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Ecosystems become increasingly similar to each other, based on species

composition. Despite the inevitability of homogenized ecosystems due to

global change, few studies have specifically addressed the identification of

homogeneous systems in food webs. This study focuses on identifying

different patterns of marine food web homogenization by selecting 41 marine

food webs and establishing an indicator system. The research classifies the food

webs into seven main types based on three different homogenization processes

(I, II, III, IV, V, VI, and VII), with approximately 60.1%, 46.3%, and 61% of the

homogenization being structural, functional, and resource homogenization,

respectively. It highlights the importance of homogenization processes in

marine ecosystems, which are mainly driven by interactions between structural

and resource homogenization. The research found that Type V exhibited

universality in both temporal and spatial dimensions, while Type III also

showed universality when the food webs were dominated by resource

homogenization. On the other hand, Type I, which was associated with human

activities, showed locality when the food web only manifested structural

homogenization. Functional homogenization often occurred alongside

structural homogenization, as seen in Type IV and Type VII. Yet, when the food

web exhibited functional homogenization (Type II), it was directly linked to

human activities over the past 20 years. The research aimed to improve the

methodology in terms of (a) identifying different food web homogenization

patterns; (b) establishing indicators system to quantify food web

homogenization; and (c) clarifying the ecological significance of food web

homogenization. The study provided a comprehensive understanding of food

web homogenization and its associated risks, which could inform nature-based

ecosystem management strategies to mitigate the impacts of future

climate change.
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1 Introduction

Ongoing climate change the behavior, reproduction and

phenology of many species (Descamps et al., 2019). Some need to

change their area and invade new habitats. Together with human-

generated introductions, seriously reshuffle species distributions,

resulting in homogenization (Lövei, 1997). Altered species

composition results in changes in interspecific interactions and,

ultimately, the structure and functioning of ecosystems worldwide.

Invading species and novel interactions rewire food webs (Bartley

et al., 2019). Evidence suggests that this rewiring is creating a novel

heterogeneity, resulting in asymmetries and mismatches to physical

and abiotic properties (Lehikoinen et al., 2019; Rathore et al., 2020).

This heterogeneity is causing structural variations in ecosystems,

which in turn affects the link configuration and node features of food

web networks (Gonzalez et al., 2020; Schell et al., 2020). Kortsch et al.

(2015) detects that the expansion of the sub-network module size

dominated by generalist species has increased network connectance

and reduced modularity in the Barents Sea (Kortsch et al., 2015). A

few generalist and often cosmopolitan species may be involved in a

large number of inter-specific interaction, either as prey or predator,

host or parasite (Scott and Helfman, 2001). These ubiquitous changes

made to networks may result in novel topologies, for example, make

them more similar to scale-free networks, with characteristics such as

preferential attachment and high clustering coefficient. It will result in

both high vulnerability and robustness in a food web (Barabási and

Bonabeau, 2003). This process is known as food web homogenization

(in terms of topology, beyond homogenization in terms of species

composition) and simplifies the interrelationships within the network

(Dunne et al., 2004). This reflects the ecological homogenization

problem at the food web level, which has been the subject of

increasing reports in recent decades. Magurran has proposed that

the biotic homogenization phenomenon of fish communities in the

North Atlantic reflects community feedback to ocean temperature

changes (Magurran et al., 2015). The issue of biotic homogeneity is

not limited to one aspect of ecosystems, but rather is widespread

throughout various stages. It can be seen in various instances such as

the occasional mixing of taxa through paleontological records,

breakdown of biogeographic fauna, and genetic similarities in

freshwater and terrestrial ecosystems (Olden et al., 2004; Olden,

2006). Biotic homogenization can be classified into three types:

genetic, taxonomic, and functional, which explain how

homogenization occurs at the molecular, individual, and

population levels (Clavel et al., 2011). While homogenized

ecosystems are believed to be an inevitable result of global change

(Lövei, 1997; Hobbs et al., 2009; Groffman et al., 2014), there has been

little research on how homogenization is expressed in food webs and

the identification of different types of homogenization processes.

Food web homogenization (FwH) is a phenomenon that reflects

several state characteristics of an ecosystem (Rooney and McCann,

2012). One of these characteristics is topological simplification,

which occurs when the complexity of the network decreases due to

species loss (reduced number of nodes). But beyond the size of the

network (in terms of the number of nodes), topology can be

simplified in other ways, including connectivity density and

network diameter reduction. Several mechanisms may lead to an
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increased similarity in link structure and reduced network

modularity. This structural dynamic is mainly caused by a biotic

homogenization process and can result in alterations in interspecific

interactions (Cazelles et al., 2019). It is probably presented as a

series of network topology problems, such as network sparsification,

network path length reduction, network hierarchy flattening and

reduced average mutual information in the network (Ulanowicz,

2004). Functional non-redundancy is one of the manifestations of

FwH (see also Heymans et al., 2014), where multiple species have

similar ecological roles and functions in the food web, leading to

increased competition in the ecosystem. Additionally, FwH can also

lead to resource centralization, where middle and low-level species

occupy core importance, resulting in the formation of hub resource

nodes and making the system more vulnerable to directional

disturbances (somewhat similarly to an agro-ecological

monoculture, in an extreme case, where disturbing the crop

species may result in the collapse of the whole system).

Phenotypic differences in state characteristics can lead to various

ecosystem risks, including biodiversity decline, nutrient cycling

imbalances, and eutrophication (Schiettekatte et al., 2020; Obura

et al., 2021; Geng et al., 2022). Therefore, it is important to identify

the types of food web homogeneity in order to explore

systematic risks.

Combined with previous research, biotic homogenization can

be characterized by several indicators in the literature (Wang et al.,

2021). b-biodiversity can indicate the spatial heterogeneity of the

community (Willig et al., 2023), and the Sørensen dissimilarity

index (bSOR) is commonly used in ecological research to compare

the spatial differentiation between communities (Musseau et al.,

2022). The Jaccard index is typically used to calculate compositional

similarity excludes joint absence (Fraser et al., 2022), while the

Bray-Curtis Similarity index or Morisita’s index is applied to

measure relative abundance data (Olden and Rooney, 2006;

Knop, 2016). Food web homogenization, on the other hand, is

different from biotic homogenization in the general sense, as it

includes the connotation of biotic homogenization, but is

considered a more detailed elaboration of the complexity of the

network object.

Due to the relatively narrow range of demands on primary

producers in marine food webs, there is a higher risk of food web

homogenization. In this research, we aimed to identify various

patterns of homogenization in marine food webs. We selected 41

marine food webs and established an indicator system to classify

them into 7 main types (I, II, III, IV, V, VI, and VII) based on 3

different homogenization processes (structural, functional, and

resource homogenization). We recorded specific information for

each food web, such as latitude, sampling time, and the total

number of nodes and links. We used complex network methods

to calculate relevant network indicators and established thresholds

for these indicators. Finally, we calculated correlations between

indicators. This study aims to enhance the methodology in terms of

(a) identifying different food web homogenization patterns; (b)

establishing an indicator system to quantify food web

homogenization; and (c) clarifying the ecological significance of

food web homogenization. The work will provide a comprehensive

concept of food web homogenization and improve our
frontiersin.org
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understanding of the risks associated with homogenizing systems,

which will contribute to the development of nature-based

ecosystem management countermeasures against future

climate change.
2 Methods

2.1 Classification of food
web homogenization

Based on the state characteristics of food webs depicted in

Figure 1, we categorized food web homogenization into three types.

(a) Structural Homogenization (SH), which refers to a topological

simplification process in food webs resulting in a decrease in

complexity. From the perspective of complex networks, apart

from a reduction in the number of nodes or links, this process is

predominantly reflected in the issue of decreased modularity. The

degree of network modularity is directly proportional to the

structural complexity of a network. Therefore, if a network has a

high number of nodes and links but few aggregated sub-net

modules, it implies that the network structure follows a simple

cascading relationship and lacks complex network characteristics

such as small-worldness, self-organization, or scale-free properties.

(b) Functional homogenization (FH). It represents ecological

functional non-redundancy in food webs, which includes a decline

of niche overlap or functional diversity. Each species and predator-

prey linkages in a food web perform different ecological functions.

For example, top predators can directly affect connected prey and

indirectly impact basal-species, leading to a trophic cascade (Soler

et al., 2015). The functional diversity of species interactions is

significantly and positively related to ecosystem stability (Gonzalez

et al., 2020). Numerous functionalized redundancy groups can

enhance the system’s resistance against random disturbances.

(c) Resources homogenization (RH) refers to a process of

resource centralization in food webs. The primary producers in

aquatic ecosystems have a relatively unitary composition pattern. In

the ocean, phytoplankton is the sole source of primary productivity

in oligotrophic regions. In some freshwater lakes affected by human

activities, the decline in biomass of benthic organisms and
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zooplankton, which are prey resources for higher trophic-level

species, has resulted in a food web that depends solely on a

monodominant resource group for material and energy supply (it

referred to a special case of FH).
2.2 Quantifying the food
web homogenization

In section 2.1, we used various indicators to quantify FwH. To

measure network complexity, we relied on modularity, a key index

for structural homogenization. The modularity of a food web is

determined by the degree of clustering between nodes. A higher

degree of modularity indicates that nodes in the food web tend to

form closely connected modules or functional blocks, with relatively

fewer connections between modules. Research has demonstrated

that modularity is strongly linked to food web complexity (Montoya

et al., 2015). For directed networks, we used the Newman-Girvan

modularity approach (Newman, 2004), considered a density-based

modularity approach (Guimerà et al., 2010). It is a network

aggregation method within the complex networks field

(Giacomuzzo and Jordán, 2021). To determine the total number

of modules, we applied an extension of the Leiden algorithm (Traag

et al., 2019). It solved the problem of arbitrarily connected and

disconnected communities, which is expressed by the following

equation:

Q =
1
Loij

(Aij −
kini k

out
j

L
)dmimj

(1)

where Q represents the network modularity; L is referred to the

total number of links; Aij is the adjacency matrix of the food web;

ki
in represents the in-degree of node i; kj

out is the out-degree of node

j; dmimj represents the Kronecker delta for module i and j, which

provides a succinct encoding of the graph information (Kozen and

Timme, 2007). We utilized the R package igraph to calculate food

web modularity (https://r.igraph.org/).

In addition, for functional homogenization, we treated

interaction profile diversity (IPD) as an indicator to quantify

functional diversity or redundancy, reflected heterogeneity in

ecosystem traits. We used a network-based measure of functional
FIGURE 1

The diagrammatic sketch of food web homogenization. Blue nodes referred to the predator; orange nodes referred to the consumer; green nodes
referred to the resource.
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diversity, based on the positive and negative effects of species i and j

up on n steps (i.e. Eij,n
+, Eij,n

-) and applied the complementary

Marczewski-Steinhaus index to quantify the dissimilarity of species

interactions (Lin et al., 2022). Apart from Rao’s quadratic entropy

method (Botta-Dukát, 2005), the IPD method, which is a network-

based approach, calculates the average dissimilarity between two

interaction profiles, and the IPD value increases with the higher

functional diversity in the food web. The related equations are listed

below:

E+
ij,n =

1
n
(a+ij,1 + a+ij,2 + ::: + a+ij,n) (2)

E−
ij,n =

1
n
(a−ij,1 + a−ij,2 + ::: + a−ij,n) (3)

dij =
o
N

k=1

E+
ik − E+

jk

�� �� +o
N

k=1

E−
ik − E−

jk

�� ��

o
N

k=1

max E+
ik, E

+
jk

� �
+o

N

k=1

max E−
ik, E

−
jk

� � (4)

IPD =
o
N

i=1
o
N

j>i
dij

(S2 − S)=2
(5)

where aij,n represents the n-step effect of species i on species j, in

this research, n is assigned 3. dij represents dissimilarity of

interaction profiles for species i and j, which ranges from 0 to 1,

and large dij referred to high dissimilarity. S represents the total

number of species nodes. When the IPD is small, it indicates fewer

interactions in the network, resulting in lower functional diversity

within the system, thereby potentially giving rise to functional

homogenization issues.

To ensure consistency in identifying resource nodes, it is

important to recognize that in a food web, not only the basal

species with a ki
in value of 0 are considered as resources. Primary or

secondary consumers such as Antarctic krill (Euphausia superba)

are also included. Therefore, for the purpose of this research, we

define resource nodes as those with an out-degree significantly

greater than their in-degree (ki
out>ki

in). To achieve this, we propose

using the parameter dk.

dk =
kini
kouti

  0 ≤ dk < 1,  kouti ≠ 0 (6)

where dk represents the ratio of out-degree and in-degree with

species i. When dk equals 0, it referred to the node as basal species.

When a node in a food web has an in-degree smaller than the out-

degree, i.e., dk is less than 0.5, it indicates that the node is more

often utilized as a food resource by other nodes, while it shows

relatively lower preferences in selecting other nodes as food

resources. In the ecological context, this suggests that the node

plays a prominent role as a prey, being more frequently preyed

upon by other nodes, thus qualifying it as a resource node.

Correspondingly, when dk is below 0.25, to be specific, over 75%

of the links are associated with predation relationships involving the

node, positioning it in the upper quartile of the total link count. This
Frontiers in Marine Science 04
considerable number implies that the majority of predators

preferentially choose this node as a food resource. Therefore, we

defined a resource node when dk is below 0.5 and a core resource

node when dk is below 0.25.

The importance of resource nodes increases significantly during

the homogenization process, which determines by resource

dependence. However, calculating metrics like node importance

or centrality alone cannot fully capture the phenomenon of resource

homogenization. Resource homogenization is best reflected when a

small number of nodes with high keystoneness and importance are

targeted by multiple predators in the network (Gouveia et al., 2021).

It results in a concentrated being-preyed relationship in the

minority nodes. A power law distribution in the out-degree of a

network can indicate a resource homogenization process (Stivala

et al., 2020). In our study, we utilized the Kolmogorov−Smirnov

(KS) test to verify the power law distribution for a food web

(Kovalev and Utkin, 2020). We obtained the R-squared, pk(out),

value through the maximum likelihood estimation (MLE) approach

(supplementary material). The igraph R package (https://

r.igraph.org/) was used for the relevant analyses. If the fitting

value pk(out) of the output degree distribution of the network is

greater than 0.9, it indicates that the network is experiencing a

serious issue with resource homogenization.
2.3 Identifying food web
homogenization patterns

In real food webs, certain changes may lead to the occurrence of

all three types of food web homogenization processes

simultaneously. In order to better assess the vulnerability of the

ecosystem, it is important to identify homogenization patterns. We

propose the following equation:

FwH = f (SH, FH,RH) (7)

In a real ecosystem, the function f here is difficult to fit, which

may require more related work to seek to find the appropriate

function. Our hypothesis is that food web homogenization can be

viewed as a superposition of these three processes, and relevant

indicators can be used to comprehensively identify homogenization

patterns in real food webs.

FwH = SH + FH + RH (8)

where FwH represents the comprehensive effects of food web

homogenization; SH represents the effects of structural

homogenization; FH represents the effects of functional

homogenization; RH represents the effects of resource

homogenization. According to different permutations and

combinations of the three homogenization types, the FwH

consists of 7 types. Each type includes 3 levels of FwH intensity

by assigning values to three different indicators, such as serious (S),

intermediate (I), and ordinary (O). The thresholds for each

indicator are calculated based on the food web data in the

database we are building, which is determined using percentiles

according to the data distribution type and data characteristics. Our
frontiersin.org

https://r.igraph.org/
https://r.igraph.org/
https://doi.org/10.3389/fmars.2023.1245513
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1245513
database has collected 115 marine food web data sets from around

the world, all of which have complete data. For this paper, we

randomly selected 41 food webs from this database. Thus, we

established the methods to identify food web homogenization

processes integrally, as shown in Table 1.
2.4 Real food web data

We investigated several databases (e.g., EcoBase, http://

ecobase.ecopath.org/) and literature (http://www.isiknowledge.com),

and randomly acquired 41 marine food webs to identify food web

homogenization patterns. These food webs cover different types of

marine ecosystems (including estuaries, coastal zone, coral reefs, etc.).

Detailed information is listed in the supplementary material. We

collected the timeframe during which the authors mentioned in the

published articles were actively collecting data, specifically, the time

when these food web data were sampled in their natural habitat. As

the publication time of literature frequently differs from the actual

sampling time, we adopt the latter as a representation of the food

web’s state at that specific moment. Ideally, we would need long time

series of food webs to follow the temporal dynamics within local

ecosystems, but data are quite scarce for this.
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3 Results

3.1 Network modularity (Q)

In our study, we calculated the network density-based

modularity (Q) of 41 marine food webs using equation (1). We

then used the Spearman coefficient to analyze the correlation

between Q and related network parameters, such as S, L, time,

and module. We found that 60.9% of marine food webs had low

network modularity (Q<0.1). Our analysis, as shown in Figures 2A,

B, revealed that there was no strong correlation between network

modularity and network size (Q~S: cor=-0.103; Q~L: cor=-0.164),

but a weak negative correlation existed. It supports our hypothesis

that there is no direct relationship between network size and the

formation of structural homogenization. According to Figures 2A,

B, food webs with smaller network sizes generally appear to be more

susceptible to severe SH. However, in the case of small size but

highly modular food webs, the risks of SH can be effectively

mitigated. Furthermore, in larger-scale food webs, although there

still exists a certain level of risk (close to the red line), the formation

of severe SH becomes more challenging. In comparison to the time

of food web data acquisition, approximately 66.7% of marine food

webs recorded low modularity after the year 2008, as seen in

Figure 2C. It represents an increase of around 31.8% compared to
TABLE 1 The main indicators to identify different food web homogenization patterns.

Types Q IPD pk(out) Levels FwH patterns

I

≤0.01 >0.6 <0.6 Serious (S)

SH≤0.05 >0.6 <0.6 Intermediate (I)

≤0.1 >0.6 <0.6 Ordinary (O)

II

>0.1 ≤0.2 <0.6 Serious (S)

FH>0.1 ≤0.4 <0.6 Intermediate (I)

>0.1 ≤0.6 <0.6 Ordinary (O)

III

>0.1 >0.6 ≥0.9 Serious (S)

RH>0.1 >0.6 ≥0.8 Intermediate (I)

>0.1 >0.6 ≥0.6 Ordinary (O)

IV

≤0.01 ≤0.2 <0.6 Serious (S)

SH+FH≤0.05 ≤0.4 <0.6 Intermediate (I)

≤0.1 ≤0.6 <0.6 Ordinary (O)

V

≤0.01 >0.6 ≥0.9 Serious (S)

SH+RH≤0.05 >0.6 ≥0.8 Intermediate (I)

≤0.1 >0.6 ≥0.6 Ordinary (O)

VI

>0.1 ≤0.2 ≥0.9 Serious (S)

FH+RH>0.1 ≤0.4 ≥0.8 Intermediate (I)

>0.1 ≤0.6 ≥0.6 Ordinary (O)

VII

≤0.01 ≤0.2 ≥0.9 Serious (S)

SH+FH+RH≤0.05 ≤0.4 ≥0.8 Intermediate (I)

≤0.1 ≤0.6 ≥0.6 Ordinary (O)
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the proportion of low-Q food webs recorded before 2008, indicating

the widespread nature of SH issues. It is worth noting that network

modularity does not appear to have a significant correlation with

the number of modules (Q~modules: cor=-0.051). However, about

80% of food webs with a high number of modules (modules

number>30) have been identified as having a low-Q value, as

shown in Figure 2D.
3.2 Interaction profile diversity

We calculated the IPD index of 41 food webs to assess their

functional redundancy. We used the Spearman coefficient to

determine the correlation between IPD and related network

parameters, including S, L, time, and network diversity

(Supplementary material). Our results showed that approximately

46.3% of marine food webs had low functional diversity (IPD<0.6).

As illustrated in Figures 3A, B, IPD demonstrated a moderate and

weak positive correlation with network size (IPD~S: cor=0.402;

IPD~L: cor=-0.131). These findings are consistent with the

correlation analysis results of Jordán et al. (Lin et al., 2022), and

suggest that large-scale networks are more likely to form redundant

functional modules, which can significantly reduce the risk of

functional homogenization. For food webs with smaller network

sizes, the risk of FH is higher (below the red line). It implies that

there may be an inherent link between the factors driving FH

formation and the decline in biodiversity. Based on the findings

presented in Figure 3C, it can be observed that the temporal

evolution pattern of IPD displays a certain degree of randomness.

It should be noted that this variability does not exhibit a consistent
Frontiers in Marine Science 06
trend across global marine ecosystems. Additionally, when the food

web is considered as an undirected network, the network diversity

was found to have a slightly positive correlation with IPD, as shown

in Figure 3D.
3.3 Distinguishing resources node and
calculating pk(out) value

We also analyzed 41 food webs and calculated their pk(out)

values, as well as identified the resource nodes in each web. To

explore the relationship between pk(out) and other network

parameters, such as S, L, time, and the total number of core

resource nodes (when dk<0.25), we used the Spearman coefficient.

We found that approximately 61.1% of marine food webs had a

high pk(out) value (pk(out)>0.6), indicating a common issue of

resource centralization in marine ecosystems. Our analysis also

revealed that pk(out) had a moderate positive correlation with

network size (pk(out)~S: cor=0.352; pk(out)~L: cor=0.212), but

only a weak correlation with temporal dynamics (cor=-0.137),

Figures 4A-C. Interestingly, we observed that about 53.3% of food

webs had high pk(out) values after the year 2008. However, this

figure was 81.8% before 2008, representing a decrease of

approximately 34.6%, Figure 4C. Finally, core resource nodes

(dk<0.25) express a weak positive correlation with the goodness

of fit between the out-degree distribution and the power-law

distribution (cor=0.282), Figure 4D. These findings suggest that

resource centralization is a widespread phenomenon in marine food

webs, and that network size and time may play important roles in

shaping network structure.
A B

DC

FIGURE 2

Correlation between network modularity (Q) and other network parameters, including (A) total nodes (S), (B) total links(L), (C) time, and (D) modules.
cor represents the Spearman correlation coefficient.
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A B

DC

FIGURE 3

Correlation between IPD and other network parameters, including (A) total nodes (S), (B) total links(L), (C) time, and (D) Network diversity. cor
represents the Spearman correlation coefficient.
A B

DC

FIGURE 4

Correlation between pk(out) and other network parameters, including (A) total nodes (S), (B) total links(L), (C) time, and (D) total number of nodes
which dk<0.25. cor represents the Spearman correlation coefficient.
Frontiers in Marine Science frontiersin.org07

https://doi.org/10.3389/fmars.2023.1245513
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1245513
3.4 Identifying food web
homogenization patterns

According to section 2.3, we were able to identify FwH patterns in

41marine food webs. Our analysis revealed that 9.56% of food webs fell

under type I, showing only SH; 12.1% were classified as type II,

showing only FH; 26.8% were categorized as type III, showing only

RH; and approximately 17.1% of food webs were classified as type IV

(SH+FH), V (SH+RH) and VII (SH+FH+RH), as shown in Figure 5A.

We also found that only 7.3% of food webs were in the process of

intermediate food web homogenization (I), with types I, III, and V

being the most common. Furthermore, we found that all food webs

that exhibited serious homogeneity problems were classified as type III.

In summary, the proportion of FwH related to SH, FH, and RH are

approximately 60.1%, 46.3%, and 61% relatively. It believes that marine

ecosystems have a higher probability of undergoing food web

homogenization processes involving SH and RH.

Additionally, we also calculated the correlation among Q, IPD,

and pk(out), as shown in Figures 5B-D. Our findings suggest that

IPD has a moderate and strong positive correlation with Q and pk

(out), respectively (pk(out)~IPD: cor=0.646; Q~IPD: cor=0.382).

However, Q shows a weak positive correlation with pk(out)

(cor=0.098). By using different colored scatter points, we were

able to distinguish the different types of FwH, which were located

in different graphic orientations. Among these, Figure 5D was the

most intuitive. Type III was consistently located in the upper-right

of the graph. Therefore, one can roughly differentiate the food web

homogenization pattern of a specific study area by calculating the
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food web IPD and pk(out) values, especially for type I and VII. Yet,

to accurately identify FwH patterns, it is still necessary to use the

methods provided in this research.

Finally, we examined the distribution of FwH patterns over time

and space. We classified marine ecosystems into two categories

based on the degree of human impact: significantly human-

impacted (S-HI) and insignificantly human-impacted (I-HI).

Ecosystems such as nearshore seas, coastal zones, estuaries, and

coral reefs were classified as S-HI, while pelagic regions and polar

areas were classified as I-HI. Our findings, as shown in Figure 6A,

indicate that Types III and V of FwH patterns are present in every

latitude belt globally, indicating their ubiquity in marine

ecosystems. Type I ecosystems are exclusively found in mid-low

latitude regions of the Earth and are only composed of ecosystems

belonging to the S-HI category. It suggests that human activities are

responsible for the formation of type I ecosystems and they exhibit

localized characteristics. In contrast, FwH is more likely to occur in

mid-low latitudes while FwH in high latitudes is consistently

associated with RH, supporting the high-latitude dominance

hypothesis of food webs (Unpublished paper). Types III and V

are observed to occur over longer periods than other types,

emphasizing their ubiquity in marine ecosystems. Coincidentally,

the timeline shows similarities between Type I and Type II

ecosystems. Since 2008, Type II ecosystems have consistently

been composed of the S-HI category, indicating significant

human impact on both types. Overall, the frequency of FwH

occurrences has increased in recent decades, potentially due to

global climate change and human activities.
A B

DC

FIGURE 5

Statistical graph of FwH patterns. (A) the number of different FwH types; (B) Correlation between Q and IPD; (C) Correlation between Q and pk(out);
(D) Correlation between IPD and pk(out). Scatter points of different colors represent different FwH types.
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4 Discussion

This study aimed to identify different patterns of marine food

web homogenization by analyzing 41 marine food webs and

developing an indicator system to quantify the different patterns

of FwH. The research classified the FwH into three main types,

which are structural homogenization (SH), functional

homogenization (FH), and resource homogenization (RH). The

network indicators, including Q, IPD, and pk(out), were calculated,

and different thresholds were assigned to determine 7 types of FwH.

Each type contained 3 levels (i.e., S, I, O). The study found that SH

has a relationship with the network size of a food web, whereas the

formation of FH is not a common occurrence in marine ecosystems

and accounts for only 46.3%. In contrast, RH is present on both

temporal and spatial scales universally. In conclusion, the frequency

of FwH occurrences had increased in the past decades, which could

be strongly linked to global climate change and human activities.

In real food webs, these three types of homogenization

processes often occur simultaneously. Especially for SH and RH, a

higher number of network nodes and links tend to form more sub-

networks than others, where the interactions between these sub-

networks are typically weakly connected, which enhances the

modularity. Thus, increasing the overall stability of the food web

(Grilli et al., 2016), as depicted by the upper half of the red dashed

line in Figures 2A, B. On the other hand, when there is an excessive

number of network nodes and links, because of resource

dependence, a large number of upper-level nodes require more

resources to sustain their life activities (Barton et al., 2019). These

interactions with the core resource nodes (dk<0.25) often lead to the

formation of large modules centered around core resource nodes,

where numerous connections link to these core resource nodes,

resembling a scale-free network structure, as shown by the upper

half of the red dashed line in Figures 4A, B. Such networks are often

characterized by ecological vulnerability, where perturbations in
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these networks are likely to result in irreversible ecological risks (Di

Mauro et al., 2022). Therefore, as revealed by this study, the

homogenization processes of food webs driven by the interactions

between SH and RH play a significant role in the natural evolution

of marine ecosystems. This might have implications related to the

adaptability of these marine ecosystems to global change.

When biodiversity increases to a certain extent, it hinders the

formation of SH, as illustrated by the lower half of the red dashed line

in Figures 2A, B. However, when biodiversity surpasses a certain

ecological threshold, it will lead to the emergence of core resource

nodes and the occurrence of the RH issue within the food web. These

processes may alternately occur during the ecosystem evolution,

which explained why type V, predominantly influenced by both SH

and RH, exhibits universality in both temporal and spatial

dimensions (Figure 6). Furthermore, the FwH is driven by a single

factor of RH, also exhibits universality (Type III), and some food

webs even show a serious tendency (S) towards FwH. It is mainly due

to the unique characteristics of marine ecosystems. In marine

ecosystems, primary producers are relatively uniform and primarily

composed of photoautotrophic phytoplankton (Casabianca et al.,

2021). In oligotrophic marine areas across the globe, acquiring and

sustaining the necessary nutrients for the survival of phytoplankton

poses a challenge (Rodrıǵuez-Gómez et al., 2022). Thus, resources

become the primary competitive factor, shaping high out-degree

nodes, as shown in Figure 4D. When the network size is larger, this

phenomenon is more significant. On the other hand, the FwH driven

by a single factor of SH shows locality conversely (Type I) and is

associated with human activities (Figure 6). Unlike the natural

evolution of ecosystems, human activities often lead to

instantaneous disruptions in food webs (Wilkinson et al., 2021). If

a food web itself has not developed strong stability (highly modular

functional groups characterized by weak interactions), it is highly

susceptible to module disintegration effects. In such cases, the system

has not fully evolved adaptive strategies or redundant functional
A B

FIGURE 6

(A) Spatial and (B) temporal distribution of FwH patterns. Scatter points represent the two categories of marine ecosystems based on the degree of
human impact: significantly human-impacted (S-HI) and insignificantly human-impacted (I-HI).
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groups for self-restoration, resulting in structural adjustments (Brose

et al., 2019). Severe disturbances can cause the ecosystem to regress to

its early evolutionary stage, characterized by the proliferation of

generalist species and the formation of SH.

The process of functional homogenization (FH) often

accompanies the occurrence of structural homogenization (SH),

such as type IV and type VII. It is because the functional overlap is

typically positively correlated with the degree of structural

modularity, as shown in Figure 5B. When the FwH is driven by a

single factor of RH (Type II), which basically consists of ecosystems

sensitive to human activities (S-HI) and has been recorded

concentratedly in the last 20 years, as depicted in Figure 6.

Biologically, it should be related to the interaction of gradient and

functional features (Stuart-Smith et al., 2013). Without altering the

network structure, the decrease in IPD is directly associated with the

sparsification of network interactions. Since IPD is trait-based, this

sparsification of functional groups enhances network robustness,

which also explains the significant positive correlation between IPD

and pk(out), as shown in Figure 5D. In general, the sparsification of

functional groups is temporary, but human activities often maintain

this stage in a stable manner (e.g., the vulnerability of agricultural

and urban ecosystems) (Cannistraci et al., 2013). Changes in human

decision-making and management concepts regarding nature may

produce different effects. It can be concluded that Type III is more

amenable to restoration through human attention to natural

sustainability than others. We think that these results may

support decision-making in future fisheries management,

following better tests on these proposed indicators.

Although Type VI was not observed in the randomly sampled

real food web data, it could not be concluded that it does not occur in

real networks. Future research will address this issue. It is important

to note that the method used in this study is a static computational

approach, and more investigation is needed to determine if dynamic

models can effectively identify homogenization in food webs.

Additionally, long time series data is necessary to support food web

data. The findings of this study can contribute to a greater focus on

food web homogenization and enhance the theoretical foundation for

systematic ecological conservation.
5 Conclusion

Based on the research findings, it can be concluded that the

proportion of FwH related to SH, FH, and RH were approximately

60.1%, 46.3%, and 61% respectively. It implies that marine

ecosystems have a higher probability of undergoing food web

homogenization processes involving SH and RH. The research

found that Type V, which was mainly influenced by both SH and

RH, exhibited universality in both temporal and spatial dimensions,

while Type III also showed universality when the food webs were

dominated by RH. Conversely, Type I, which was associated with

human activities, showed locality when the food web only
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manifested SH. The study also found a moderate positive

correlation (cor=0.382) between IPD and Q, indicating that FH

often occurred alongside SH like type IV and type VII. When the

FwH is driven by a single factor of RH (Type II), which basically

consists of ecosystems sensitive to human activities (S-HI) and has

been recorded concentratedly in the last 20 years. In summary, FwH

is more likely to occur in mid-low latitudes, while FwH in high

latitudes is consistently associated with RH, which indirectly

supports the high-latitude dominance hypothesis of food webs.

The frequency of FwH occurrences has increased in the past

decades, which is possibly linked to global climate change and

human activities. Our work provided a comprehensive concept of

food web homogenization and improved the understanding of

homogenized system risks, which contributed to the development

of nature-based ecosystem management countermeasures against

future climate change.
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