accumulated CRD (QCRD), and accumulated precipitation (QPRE) from 2015 to 2021.

May Jun Jul Aug Sep

CDW Volume (1012m3) 0.30 0.82 1.54 1.74 1.05

QCRD (1010m3) 5.78 7.32 9.73 7.64 5.72

QPRE (107m3) 1.29 4.04 4.18 5.65 4.93
FIGURE 9

Time series of CDW volume and Changjiang River discharge (CRD) from 2015 to 2021. The blue dashed lines are peaks of CDW volume, and the
orange dashed lines are peaks of CRD.
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4.3 Different ocean conditions in 2016
and 2018

The difference in ocean conditions between 2016 and 2018 may

be attributed to various climatological effects, including ENSO,

typhoons, and wind. The ENSO can increase the CRD by

increasing precipitation during El Niño in the ECS (Park et al.,

2011; Park et al., 2015; Wu et al., 2023). Typhoons are frequent

oceanic events during summer in the ECS and are often

accompanied by strong precipitation and winds. The strong

vertical mixing caused by the passage of a typhoon hinders the

expansion of CDW (Lee et al., 2017; Hong et al., 2022; Jung et al.,

2022). Wind also plays a role by inducing CDW movement and

vertical mixing. Therefore, we examined the oceanic environment

conditions during 2016 and 2018, which exhibited significant

differences in SSTA due to variations in the CDW volume. In

2016, a strong El Niño event led to a noticeable increase in CRD

compared to other years (Figure 9). The increased CRD contributed

to an increase in CDW volume, which significantly decreased

salinity in the ECS. According to the KMA best track, no
Frontiers in Marine Science 12
typhoons were passing through the ECS from May to September

2016, meaning there was no vertical mixing caused by typhoons.

Therefore, these factors likely prolonged the persistence of CDW,

resulting in higher SSTA compared to other years (Figures 8B, C).

In contrast to 2016, 2018 had a low CDW volume due to low CRD

caused by La Niña (Figure 9). In 2018, three typhoons, Ampil,

Rumbia, and Soulik, passed through the ECS (reported KMA),

which may have caused frequent vertical mixing and hindered the

persistence of CDW. According to Gao et al (2020) there were

strong winds in 2018, causing more wind-induced vertical mixing

than in 2016.

Our analysis showed that in 2016, the increase in CRD resulted

in a significant increase in CDW volume. The absence of typhoons

and weak winds allowed CDW to have a persistent influence,

resulting in high SSTA. In contrast, in 2018, a low SSTA was

observed due to a decrease in CRD and frequent typhoons, as well

as strong winds causing vertical mixing. The summer marine

environment in the ECS is influenced by various factors.

Therefore, to better understand the impact of CDW, it is crucial

to consider these factors together.
B

C D

A

FIGURE 10

Scatter plot between CDW volume (A) QCRD and (C) QPRE from 2015 to 2021. Blue line is slope of each variable and blue shading indicates 95%
confidence levels. Monthly regression coefficient of (B) QCRD and (D) QPRE. All values are normalized to be between 0 and 1. P-value is less than
0.05, the regression is significant.
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5 Conclusions

The summer marine environment of the ECS is influenced by

CDW volume. In this study, we estimated CDW volume and

investigated its spatial and temporal variation. The main findings

are as follows:
Fron
(1) The CNN model generated S10m using sea surface

parameters, including SST, SLA, SSW, SSS, longitude, and

latitude. It had a high accuracy with R2, RMSE, and RRMSE

values of 0.81, 0.63 psu, and, 2.00%, respectively.

Additionally, the validation results with KMA and I-ORS

showed an RMSE of< 1 psu.

(2) The SHAP approach was employed to assess the impact of

input variables on the model output. The analysis revealed

that SSS had the highest contribution of 48.42% and a

positive relationship with S10m. The SLA followed with a

contribution of 13.22% and a negative relationship,

indicating that the CNN model considered more realistic

physical relationships.

(3) By analyzing the temporal and spatial variation of CDW

volume at a depth of 10 m, we found that the maximum

volume of 3.01×1012 m3 occurred in 2016, while the

minimum volume of 1.31×1012 m3 in 2018. Similarly,

when investigating the monthly variation, the lowest
tiers in Marine Science 13
volume of 0.30×1012 m3 was recorded in May, while the

highest volume of 1.74×1012 m3 was recorded in August,

followed by a decreasing trend from September.

(4) Influence of CDW on sea surface warming was compared

in 2016 and 2018, when there was a significant difference in

CDW volume. It shows that CDW enhanced SST for 117

days in 2016, resulting in a total increase of 4.79 °C. In

contrast, CDW persisted for 44 days in 2018, resulting in a

total increase of 2.19 °C. The distribution of SSTA also

showed high values in areas adjacent to regions with

significant differences in DS.
These results will greatly contribute to understanding CDW

volume changes and its impact on the stratifications in the ECS. We

also identified other environmental factors that influence the CDW

volume, such as CRD, precipitation, and typhoons. Further research

is required to investigate the detailed processes related to the CDW

responses in the ECS.
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FIGURE 11
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distributions of each date of red circles in (A); black lines are 31 psu isohalines. (D) White dots are tracks of Typhoon Bavi (reported by the KMA).
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