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Mangrove forest mapping from
object-oriented multi-feature
ensemble classification using
Sentinel-2 images

Han Zhang, Qing Xia*, Shuo Dai, Qiong Zheng,
Yunfei Zhang and Xingsheng Deng

School of Traffic and Transportation Engineering, Changsha University of Science and Technology,
Changsha, China
Accurate mapping of mangrove forests is crucial for understanding their

ecosystem function and developing effective management policies. However,

the absence of an operational multi-feature fusion approach and an ensemble

classification system restricts the achievement of this goal. This study aims to

develop an object-oriented multi-feature ensemble classification scheme

(OMEC). First, an enhanced mangrove spectral index (EMSI) is established by

analyzing the spectral reflectance differences between mangrove forests and

other land cover types. Sentinel-2 images are segmented into objects using the

multi-resolution segmentation method. Then, spectral, textural, and geometric

features are extracted, and these features (including EMSI) are inputted into the

nearest neighbor classifier to implement mangrove classification. The

experiment was conducted in three typical mangrove areas in China using

Sentinle-2 images. The results demonstrate that EMSI exhibits good spectral

separability for mangroves and performs well in the ensemble classification

scheme. The overall accuracy of mangrove classification exceeds 90%, with a

Kappa coefficient greater than 0.88. The object-oriented multi-feature

ensemble classification scheme significantly improves accuracy and exhibits

excellent performance. The method enhances the accuracy of mangrove

classification, enriches the approach to mangrove remote sensing

interpretation, and offers data support and scientific references for the

restoration, management, and protection of coastal wetlands.

KEYWORDS

Sentinel-2 images, an enhanced mangrove spectral index, multi-features, object-
oriented segmentation, spectral reflectance signature
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1 Introduction

Mangroves represent a distinctive forest community found in

tropical and subtropical regions (Wang et al., 2019; Zhao and Qin,

2022; Jia et al., 2023), characterized by their intricate structure,

diverse species, significant productivity, exceptional ecological

functions, and substantial social and economic value (Giri et al.,

2008; Kuenzer et al., 2011; Xia et al., 2020). However, due to the

impacts of human activities, such as excessive exploitation,

expansion of aquaculture, and river regulation projects (Baloloy

et al., 2020; Wan et al., 2020; Li et al., 2022), coupled with the

interference of natural factors like tropical cyclones, sea-level rise,

and biological invasions (Xia et al., 2018; Lymburner et al., 2020;

Zhao et al., 2023b), a staggering loss of approximately one-third of

the world’s mangroves has occurred over the past few decades

(Elliott et al., 2014; Lu et al., 2022). Furthermore, the existing

mangroves encounter various threats, including the reduction of

biodiversity and degradation of ecosystem service functions

(Kuenzer et al., 2011; Munang et al., 2013; Pimple et al., 2020).

Currently, nations around the world have implemented pertinent

policies to safeguard mangroves (Aslan et al., 2016; Romañach et al.,

2018; Li W. et al., 2019). The Chinese government and relevant

departments have issued multiple policies concerning the

protection and restoration of mangroves (Jia et al., 2018; Yang

et al., 2022; Zhang et al., 2022; Xia et al., 2023). Therefore, it is

important to quickly and accurately mangrove mapping for the

dynamic monitoring and management of mangroves.

The utilization of traditional field survey methods to map the

spatial distribution of mangroves poses challenges in data collection

and mapping quality due to limitations, such as time-consuming and

labor-intensive (Pandey et al., 2019; Wang et al., 2020; Zhao et al.,

2023a). Remote sensing has become indispensable for the monitoring

and management of mangrove, finding applications in extent

mapping, species classification, community structure analysis, and

biomass estimation (Giri, 2016; Li H. et al., 2019; Pham et al., 2019).

Mangrove forest mapping methods can be categorized into two main

approaches: classification and index-based threshold segmentation

(Gupta et al., 2018; Zhang et al., 2021). Among classification, it can be

further divided into pixel-based and object-based approaches and

primarily utilizes the spectral signature for classification (Kaplan and

Avdan, 2017; Maurya et al., 2021). The common classifiers, such as

Maximum Likelihood Classification, Nearest Neighbor Classification,

Support Vector Machine, and Random Forest, are applied to

implement classification (Thanh Noi and Kappas, 2017; Zhang

X.M. et al., 2017; Ghorbanian et al., 2021; Fu et al., 2022). Among

these classification algorithms, the Nearest Neighbor Classification is

notable for its simplicity, efficiency and wide applicability (Dhingra

and Kumar, 2019). The nearest neighbor classifier is a simple and

powerful classification algorithm that operates on the principle of

proximity-based decision-making. In this method, each unclassified

data point is assigned to the class of its nearest neighbor in the feature

space. Furthermore, some researchers have integrated additional

features such as topography, texture, and other characteristics to

enhance mangrove classification (Mao et al., 2020). However, existing

classification methods have several problems. First, the mangrove
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forest patches extracted using the pixel-based approach exhibit

excessive fragmentation. Second, common classification using the

object-based approach mainly relies on one feature (spectral feature)

or two feature fusion (such as spectral and texture, spectral and

topography), which is unsuitable for accurate mangrovemapping due

to the lack of multiple feature fusion. Last, the features involved in the

classification approaches lack the ability to describe the characteristics

specific to mangroves.

Utilizing spectral indices facilitates the extraction of targets and

improves accuracy (Zhang et al., 2010; Guo et al., 2022; Zhao et al.,

2023b). By utilizing various input bands of satellite data, researchers

have proposed mangrove indices to facilitate the extraction of

mangroves (Pu et al., 2011; Guo et al., 2021). The construction of

mangrove indices mainly relies on the utilization of multispectral or

hyperspectral images. Initially, mangrove indices are constructed

based on single-temporal multispectral images (Winarso et al.,

2014; Shi et al., 2016; Gupta et al., 2018). With the increasing

availability of remote sensing imagery, mangrove indices based on

multi-temporal multispectral images have been proposed. For

example, the Mangrove Recognition Index incorporated the

Green Vegetation Index and the Wetness Index during high and

low tides to represent the spectral characteristics of mangroves

using multispectral images (Zhang and Tian, 2013). Subsequently,

mangrove indices based on hyperspectral imagery have been

successively proposed by researchers. As an illustration, an

Enhanced Mangrove Vegetation Index was proposed to amplify

the distinction in the level of greenness and moisture content in

canopy between mangroves and other vegetation using

hyperspectral images (Yang et al., 2022). However, mangrove

extraction methods based on index-based threshold segmentation

predominantly utilize a fixed threshold to distinguish mangroves.

The classification results are heavily influenced by threshold values,

which depend on the expertise of the researchers (Chen et al., 2021;

Tran et al., 2022).

Given the above challenges, the objective of this study is to

propose an object-oriented multi-feature ensemble classification

scheme. Specifically, an enhanced mangrove spectral index

(EMSI) is proposed by analyzing the spectral reflectance

differences between mangroves and other land cover types based

on multispectral Sentinel-2 images. The multi-resolution

segmentation method is utilized to segment Sentinel-2 images

into objects. Subsequently, spectral (including original spectral

and EMSI), textural, and geometric features are extracted from

these objects and are inputted into the nearest neighbor classifier to

implement mangrove classification.
2 Materials

2.1 Study area

Three typical mangrove areas of different types in China were

selected as the study areas (Figure 1). The study area (a) is located in

the Pearl Bay Mangrove Reserve in Fangchenggang City, Guangxi

Province (21°33′-21°37′N, 108°08′- 108°13′E). This area falls under
frontiersin.org
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the subtropical monsoon climate, with an annual average

temperature of 22.5 °C and the annual average precipitation of

about 1745.6 mm. The research area (b) is situated in the

Dongzhaigang Mangrove Nature Reserve in Hainan Province (19°

58′-20°02′N, 110°31′-110°35′E). The region is classified as having a

tropical monsoon climate, featuring an average temperature of

23.8 °C and an average annual precipitation of 1700 mm. It

experiences a significant number of typhoons during the rainy

season. The study area (c) is located in the Gaoqiao Mangrove

Reserve in Zhanjiang City, Guangdong Province (21°27′-21°35′N,
109°44′-109°48′E). Similarly, this area is part of the subtropical

monsoon climate. It has an annual average temperature of 22.9 °C

and an average annual precipitation of approximately 1600 mm.
2.2 Satellite data and preprocessing

Sentinel-2A multispectral images were obtained from the

European Space Agency (ESA) (https://scihub.copernicus.eu/

dhus/#/home, accessed on 31 December 2022), with three spatial

resolutions of 10 m for bands 2-4, 8, and 20 m for bands 5-7, 11, 12

and 60 m for bands 1, 9, and 10. Top-of -atmosphere reflectance

and surface reflectance data were acquired from Sentinel-2 images

(Campos-Taberner et al., 2020). Only images with a cloud cover of

less than 20% were chosen for analysis. To mitigate the impact of

clouds, the images were masked using the QA60 band (Nguyen

et al., 2020). In order to reduce the influence of tides on mangrove

inundation, Sentinel-2A images from 2021 were specifically selected

when tidal levels closely resembled low tide conditions.
Frontiers in Marine Science 03
The Sentinel-2A images were preprocessed using SNAP

software (version 9.0.0) to convert them into an ENVI readable

format (version 5.6). Subsequently, the images were imported into

ENVI for geometric correction and atmospheric correction. All

bands were resampled to a spatial resolution of 10 m.

In October 2021, we conducted a survey of the study area and

utilize a handheld GPS device with a positional accuracy of 5 m to

record the locations of the sample points, which included

mangroves and non-mangroves areas. The positional accuracy of

the GPS is suitable for the spatial resolution of the Sentinel-2A

images, which is 10 m. Additionally, inaccessible sample points

were collected using high-resolution images obtained from Google

Earth (Figure 2). A total of 4995 sample points were collected,

consisting of 1354 point for mangroves and 3641 points for non-

mangroves. Among these, 3996 sample points were allocated for

training, while 999 sample points were set aside for validation.
3 Methods

3.1 Development of EMSI

3.1.1 Comparison of spectral curves
In order to make spectral signatures of different land cover types

more representative, especially terrestrial vegetation and

mangroves, we added two additional study areas (d) and (e) in

this section (Figure 3). The average spectral curves of six land cover

types (i.e., mangroves, tidal flats, terrestrial vegetation, ponds,

buildings, and seawaters) were calculated based on the sample
B

CA
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FIGURE 1

Location of the study area and true color composite (RGB: 665 nm-560 nm-490 nm) visualization of Sentinel-2 images in the study areas.
(A) Fangchenggang, Guangxi Province (Date: 2021-12-31); (B) Dongzhaigang, Hainan Province (Date: 2021-06-16); (C) Zhanjiang, Guangdong
Province (Date: 2021-12-03).
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points from field survey and the high-resolution images obtained

from Google Earth, with the respective sample point counts of 201,

268, 182, 102, 105, and 274 (Figure 4). Vegetation, whether it be

mangroves or other types, exhibits distinct spectral characteristics

that differentiate it from seawater, tidal flats, and other land cover

types (Zhang X. et al., 2017). The spectral response of vegetation in

visible wavelengths is primarily influenced by various pigments,

with chlorophyII playing a vital role. ChlorophyII absorption peaks

are observed in two bands centered around 490 nm (blue) and 665

nm (red), while a reflection peak appears near 560 nm (green),

explaining the predominant green appearance of many plants

(Matthews, 2011). There is a significant increase in reflectance

between visible light and near-infrared light (approximately 705

nm), creating the well-known “red-edge” phenomenon. Leaf

pigments and cellulose exhibit transparency to near-infrared

wavelengths . Consequently , healthy green vegetat ion

demonstrates high reflectance, high transmittance, and low

absorptance in the near-infrared spectrum. In the short-infrared

bands of the spectrum, the spectral response of green vegetation is

predominantly influenced by strong absorption bands related to

seawater near wavelengths of 1375 nm, 1610nm, and 2190 nm.

In comparison to other vegetation, mangroves exhibit a similar

level of greenness, with the primary distinction being the moisture

content found in their leaves and canopies (Yang et al., 2022). The

amount of infrared wavelengths absorbed by plants from sunlight is

contingent upon the moisture content of their leaves. The

reflectance of vegetation in the infrared wavelength clearly

increases as leaf moisture decreases (Furlanetto et al., 2020).

Compared to the majority of terrestrial vegetation, mangroves

possess higher leaf and canopy water content. Consequently, the

reflectance of mangroves in the infrared wavelength is lower than

that of other vegetation. The near-infrared reflectance of terrestrial

vegetation can differ from that of mangroves, with the possibility of

being higher or lower. This distinction is typically influenced by the

condition of the internal chlorophyII structure and leaf cellulose, as

they play a role in reflecting near-infrared electromagnetic waves.

Distinguishing mangroves from other types of vegetation can be

achieved through the utilization of shortwave-infrared reflectance

(Osei Darko et al., 2021; Yang et al., 2022).
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3.1.2 Formulation of EMSI
Based on previous research on the properties of mangrove

vegetation properties and its spectral responses across various

wavelengths, three short-wave infrared bands (SWIR1 with a

central wavelength of 945 nm, SWIR2 with a central wavelength

of 1610 nm and SWIR3 with a central wavelength of 2190 nm) from

Sentinel-2 data were chosen and combined to create EMSI. The

reason for choosing these three bands is as follows. Mangroves and

terrestrial vegetation share a similar spectral reflectance in the ultra-

blue, blue, green and red (with central wavelengths of 443 nm, 490

nm, 560 nm, and 665 nm, respectively). However, distinguishing

mangroves from other vegetation based on bands separability

proves to be challenging due to their poor differentiation. In the

short-wave infrared bands, including central wavelengths of 945

nm, 1610 nm and 2190 nm, the spectral reflectance of mangroves

exhibited considerably lower values compared to terrestrial

vegetation. There bands are sensitive to monitoring leaf and

canopy water contents (Jia et al., 2019; Jiang et al., 2022). This

difference can be attributed to the sensitivity of the short-wave

infrared bands to the moisture content present in mangrove leaves.

Additionally, the Normalized Difference Vegetation Index (NDVI)

is a widely used and traditional index that indicates the extent of

vegetation coverage. In this study, NDVI was specifically chosen to

capture and emphasize the vegetation information characteristics of

mangroves (Baloloy et al., 2020). The following spectral extraction

indices for mangroves were proposed:

EMSI = NDVI*
SWIR1 − SWIR2
SWIR2 − SWIR3

(1)

Where: NDVI represents the Normalized Difference Vegetation

Index, SWIR1, SWIR2 and SWIR3 (with a central wavelength of

945 nm, 1610 nm and 2190 nm) are the spectral reflectance values.
3.2 Spatial feature extraction

Spatial features encompass texture features and geometric

features. Texture features represent repetitive transformations on

object surfaces or regular grayscale patterns, which provide insight
B CA

FIGURE 2

Distribution of sample points. (A) Fangchenggang, Guangxi Province (Date: 2021-12-31); (B) Dongzhaigang, Hainan Province (Date: 2021-06-16);
(C) Zhanjiang, Guangdong Province (Date: 2021-12-03).
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into the visual characteristics of homogeneous phenomena in

images (Chaki and Dey, 2020). The gray-level co-occurrence

matrix is a widely utilized method for describing texture features.

Commonly employed image texture features include mean,

contrast, entropy, and standard deviation in Table 1 (De Siqueira

et al., 2013). In visual inspection, the texture of mangroves appears

to be finer and less saturated in color compared to terrestrial

vegetation. Thus, mean and contrast were chosen in this study to

describe texture features.

Geometric features are employed to describe the shape of an image

object, aiding in better understanding its characteristics. Commonly

used geometric features include length, width, aspect ratio, perimeter,
Frontiers in Marine Science 05
area, rectangularity, circularity, and more. Mangroves are typically

found in the coastal zones, occupying shoals and shallows areas near

the land-sea junction. They are predominantly distributed in strip-like

patterns, with some occurring as patches or fragments. In this study,

aspect ratio and circularity were chosen as the two geometric factors to

describe the geometric features.
3.3 OMEC method

This study proposes an object-oriented multi-feature fusion

ensemble classification (OMEC) method. First. the spectral
D

E

D E

F G

FIGURE 3

Two additional study areas and the distribution of sample points. (D, E) represent two additional study areas; (F, G) show the corresponding
distribution of sample points.
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reflectance characteristics and distinctions of various land cover

types are initially examined. EMSI is created through band math.

Then, the Sentinel-2 images are segmented into objects using the

multi-resolution segmentation method. Following that, spectral

features (including original spectral and EMSI), texture features

and geometric features are extracted from these objects. Finally,

there features are input into the nearest neighbor classifier to carry

out mangrove classification (Figure 5).

Specifically, the construction of the EMSI is addressed in

Section 3.1. Object-oriented classification utilizes segmented

image objects as the basis for classification, incorporating relevant

information such as spectrum, texture, and shape. This approach

maximizes the use of image information, overcoming the

limitations of pixel-oriented classification algorithms and

reducing the likelihood of misclassification. Multi-resolution

segmentation (MRS) is widely used image segmentation method

in object-oriented classification, characterized by a bottom-up

approach that divides an image into hierarchical levels (Platt and

Rapoza, 2008; Su et al., 2008). In this study, the MRS was applied to

segment Sentinel-2 images. The outcome of the segmentation

primarily depends on three key parameters: scale, color-shape,

and smoothness-compactness. Optimal segmentation parameters

were determined through visual interpretation, with the aim of

achieving accurate segmentation of mangroves. After conducting a

series of experiments, the optimal parameters were determined as
Frontiers in Marine Science 06
follows: scale of 50, shape of 0.1, and compactness of 0.3. The image

segmentation was performed on the RGB image.

Based on the segmentation images, spatial features of

mangroves are extracted, including texture features such as

average value and contrast, as well as geometric features such as

aspect ratio and circularity. Additionally, spectral features of

mangroves, including the original spectral values and EMSI, are

obtained. These extracted features are then inputted into the nearest

neighbor classifier to carry out the mangrove classification.
3.4 Accuracy assessment

To evaluate the mangrove maps generated by OMEC method,

we conducted a quantitative accuracy assessment using sample

datasets. Since mangroves are the primary focus of this study, the

evaluation is carried out based on two categories: mangrove and

non-mangrove. The assessment includes calculations of overall

accuracy (OA), and the Kappa coefficient (Kappa). These metrics

are derived from the confusion matrix, which utilized the sample

datasets (Wang et al., 2018).

OA =
N0

N
(2)

Kappa =
P0 − Pe
1 − Pe

(3)

where N0 represents number of correctly classified pixels; N  

represents total number of pixels; P0 represents the proportion of

pixels correctly classified out of the total number of pixels; Pe
represents the proportion of pixels expected to be correctly

classified by chance.
4 Results

The results of mangrove forest mapping in three study areas

using OMEC method have been obtained (Figure 6). Among them,

(a-c) represent the segmentation results, (d-f) depict the results of

different land cover types, and (g-i) display the mangrove mapping

results obtained using OMEC method. From Figure 6, it is evident
FIGURE 4

Average spectral reflection of six feature types.
TABLE 1 Specific formulas for common texture features.

Texture features Formula

Mean SMean = o
L−1

i=0
o
L−1

j=0

p(i, j)*i

Contrast SCon = o
L−1

i=0
o
L−1

j=0

(i − j)
2

p(i, jjd, q)

Entropy SP = −o
L−1

i=0
o
L−1

j=0

p(i, jjd, q) log p(i, jjd, q)

Standard Deviation SStd =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
L−1

i=0
o
L−1

j=0

p(i, j)*(i − SMean)
2

s

The element value in the matrix represents the joint conditional probability density between
two gray levels. That is, when the spatial distance P(i,j|d,q) and direction q are given, d starting
from j the gray level, i represents the probability of the gray level appearing.
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that the mangroves distributed along the coastal zones of the three

study areas have been effectively extracted. Furthermore, the

scattered mangroves located adjacent to inland aquaculture ponds

have also been identified. Additionally, besides the favorable

extraction of mangroves, other land cover types also displayed

satisfactory extraction results from a visual perspective.

The accuracy evaluation primarily relied on the confusion

matrix in Table 2. The OA of OMEC method at the three study

areas ranged from 90% to 95%, and the Kappa ranged from 0.88 to

0.93. Among the three study areas, the highest accuracy results were

achieved at Dongzhaigang in Hainan Province with an OA of 95%

and a Kappa of 0.93. The OA result at Fangchenggang in Guangxi

Province was 90%, with a Kappa of 0.88, which was the lowest

compared to the other two study areas. The aforementioned

accuracy results indicate that OMEC method achieves good

precision in mangrove forest mapping.
5 Discussion

5.1 Separability analysis of EMSI

To further assess the separability of EMSI, we calculated the

EMSI results for the three study areas (Figure 7). From a

quantitative perspective, the EMSI value for mangroves is

observed to be higher than that for other land cover types.

Mangroves are depicted in white on the image, while the other

land cover types are displayed in different shades of gray and black.
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Based on visual assessment, there is a clear distinction between

mangroves and other land cover types, indicating that utilizing

EMSI is feasible for assisting in mangrove extraction.

From a quantitative perspective, we calculated the average

values of the EMSI of different land cover types in the three study

areas (Figure 8). The calculated EMSI values for mangroves showed

no overlap with the values for four other land cover types: seawater,

tidal flats, ponds, and buildings. This indicates a strong separation

between mangroves and these land cover types, highlighting the

effectiveness of the mangrove extraction. In the case of terrestrial

vegetation, the statistical values of the EMSI for mangroves showed

no overlap with the statistical values of terrestrial vegetation at

Fangchenggang in Guangxi Province and Dongzhaigang in Hainan

Province. However, at Zhangjiang in Guangdong Province, there

was a slight overlap between mangroves and terrestrial vegetation.

This deviation could be attributed to the randomness of the sample

points, but it does not affect the applicability of the EMSI. Overall, at

Fangchenggang in Guangxi Province and Dongzhaigang in Hainan

Province, the EMSI demonstrate good separability for mangroves.
5.2 Comparison with existing mangrove
extraction indices

We compared existing Mangrove Vegetation Indices (MVIs),

such as Mangrove Index (MI) (Winarso et al., 2014), Normalized

Difference Mangrove Index (NDMI) (Shi et al., 2016), and Combine

Mangrove Recognition Index (CMRI) (Gupta et al., 2018), with EMSI
FIGURE 5

The flowchart of mangrove mapping.
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TABLE 2 Accuracy evaluation from the three study areas.

Category

Study area (a) Study area (b) Study area (c)

Mangroves
Non-

Mangroves
Mangroves

Non-
Mangroves

Mangroves
Non-

Mangroves

Mangroves 58 1 40 2 50 3

Non-Mangroves 3 278 3 305 1 254

OA 90% 95% 93%

Kappa 0.88 0.93 0.91
F
rontiers in Marine Scien
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A

FIGURE 6

Mangrove mapping results. (A–C) represent the segmentation results for study areas (A–C); (D–F) represent the classification results for different
land cover types for study areas (A–C); (G–I) represent the mangrove classification results for study areas (A–C).
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to evaluate its capability to extract mangroves from the background.

MVI images for the study area were created using Sentinel-2 images.

From Figure 9, mangroves are depicted as white on the EMSI,

MI and CMRI images, and appear as gray on the NDMI image.

CMRI is a composite index combining NDVI and NDWI. The

presence of white-colored terrestrial vegetation in the CMRI image

makes it difficult to differentiate mangroves from the background.

Due to the similarity in greenness and varying water content

between mangroves and other vegetation, NDMI’s distinguishing

ability is inferior. EMSI and MI demonstrate a strong ability to

distinguish mangroves from other vegetation, while CMRI and

NDMI exhibits a poor ability. MI shares similar spectral
Frontiers in Marine Science 09
reflectance characteristics with EMSI. MI reflects vegetation water

content, while EMSI combines NDVI and water content

information, and both indices demonstrate good performance in

representing mangroves.
5.3 Object-oriented and pixel-oriented
mangrove mapping results

In this study, we employed OMEC and pixel-oriented classification

methods in three study areas and obtained mangrove mapping results

(Figure 10). Both methods utilized the same features, including the
B CA

FIGURE 7

The EMSI result images. (A) Fangchenggang, Guangxi Province (Date: 2021-12-31); (B) Dongzhaigang, Hainan Province (Date: 2021-06-16);
(C) Zhanjiang, Guangdong Province (Date: 2021-12-03).
B

C

A

FIGURE 8

Box plot of the EMSI for different land cover types. (A–C) represent statistical results for study areas (A–C), respectively.
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FIGURE 9

Calculation results of different mangrove extraction indices. (A–D) represent EMSI, MI, NDMI, and CMRI, respectively.
B C

D E F

A

FIGURE 10

Object-oriented and pixel-oriented mangrove interpretation results. (A–C) are mangrove mapping results using OMEC method (object-oriented);
(D–F) are the results using pixel-oriented classification method (pixel-oriented).
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original spectral information, EMSI, texture, and geometry feature. The

accuracy evaluation of these two methods was conducted using the

same sample points as described in Section 2.2.

From Figure 10, it can be observed that OMEC method resulted

in predominantly regular patches in the mangrove mapping results,

indicating a high level of completeness in extracting the mangroves.

Conversely, the pixel-oriented classification method produced

primarily fragmented patches in the mangrove mapping results. It

failed to accurately extract some mangroves and misclassified a few

small patches as mangroves. When comparing the two classification

methods, it is evident that OMEC method demonstrates superior

performance in mangrove mapping.

According to Table 3, it can be observed that both the OMEC

and pixel-oriented classification methods exhibited an OA

exceeding 86% and Kappa coefficients higher than 0.82. For the

three study areas, OMEC method achieved OAs of 90.2%, 94.6%

and 92.8%, with corresponding Kappa coefficients of 0.88, 0.93 and

0.91. Conversely, the pixel-oriented method yielded OAs of 86.5%,

90.7% and 88.7%, with corresponding Kappa coefficients of 0.83,

0.88 and 0.86. It is evident that the accuracy of the pixel-oriented

method was lower than that of OMEC method. Consequently,

OMEC method outperforms the pixel-oriented method.
5.4 Analysis of different feature ensemble
classification results

We fused different features and then input them into a nearest

neighbor classifier to extract mangroves (Figure 11). These features

were categorized into three classes. The first class only employed the

original spectral information (OS) from the imagery as a feature,

and mangrove results were obtained using a nearest neighbor

classifier. The second class incorporated both the original spectral

information and spatial features (OS_SF), including texture and

geometry features. Texture features, such as mean and contrast,

were utilized, while geometric features such as aspect ratio and

circularity were employed to facilitate mangrove extraction. The

third class integrated the original spectral feature, the EMSI, and

spatial features utilized in the second class (OS_SF_EMSI).

Mangrove extraction was subsequently conducted using a nearest

neighbor classifier.

It can be observed that the various feature-level fusion methods

have achieved a certain degree of success in mangrove extraction.

When using the OS method for mangrove extraction, the

distribution of mangrove patches appeared scattered. However,
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some small mangrove patches could not be captured, and

misclassification occurred with some terrestrial vegetation being

misclassified as mangroves. The results of mangrove extraction are

unsatisfactory. The OS_SF method demonstrates superior

performance in mangrove extraction compared to the OS

method. While the majority of mangrove patches were

successfully captured, there were still cases where patches of

terrestrial vegetation were misclassified as mangroves. The

utilization of the OS_SF_EMSI method has greatly enhanced the

results of mangrove extraction. The resulting mangrove patches

exhibit a more uniform distribution, with few misclassifications

with terrestrial vegetation. The OS_SF_EMSI method successfully

distinguishes mangroves from other land cover types. The

extraction performance for mangroves stands out as the most

superior among the three methods.

The accuracy evaluation of the three methods was conducted

using the same sample points as described in Section 2.2 (Table 4).

The OA of the OS method was below 80% (except for

Dongzhaigang in Hainan Province at 82.1%), and the Kappa was

all below 0.79 for the three study areas. In comparison, the OS_SF

method showed improved classification accuracy. The OAs were

80.7%, 88.9%, and 81.5% for the three study areas, respectively, with

corresponding Kappa coefficients of 0.76, 0.86, and 0.77. The

OS_SF_EMSI method achieved the highest classification accuracy

among the three methods, with OAs exceeding 90% for all study

areas. The corresponding Kappa coefficients were all above 0.88. In

summary, it is evident that by incorporating EMSI and spatial

features, the classification accuracy of mangroves can be improved.
5.5 Comparison with other
mangrove products

We collected study areas (a, b) and compared the results of

OMEC method with two reference maps (Figure 12), namely the 10

m resolution global mangrove forest dataset (HGMF_2020)

provided by Mingming Jia (Jia et al., 2023) and the 1 m

resolution China mangrove forest dataset (SMRI) provided by

Qing Xia (Xia et al., 2022). Our results show similarities in terms

of the mangrove areas with both HGMF_2020 and SMRI datasets in

study areas (a, b). However, when comparing with the HGMF_2020

results, it can be observed that HGMF_2020 extracted some

incorrect pixels at the edge of the river. Compared with the SMRI

results, the mangrove patches extracted by the SMRI dataset were

more fragmented due to the finer 1 m spatial resolution.
TABLE 3 Accuracy evaluation for OMEC and pixel-oriented mangrove mapping results.

Methods Category Study area (a) Study area (b) Study area (c)

Object-oriented results (OMEC)
OA 90.2% 94.6% 92.8%

Kappa 0.88 0.93 0.91

Pixel-oriented results
OA 86.5% 90.7% 88.7%

Kappa 0.83 0.88 0.86
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6 Conclusions

This study proposes EMSI, which is based on the analysis of

spectral reflectance differences between mangroves and other land

cover types in multi-spectral images. It proposes an object-oriented
Frontiers in Marine Science 12
multi-feature ensemble classification method. The research results

demonstrate that EMSI exhibits good separability for mangroves.

OMEC method achieves excellent performance in mangrove

mapping, with high accuracy, OA exceeding 90%, and Kappa

coefficients exceeding 0.88. Comparing the mangrove extraction
TABLE 4 Accuracy evaluation for the three methods.

Methods Accuracy evaluation Study area (a) Study area (b) Study area (c)

OS
OA 76.2% 82.1% 78.1%

Kappa 0.71 0.78 0.73

OS-SF
OA 80.7% 88.9% 81.5%

Kappa coefficient 0.76 0.86 0.77

OS_SF_EMSI
OA 90.2% 94.6% 92.8%

Kappa 0.88 0.93 0.91
B C
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A

FIGURE 11

Mangrove mapping results from different feature ensemble. (A–C) represent the mangrove mapping results using OS features for study areas (A–C);
(D–F) represent the mangrove mapping results using OS_SF features for study areas (A–C); (G–I) represent the mangrove mapping results using
OS_SF_EMSI features for study areas (A–C).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1243116
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2023.1243116
results of different feature fusion approaches, it is evident that

incorporating EMSI and spatial features enhances the mangrove

classification. The pixel-oriented method is also compared with

OMEC method, and although both methods exhibit an OA

exceeding 86% and Kappa coefficients higher than 0.82, OMEC

method outperforms the pixel-oriented method in terms of OA and

mangrove mapping. The comparison with the results from the

HGMF_2020 and SMRI datasets also shows similarities, indicating

the good performance of our method. However, further

investigation is needed to apply the proposed method to

nationwide or global-scale mangrove extraction. This study

provides valuable methods and insights for the accurate

interpretation of coastal mangroves, contributing fundamental

data and scientific references for the restoration, management,

and protection of coastal wetlands.
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