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Introduction: Preserving the marine ecological environment and safeguarding

marine species is a global priority. However, human overfishing has led to a

drastic decline in fish species with longer growth cycles, disrupting the equilibrium

of the marine ecosystem. To address this issue, researchers are turning to deep

learning techniques and state-of-the-art underwater devices, such as underwater

robots, to explore the aquatic environment andmonitor the activities of endangered

populations. This approach has emerged as a focal point of recent research in

protecting the marine ecological environment. This study employs a deep learning-

based object detection algorithm to identify fish species in complex

underwater environments.

Methods: The algorithm is built upon the You Only Look Once version 7(YOLOv7)

algorithm, with the addition of the attention mechanism Convolutional Block

Attention Module (CBAM) in the network’s backbone. CBAM enhances the feature

maps through the fusion of spatial attention and channel attention, ultimately

improving the robustness and accuracy of the model’s inference by replacing the

original loss function CIoU with SCYLLAIntersection over Union(SIoU). In this paper,

the rockfish pictures in the dataset Label Fishes in theWild published by the National

Marine Fisheries Service are selected, and the underwater image enhancement

model (UWCNN) is introduced to process the pictures.

Result: The experimental results show that the mean average precision (mAP) value

of the improvedmodel on the test set is 94.4%, which is 3.5% higher than the original

YOLOv7 model, and the precision and recall rate are 99.1% and 99%, respectively.

The detection performance of the algorithm in the field of complex underwater

environment is improved.

Discussion: The underwater fish detection scheme proposed in this study holds

significant practical value and significance in promoting the conservation of marine

ecosystems and the protection of fish species.

KEYWORDS

object detection, underwater image enhancement algorithm, YOLOv7, attention
mechanism, biological population protection, marine environment
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1 Introduction

The ocean is a significant constituent of the global ecosystem,

encompassing the vast majority of the Earth’s total surface area. It

contains abundant resources such as water, sustenance, petroleum,

minerals, and natural gas, making it a valuable treasure for the

sustainable advancement of human society. Hence, safeguarding the

marine environment and its resources is crucial for the sustainable

progress of humankind. However, with the advancement of

technology, fishing efforts have increased, leading to a significant

decline in the population of fish species with longer reproductive

cycles. This has had a profound impact on the stability of the marine

ecosystem. Healthy marine populations provide a vital source of

protein for billions of people worldwide. Preserving marine species

safeguards this crucial food source. The term “Pacific rockfish”

collectively denotes the bottomdwelling fish inhabiting the waters

extending from Alaska to California. Several of these fish possess

commercial value, they serve as sources of high-quality protein.

Nevertheless, due to they have long growth periods, they are

susceptible to overfishing. Marine species play pivotal roles in

maintaining the equilibrium of ocean ecosystems. To preserve

rockfish populations, it is imperative to engage in the observation

of this population to gain insights into the status of the

rockfish population.

To better understand the abundance and growth conditions of

marine fish, researchers have developed underwater robots, such as

Remotely Operated Vehicles (ROVs) and Autonomous Underwater

Vehicles (AUVs) (Boudhane and Nsiri, 2016), to navigate complex

underwater environments. These technological marvels have played

a crucial role in exploring marine resources and preserving the

marine environment. Over the past decade, with the progress of

deep learning and computer vision, computer vision has exhibited

the cutting-edge capabilities of artificial intelligencein various

domains. Among the core tasks of computer vision, one of

utmost importance is object detection, which serves as a primary

mission for underwater robots, enabling them to execute

observation tasks in underwater environments, replacing human

presence. The applications of underwater object detection

encompass underwater biodiversity monitoring (Ahn et al., 2017),

marine organism conservation, marine environmental protection,

and aquaculture, serving as an effective means to advance diverse

fields. However, due to the properties of water, light undergoes

absorption and scattering, resulting in significant image noise

within the aquatic medium. This poses greater challenges for

object detection algorithms operating in such conditions.

The algorithm proposed by R. Girshick et al, Region-based

Convolutional Neural Network (RCNN) (Girshick et al., 2014),

represents a milestone in object detection as it is the first time that

convolutional neural networks have been employed in this task.

This marks the advent of deep learning-based object detection

algorithms. However, R-CNN suffers from an excessively large

number of candidate boxes on the image, and limited computer

resources result in slow processing speeds. In response to this

challenge, Kai Ming He et al. (He et al., 2015) proposed the

Spatial Pyramid Pooling Network (SPPNet) to address the issue

of computationally intensive convolutional operations caused by
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the vast number of candidate regions in R-CNN. SPPNet calculates

the feature maps of the entire image only once and generates a

fixed-length feature vector, thus reducing the need for repeated

convolutional computations and significantly improving processing

speed. However, during training, SPPNet still employs Support

Vector Machine (SVM), which stores the processed feature vectors

in the disk, leading to the issue of consuming a significant amount

of memory resources. To address these issues, scholars have

proposed Fast Region-based Convolutional Neural Network (Fast

R-CNN) (Girshick, 2015) and Faster Region-based Convolutional

Neural Network (Faster R-CNN) (Ren et al., 2015). Fast R-CNN

combines R-CNN and SPPNet, optimizing the computation of

candidate boxes with the idea of image normalization. It achieves

faster processing speed compared to R-CNN without sacrificing

accuracy. Additionally, Fast R-CNN eliminates the need to store

features in disks during training, thus resolving the issue of large

memory consumption. However, the selective search algorithm

used by Fast R-CNN to extract candidate regions occupies a

significant portion of the detection time, constraining the

detection speed. Faster R-CNN was proposed by S. Ren, K. He, J.

Sun, and R. Girshick, the author of Fast RCNN. Based on Fast R-

CNN, Faster R-CNN uses the RPN network, which not only reduces

the time required for feature extraction but also easily integrates

with R-CNN. It is the first end-to-end object detector. However,

Faster R-CNN still has its shortcomings. On the one hand, the

existence of two stages, RPN and R-CNN, prevents the network

from achieving real-time detection. On the other hand, there is still

a significant computational cost in obtaining region proposals and

calculating the final fully connected layer. In the year 2016, R.

Joseph et al. introduced You only look once (YOLO) (Redmon et al.,

2016), marking the emergence of one-stage detectors. Unlike

algorithms like R-CNN that generate candidate boxes for

classification, YOLO transforms the problem of object bounding

box localization into a regression problem, without generating any

candidate boxes. The speed of YOLO is significantly improved

compared to two-stage detectors such as R-CNN. However, YOLO

suffers from poor localization accuracy and inadequate detection

performance for small objects. Thereafter, R. Joseph et al.

introduced improved versions, such as, YOLOv2 (Redmon and

Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4

(Bochkovskiy et al., 2020), combining both speed and accuracy

improvements, resulting in an increasingly strong performance.

However, due to the particularity of underwater environments,

the imaging quality of underwater optical images is poor. Therefore,

traditional object detection algorithms have not been very effective

in underwater application scenarios. As a result, many researchers

have proposed various methods for processing underwater images.

Jiang et al. (Jiang et al., 2022c)proposed a transfer learning-based

adaptive framework for enhancing real-world underwater images,

which involves the conversion of in-air images into enhanced

underwater images. Li and colleagues (Li et al., 2022) proposed an

underwater image enhancement framework comprising an adaptive

color restoration module and a dehazing module based on the haze-

line, capable of simultaneously restoring color and removing haze in

underwater images. Wong et al. (Wong et al., 2018) proposed a

method that integrates parallel operations of the Adaptive Grey
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World (AGW) and Differential graylevel Histogram Equalization

(DHE) to eliminate color cast in underwater images and enhance

the contrast. Mohd and colleagues (Mohd Azmi et al., 2019)

proposed a method of red channel correction based on green and

blue channels (RCCGB), and simultaneous contrast stretching and

mean pixel enhancement (SCSMPE), which effectively reduced the

blue-green color cast and improved image contrast. Yu et al. (Yu

et al., 2020) propose an underwater image denoising method that

employs operations such as homomorphic filtering, dual

transmission maps, and doublelogarithmic wavelet fusion to

achieve color correction and image enhancement. Image

enhancement algorithms can have a positive impact on the

processing of underwater images. However, due to the complexity

of underwater optical environments, different enhancement

algorithms may have varying results in different underwater

environments. Moreover, algorithms that require learning may be

time-consuming and may not achieve the desired effect

when applied.

The mechanism of attention can be considered a way of

allocating weight parameters in neural networks. During training,

the model pays more attention to certain objects, resulting in the

allocation of more weight parameters to those objects. This enables

the model to extract more features related to the objects of interest,

suppress irrelevant information, improve the detection effect of the

objects of interest, and ultimately enhance the detection accuracy of

the model. In 2014, Mnih et al. (Mnih et al., 2014) from Google

made the pioneering use of the attention mechanism on RNN.

Subsequently, Xu et al. (Xu et al., 2015) proposed two attention

mechanisms in 2015, namely the soft deterministic mechanism

trained using basic backpropagation and the hard stochastic

mechanism trained using reinforcement learning, which were

applied in image processing. In 2017, Fu et al. (Fu et al., 2017)

proposed a recurrent attentional convolutional neural network

(RA-CNN) that recursively analyzes local information of images

to extract finer features. The network also includes an attention

generation subnetwork which generates several regions in the

image, predicts the outcomes for these regions, and then

integrates all the predictions to output the final result. In the year

2017, Hu (Hu et al., 2018) and colleagues presented the Squeeze-

andExcitation (SE) block, which is a classic work of channel

dimension attention mechanism. This block can adaptively re-

calibrate channel feature responses. Subsequently, an increasing

number of researchers have introduced attention from various

aspects and dimensions, such as spatial attention, Efficient

Pyramid Split Attention Block on Convolutional Neural Network

(EPSANet) (Zhang et al., 2021), the self-attention of Efficient Multi-

Head Self-Attention (EMSA) (Zhang and Yang, 2021), the spatial

and channel mixed attention of CBAM (Woo et al., 2018) and

Bottleneck attention module (BAM) (Park et al., 2018), the

temporal attention of Interaction-Aggregation-Update Network

(IAU-Net)(Hou et al., 2020), the frequency domain attention of

Frequency channel attention network (FCA-Net) (Qin et al., 2021),

the global attention of Relation-aware global attention (RGANet)

(Zhang et al., 2020), and the hierarchical attention of Two-level

attention (Xiao et al., 2015). The introduction of attention

mechanisms has become one of the key areas of improvement for
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many algorithms. However, it remains unknown whether the

introduction of attention mechanisms can enhance model

accuracy, and on the other hand, inevitably increases the number

of parameters. Therefore, selecting appropriate attention

mechanisms for the network is a worthwhile issue to contemplate.

In recent years, an increasing number of researchers have

applied improved object detection algorithms to underwater

environments, proposing numerous underwater object detection

algorithms. Zeng et al. (Zeng et al., 2021) proposed an underwater

object recognition algorithm based on Faster R-CNN and

adversarial networks, which addresses the issue of low detection

accuracy when underwater organisms are occluded. However, the

training time for the network is relatively long. Lei et al. (Lei et al.,

2022) have proposed utilizing Swin Transformer as the

fundamental backbone network for YOLOv5 and improved the

YOLOv5 object detection algorithm by enhancing the Path

Aggregation Network (PANet) for multi-scale feature fusion. This

approach has proven effective in accurately identifying targets in

complex environments; however, the model’s size is relatively large.

Chen et al. (Chen et al., 2021) proposed incorporating transpose

convolutional modules and depthwise separable convolutions into

YOLOv4, as well as using an improved mosaic augmentation

combining the gray world algorithm in data preprocessing to

enhance the complexity of the background. However, this

approach is unable to reinforce the extraction of color features

during training for images with color distortion. Liu et al. (Liu et al.,

2023) proposed a target detection algorithm, Transformer self-

attention and coordinate attention-YOLO (TC-YOLO), which is

based on YOLOv5 and incorporates adaptive histogram

equalization and attention mechanism. However, the adaptive

histogram equalization algorithm has limitations in handling dark

details in images, which may slightly affect the detection accuracy.

Wei et al. (Wei et al., 2021) proposed a novel object detection

algorithm based on enhanced scale and attention mechanisms,

which significantly improved the detection accuracy of small

targets. However, the introduction of attention mechanisms also

led to an increase in model parameter size. Guan et al. (Guan et al.,

2022) proposed using a cosine annealing learning rate optimization

strategy to train the YOLOv4 underwater object detection model

and adopted the optimized auto Multi-Scale Retinex with Color

Restoration (autoMSRCR) algorithm. However, the images restored

in turbid water suffer from color distortion, which leads to poor

detection performance. Qu et al. (Qu et al., 2022) proposed a Multi-

Color Convolution and Attention Net (MCCA-Net), which stacks

to effectively enhance the features of underwater images and

improve the accuracy of model classification. However, this

inevitably increases the computational complexity of the model.

Some scholars have combined the attention mechanism into the

YOLOv7 (Wang et al., 2022) algorithm. Jiang et al. (Jiang et al.,

2022b) added the attention mechanism to the enhanced feature

network extraction part of the YOLOv7 network to retain part of

the original weights of the backbone network. Zheng et al. (Zheng

et al., 2022) proposed to use K-means++ clustering algorithm to

generate anchor boxes more suitable for detecting targets. The

Coordinate Attention mechanism (CoordAtt) Module and

HorBlock Module are added to the network. HorBlock Module
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consists of gnConv (gated convolution) and layer norm

normalization, and they both use SIoU (Gevorgyan, 2022) as the

loss function. Although the previous works have achieved

promising results, their applications are carried out in scenes

under normal light conditions, which are different from the

underwater environment. In the dark underwater environment,

rockfish, the detection object selected in this paper, resides in the

seabed rocks, and the colors of corals and seabed plants distributed

on the rocks are the natural protective colors of rockfish.

Specifically, underwater image quality, realistic underwater

environment and other conditions are the main challenges that

limit the accuracy of underwater target detection and localization.

To address the aforementioned issues and enhance the detection

accuracy of target detection algorithms in underwater images, we

propose a target algorithm that combines the improved YOLOv7

with UWCNN (Li et al., 2020), which can accurately detect fish and

other targets in complex and dark underwater environments in the

wild. The main contributions of this article are as follows:
Fron
(1) To address the problem of low detection accuracy caused by

complex underwater environments, we added a CBAM

module to the backbone feature extraction network of the

network. This allows the backbone network to generate

channel attention maps and spatial attention maps based

on the channel and spatial relationships between features

during feature extraction.

(2) To address the problem of missed and false detections

caused by the dark underwater environment, we introduced

an underwater image enhancement convolutional neural

network model with underwater scene priors, called

UWCNN, to enhance the images. This model does not

require the estimation of parameters of the underwater

imaging model and can directly reconstruct clear potential

underwater images.

(3) To address the issue of slow convergence of the loss

function during training, as well as to improve the speed

of training and the accuracy of inference, this article

replaces the original loss function Complete Intersection

Over Union (CIoU) with the more superior performance

loss function SIoU to enhance the model’s performance.
2 Methods

2.1 YOLOv7 network architecture

The YOLO series algorithms are typical representatives of one-

stage object detection algorithms, which are based on deep

convolutional neural networks for object recognition and

localization. The YOLOv7 model structure comprises three main

components, namely, the input terminal (Input), the backbone

network (backbone), and the head (Head). The input terminal

will resize the input image to a predetermined, uniform size while

processing the image using Mosaic data augmentation and adaptive

anchor box calculation. The backbone feature extraction network is
tiers in Marine Science 04
utilized to extract features that are subsequently fused in the head

and generate predictions of bounding boxes and object categories,

thereby accomplishing object detection. The YOLOv7’s backbone

feature extraction network is comprised of composition of

Convolutional-Batch Normalization-SiLU modules (CBS),

efficient layer aggregation network (ELAN) modules, and

MaxPool-CBS (MP) modules, which alternately reduce the length

and width of the feature maps while doubling the number of output

channels in comparison to the number of input channels. YOLOv7

uses ELAN to extend, shuffle, and merge the radix without breaking

the original gradient path, continuously enhancing the learning

ability of the network. With in the MP module, there exist two

branches, whereby the upper branch employs a max-pooling

operation to reduce the length and width of the feature map by

half, and subsequently halves the channel of the feature map via a

convolutional operation. The lower branch of the network

implements a first convolution operation to reduce the number of

channels, followed by a second convolution operation to reduce the

width and length of the feature map, before finally merging with the

upper branch. Finally, an output feature map with half the length

and width of the original, and consistent input and output channel

numbers are obtained. The Head module is composed of a Path

Aggregation Feature Pyramid Network (PAFPN), a Spatial Pyramid

Pooling and Convolutional Spatial Pyramid Pooling (SPPCPC)

module, a series of CBS modules , an MP module, a

Concatenation (Concat) module, and three Repconv modules.

After the image is fed into the network, the final prediction

results are output through the REP and CBM modules in the

Head. We have substituted the first three CBS in the backbone

with the attention mechanism CBAM, preprocess the image using

the UWCNN underwater enhancement algorithm. And the

improved network is shown in Figure 1. The model in this article

consists of 379 layers, comprising a parameter count of 36,677,869,

and it occupies a memory size of approximately 71.6MB. The partial

configuration of the model is precisely delineated in Table 1.
2.2 The attention mechanism

The underwater environment is typically dimly lit and is filled

with interfering elements such as rocks and aquatic plants, which

can impede detection. To address the issue of missed detections and

false alarms in complex underwater environments when using

YOLOv7, this paper introduces an attention mechanism, CBAM,

into the network. CBAM is a mechanism of attention proposed by

Woo et al. in 2018, which combines two dimensions of analysis,

namely channel attention and spatial attention. This module is

composed of a channel attention module and a spatial attention

module. The structural diagram of the CBAM module is illustrated

in Figure 2.

The structure of the Channel Attention Module is illustrated in

Figure 3. Firstly, the input feature map is subjected to both

Maximum Pooling (MaxPool) and Average Pooling (AvgPool),

resulting in two feature vectors of size [C,1,1], from the original

feature map size of [C, H, W]. These vectors are then fed into a

Multi-Layer Perceptron network (MLP) with shared network
frontiersin.org
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parameters. The two resulting output features are merged using an

element-wise summation and normalized using the sigmoid

activation function to obtain the weights (Mc(fm)), for each

channel of the feature map. The calculation formula is as follows.

Mc(fm) = s  (MLP(AvgPool (fm)) +MLP(MaxPool (fm))) (1)

In the given expression, represents the sigmoid activation

function, (MLP) stands for multilayer perceptron network,

(AvgPool) denotes average pooling, and (MaxPool) indicates

maximum pooling. The channel attention feature map fm′ is

obtained by multiplying the channel weights with the input feature

map fm, as expressed by the following mathematical formula.

fm0 = Mc(fm)⊗ fm (2)
Frontiers in Marine Science 05
The symbol ⊗ denotes element-wise multiplication, as used in

the given equation.

The spatial attention module is illustrated in Figure 4. Upon

entering the module, the channel attention feature map undergoes

both max pooling and average pooling operations, resulting in two

spatial weight vectors of size [1, H, W] for each feature point across

all channels. These vectors are then concatenated to form a two-

dimensional spatial weight vector, which is subsequently convolved

and activated by a sigmoid function to obtain a one-dimensional

spatial weight, as expressed by the following mathematical formula.

Ms(fm) = (f 7�7(AvgPool (fm0),MaxPool (fm0))) (3)

In the given equation, f7×7denotes a convolutional kernel of

size 7×7.

Finally, the obtained spatial weights are multiplied with the

channel attention feature map fm′ to produce the ultimate attention

feature map FM, as expressed by the following mathematical

formula.

FM = Ms(fm
0)⊗ fm0 (4)
2.3 The underwater enhanced
algorithm UWCNN

The underwater enhancement algorithm UWCNN is a

convolutional neural network model for enhancing underwater

images based on underwater scene priors, proposed by Li et al. It

combines the underwater imaging physical model with the optical

characteristics of the underwater scene. This model does not require

the estimation of parameters for the underwater imaging model but

directly reconstructs clear latent underwater images. The structure

of the UWCNNmodel is depicted in Figure 5. The network consists

of three distinct layers, with the first type being a convolutional
TABLE 1 Parameter configuration of our method.

Type Configuration

Conv

Channel: 64, 128, 256, 512, 1024
Convolution kernel size: 1×1, 3×3
Activation function: SiLU
Stride: 1, 2

Attention
module (CBAM)

ChannelAttention:
Pooling layer: average pooling layer and maximum
pooling layer
Activation function: ReLU and Sigmoid
Shared MLP: Replace with convolution kernels of
size 1×1

SpatialAttention:
Pooling layer: average pooling layer and maximum
pooling layer
Convolutional layers: 7×7
Activation function: Sigmoid

RepConv
Channel: 256, 512, 1024
Convolution kernel size: 3×3
Stride: 1
FIGURE 1

Structure of the improved YOLOv7 network.
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layer composed of 16 convolutional kernels of size 3×3×3,

generating 16 feature maps for the first layer. The second type

pertains to the activation layer “ReLU” which is utilized to

introduce non-linear functions. The third type is the Concat

layer, utilized to connect all convolutional layers after each block.

The final convolutional layer estimates the ultimate output of

the network.

Due to the optical characteristics of the underwater

environment, some images in the dataset suffer from poor

imaging quality. With the aid of this underwater enhancement

algorithm, it is effective in restoring color distortion in severely

damaged images, thus processing is applied to certain images.
Frontiers in Marine Science 06
In Figures 6A–D represent the original images, while Figures

6E–H represent the processed.

2.3.1 Network architecture
2.3.1.1 Residuals

To prevent the occurrence of gradient vanishing or exploding

during model training, add the input of the network to the output of

the network before the loss function, and force the network to learn

the residual. Let denote the image input to the network, is the

predicted latent image and this process can be represented as:

I = P + D (P, q) (5)
FIGURE 4

Spatial attention module structure diagram.
FIGURE 2

CBAM module structure diagram.
FIGURE 3

Channel attention module structure diagram.
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In the formula, the symbol + denotes the operation of addition

between elements.

2.3.1.2 Enhancement units

The UWCNN is comprised of various modules, among which

an essential module is the Enhancement Units, abbreviated as E-

Units. Let Re denote the ReLU operation and C represents the

convolution operation. Thus, in the -th block, the first operation of

the convolution-ReLU pair can be expressed as:

zl,0 = r(c(P); ql,0) (6)

In the equation, zl,0 refers to the output of the first convolution-

ReLU pair in the l-th residual enhancement unit, and ql,0 represents
a set of weights and biases associated with it, which can be obtained

through multiple convolution-ReLU pairs.
Frontiers in Marine Science 07
zl,n = r(c(… r(c(P; ql,0))… ); ql,n) (7)

The output of the l-th block is obtained by concatenating along

the third dimension of both the output z and the input image U,

which are obtained from individual convolution-ReLU pairs. The

formula is given as follows:

bl = h(zl,0;…; zl,n; P) (8)

The output of the (l + 1)-th enhancement unit is given as

follows:

bl+1 = h(zl+1,0;…; zl+1,n; P; bl) (9)

Finally, the concatenation of all E-Units modules is convolved

with the final convolution layer having the parameter ql+m,n,

resulting in the predicted component.
B C D

E F G H

A

FIGURE 6

Image enhancement before and after picture comparison (A–D) represent the original images, while (E–H) represent the processed.
FIGURE 5

UWCNN model structure diagram.
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D (P, q) = c(bl+m, ql+m,n) (10)
2.3.1.3 Network loss

In the process of reconstructing the image, the model employed

the ℓ2 function to maintain the clarity of the edges and details of the

image, and added the estimated residue to the input underwater

image, followed by the calculation of the ℓ2.

‘2 = 1
Mo

M

i=1
½P(xi) + D(P(xi), q(xi))� − I*(xi)
�� ��2 (11)

The estimated pixel value of the latent image at the xi location is

denoted by P(xi) + D(P(xi), q(xi)) = I*(xi) in the equation.

Furthermore, Li et al. incorporated Structure Similarity Index

Measure (SSIM) loss into the objective function, which imposes

structural and texture similarity on the latent image. The SSIM

score was calculated using grayscale images. For each pixel x, the

SSIM value is calculated within a 13×13 image patch surrounding

the pixel.

SSIM(x) =
2mI*(x)mI (x)+c1
m2
I*
(x)+m2

I (x)+c1
·

2sI*I (x)+c2
s2
I*
(x)+s 2

I (x)+c2
(12)

In the given equation, mI(x) and sI(x) are the mean and

standard deviation of image patches from the latent image I,

while mI*(x) and sI*(x) are from the ground truth image I*,

where sI*(x) is obtained between the patches of I and I*. The

expression for the loss of SSIM is given as follows, where c1 = 0.02

and c2= 0.03.

LossSSIM = 1 − 1
Mo

M

i=1
 SSIM(xi) (13)

The ultimate loss function L is the sum of the Mean Squared

Error (MSE) and Structural Similarity Index (SSIM):

L =  ‘2 + LossSSIM (14)
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2.4 The Loss function

The loss function in YOLOv7 consists of three components:

classification loss (LossClass), localization loss (LossCIoU), and

confidence loss (LossConf). The expression for the loss function is:

Lossobject = LossCIoU + LossClass + LossConf (15)

The confidence and classification losses use the normalized

cross-entropy function BCEWithLogitsLoss, while the localization

loss uses the CIoU loss function. The formula for calculating CIoU

is given:

LossCIoU = 1 − CIoU (16)

CIoU = IoU − r2(B,Bgt )
c2 − av (17)

a = v
1−IoU+v   (18)

v = 4
p2 tan−1 wgt

hgt − r tan−1 w
h

� �2 (19)

Among them, Intersection Over Union (IoU) (Yu et al., 2016)

represents the intersection over union ratio between the predicted

and ground truth bounding boxes, while r2(B,BGT) represents the
Euclidean distance between the predicted and ground truth

bounding boxes, where B denotes the predicted target box and Bgt

denotes the actual target box. a is a balancing parameter that is not

involved in gradient computation. crepresents the diagonal distance

of the minimum closed region that can simultaneously contain the

predicted and ground truth boxes, while v represents the aspect

ratio of the predicted and ground truth boxes. wgt and hgt denote the

width and height of the ground truth target box, and w, h denote the

width and height of the predicted target box. When the predicted

and ground truth boxes have the same aspect ratio, v is set to 0.

The calculation and parameters of SIoU are shown in Figure 7.
FIGURE 7

Calculation diagram of SIoU.
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To improve the convergence speed of the loss function, this

paper replaces the loss function with SIoU. The SIoU loss function

consists of four cost functions: Angle cost, Distance cost, Shape cost,

and IoU cost.

2.4.1 Angle cost
During the convergence process, if a < p

4 , then minimize a first,

otherwise minimize b. The formula for computing the Angle cost is

as follows:

L = 1 − 2sin2( sin−1 x) − p
4 (20)

In the equation,

x = ch
s = sin (a) (21)

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bgtcx − bcx )

2 + (bgtcy − bcy )
2

q
(22)

ch = max (bgtcy , bcy ) −min (bgtcy , bcy ) (23)

In the formula, (bgtcx , b
gt
cy ), represents the center coordinates of

the ground truth box, while (bcx bcy ) represents the center

coordinates of the predicted box. denotes the distance between

the center of the ground truth box and the center of the

predicted box.

2.4.2 Distance cost
The formula for calculating Distance cost is derived from the

Angle cost definition provided above.

D =ot=x,y(1 − e−grt ) (24)

In the equation,

rx =
bgtcx −bcx

cw

� �2
(25)

ry =
bgtcy −bcy

ch

� 	2

(26)

g = 1 + sin2 sin−1
bgtcy − bcy

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bgtcx − bcx
� �2

+ bgtcy − bcy

� �2
r −

p
4

0
BB@

1
CCA (27)

As a approaches zero, it can be inferred from the above

equation that the contribution of distance cost significantly

decreases. Conversely, as approaches p
4 , the contribution of

distance cost increases. With the increase in angle, g is assigned a

distance value that prioritizes time.

2.4.3 Shape cost
The formula for calculating Shape cost is as follows:

W = o
t=w,h

 (1 − e−wt )q (28)
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Among them:

ww = w−wgtj j
max (w, wgt )

(29)

wh =
h−hgtj j

max (h, hgt )
(30)

wgt and hgt represent the width and height of the ground truth

bounding box, while w, h denoting the width and height of the

predicted bounding box. The parameter q governs the degree of

emphasis placed on the shape loss.

2.4.4 IoU cost
The formula for calculating IoU is:

IoU =
B∩BGTj j
B∪BGTj j (31)

In the equation, B represents the predicted bounding box, while

BGT represents the ground truth bounding box.

The final expression for SIoU is:

LossSIoU = 1 − IoU + D+W
2 (32)
3 Materials

3.1 The experimental environment
and configuration

We conducted experiments on a research platform equipped

with Inter® Xeon® Sliver 4100 and NVIDIA GeForce RTX 2080 Ti,

using Pytorch1.8.2 to build deep learning networks. We accelerated

GPU calculations with Cuda11.0 and cudnn8.0.5. The operating

system of the research platform was Windows 10. The number of

training epochs was set to 300, with an initial learning rate of 0.01,

and a weight decay rate of 0.0005, and the network was trained

using stochastic gradient descent (SGD) with a momentum

of 0.937.
3.2 The dataset and evaluation metrics

The dataset utilized in this paper is based on the “Label Fishes in

the Wild” dataset publicly released by the National Oceanic and

Atmospheric Administration of the United States (Cutter et al.,

2015). Rockfish was selected as the detection targets. The two

rockfish species chosen in our dataset are both Pacific rockfish.

Pacific rockfish serves as a collective term for bottom-dwelling fish

inhabiting the waters spanning from Alaska to California. Rockfish

come in many different shapes, sizes and color patterns. Colors vary

from black and drab green to bright orange and red, and some

rockfishes wear stripes or splotches. The original dataset comprises

1329 images. We select the images which contain wild rockfish for

training. There are 275 images in the training dataset and 75 images

in the validation set, for a total of 350 images. Videos captured by
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the Remote Operated Vehicle (ROV) underwater unmanned

submersible were used as test videos.

The evaluation metrics for the model mainly include Precision

P, Recall R, and mean average precision mAP, Parameters, FLOPs.

Parameters are the variables that the model can learn automatically

based on the data it is given. FLOPs stands for floating point of

operations, and it can be used to measure the complexity of an

algorithm or model. Precision represents how many of the detected

samples are truly fish among those detected as fish, reflecting the

accuracy of the detection results. The Recall indicates how many

fish are correctly detected in all image samples, reflecting the

completeness of the number of fish. F1 is a metric utilized in

statistics to measure the accuracy of a binary classification model,

which comprehensively considers both precision and recall. The

closer the F1 score is to 1, the better the performance of the model.

The AP value is equal to the area enclosed by the P-R curve and the

coordinate axis in the P-R curve, which reflects the effectiveness of

the model in identifying a certain category. The mean average

precision (mAP) is the average of the average precision (AP) values

across all categories, serving as a metric to measure the average

performance of the model across all categories.The confusion

matrix represents a prevalent metric for the evaluation of

classification models, enabling a comprehensive and intuitive

assessment of the model’s performance. Its layout is depicted

in Table 2.

Among them, TP represents the cases where the model’s

prediction is positive and matches the actual positive values.

Similarly, FP represents cases where the model predicts positive,

but the actual values are negative. FN represents the situations

where the model predicts negative, whereas the actual values are

positive. Additionally, TN represents the cases where the model’s

prediction is negative and corresponds to the actual negative values.

Precision refers to the percentage of true positive predictions

among all positive predictions made by the model. The calculation

formula is as follows:

Precision =
TP

TP + FP
� 100% (33)

Recall denotes the ratio of true positive predictions to the actual

positive values in a model. The calculation formula is as follows:

Recall =
TP

TP + FN
� 100% (34)

F1 score is a metric used in statistics to measure the accuracy of

binary classification (or multi-task binary classification) models. It

takes into account both the precision and recall of the classification

model. F1 score can be regarded as a weighted average of model
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precision and recall, with a maximum value of 1 and a minimum

value of 0. A higher F1 score indicates better model performance. F1

is calculated as follows:

F1 =
2� Precision� Recall
Precision + Recall

� 100% (35)

In this paper, the AP value is calculated based on the maximum

Precision value corresponding to the 11 Recall values, and then the

average of the 11 Precision values is obtained:

AP =
1
11 o

i=0,0:1:::1:0
PrecisionMax

mAP is the average of the AP values across all classes:

mAP =
o
N

i=1
AP

N

4 Results

4.1 Comparison of experimental results

After introducing the attention module CBAM into the

YOLOv7 network, the loss function of the improved network

showed poorer convergence compared to the original YOLOv7’s

loss function. Therefore, the authors of this article considered

improving the loss function. Currently, the mainstream bounding

box regression loss functions include Generalized Intersection over

Union (GIoU) (Rezatofighi et al., 2019), Distance-IoU (DIoU)

(Zheng et al., 2020), CIoU, EfficientIoU (EIoU) (Zhang et al.,

2022) etc. The GIoU loss function is an improvement on the IoU

loss function that introduces the minimum enclosing rectangle of

the predicted and ground truth boxes. It includes the non-

overlapping regions between the predicted and ground truth

boxes in the calculation, addressing the issues of the IoU loss

function’s inability to optimize for cases where the predicted and

ground truth boxes do not intersect and uncertainty around how

the predicted and ground truth boxes intersect. The GIoU loss

function is better able to reflect how the ground truth and predicted

boxes overlap. However, when the predicted box is inside the

ground truth box, GIoU degenerates into IoU. At this point,

GIoU cannot distinguish the position relationship between the

predicted box and the ground truth box, resulting in slow

convergence of the bounding box regression. DIoU addresses the

issue where GIoU reduces to IoU by replacing the penalty term of

maximizing the overlapping area with the minimum normalized

distance between the centers of the predicted and ground truth

boxes. However, DIoU did not consider the aspect ratio of the

frame. When multiple boundary frames have the same area but

different aspect ratio and the center coincides with the center of the

anchor frame, DIoU cannot distinguish these cases well. The CIoU,

which was proposed along with DIoU, takes into account the aspect

ratio of bounding boxes. It adds a penalty term for the aspect ratio

to the DIoU, which encourages the predicted box to be closer to the
TABLE 2 Confusion Matrix.

Confusion Martix
Prediction

Positive Negative

Reference
Positive TP FN

Negtive FP TN
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ground truth box and speeds up the convergence rate. Indeed, the

ratio of height and width is just a proportion and not a true

difference. Therefore, when the aspect ratio of the predicted box

and the ground truth box have a linear relationship, the penalty

term for the aspect ratio in CIoU will become ineffective. EIoU

introduces a novel strategy to address the limitations of CIoU by

incorporating the differences between the predicted box and the

anchor box. Instead of penalizing the aspect ratio of the predicted

box, EIoU calculates the differences between the predicted box and

the anchor box’s height and width, which are used as penalties to

make the predicted box closer to the ground truth box. This

approach results in faster convergence and increased accuracy

compared to CIoU. SIoU takes into account the angle between

the predicted bounding box and the ground truth and introduces a

new penalty term for rotation, which allows the predicted bounding

box to converge quickly along the X or Y axis and speeds up the

convergence rate. This article compares the CIoU, DIoU, EIoU, and

SIoU loss functions and conducts experiments to evaluate their

performance. The convergence curves of different networks

concerning the number of iterations are shown in Figure 8.

As can be seen from Figure 8, the addition of the attention

module CBAM in the network results in a change in the model’s
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loss function compared to the original network’s loss function,

indicating that the model’s robustness (Jiang et al., 2022a) is

affected. Replacing the network’s loss function with SIoU can

greatly improve the poor robustness introduced by the attention

mechanism in the model. To quantitatively analyze the

performance of the eight networks, precision, recall, F1, mAP@

0.5, Parameters and FLOPs of the eight networks are summarized in

Table 3. We have included the relevant data for Training Loss and

Validation Loss for different loss functions in Table 4. According to

the data in Table 4, it is evident that SIoU has a positive impact on

the model’s convergence during training, with its loss values

consistently lower than the other three loss functions.

From Table 3, it becomes apparent that upon the integration of

the UWCNN model for the processing of select images, the model’s

mAP values have experienced fluctuations, either ascending or

descending. Subsequent to the introduction of UWCNN, the

combination yielding the least favorable results consists of

CBAM+EIoU+UWCNN, registering a decrease of 1.1% in

comparison to CBAM+EIoU. Conversely, the combination yielding

the most favorable outcomes involves CBAM+SIoU+UWCNN,

demonstrating a 1% increase over CBAM+SIoU, thus attaining the

current pinnacle of precision. Upon a consideration of the F1 metric,
TABLE 3 Comparison of precision, recall, F1, mAP@0.5, Parameters and FLOPs across different networks.

Method Precision Recall F1 mAP@0.5 Parameters FLOPs(G)

YOLOv7 95% 100% 97.4% 90.9% 36487166 103.2

YOLOv7+UWCNN 97.7% 100% 98.8% 91.0% 36487166 103.2

CBAM+CIoU 98.8% 100% 99.3% 94% 36677869 109.6

CBAM+CIoU+UWCNN 95.9% 99% 97.9% 93.7% 36677869 109.6

CBAM+DIoU 98.5% 100% 99.2% 91.8% 36677869 109.6

CBAM+DIoU+UWCNN 98.8% 99% 98.8% 91.9% 36677869 109.6

CBAM+EIoU 96.5% 100% 98.2% 91.6% 36677869 109.6

CBAM+EIoU+UWCNN 98.4% 100% 99.1% 90.5% 36677869 109.6

CBAM+SIoU 98.2% 100% 99% 93.4% 36677869 109.6

CBAM+SIoU+UWCNN(Ours) 99.1% 99% 99% 94.4% 36677869 109.6
BA

FIGURE 8

Comparison of network detection performance. (A) Comparison of loss values of different algorithms; (B) Comparison of loss values for different
loss functions.
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it becomes evident that, in the majority of instances, the introduction

of UWCNN has resulted in improvements in the F1 values of the

combinations, s ignifying that UWCNN enhances the

model’s performance.

In this paper, the confusion matrix is normalized. The

normalized confusion matrix for this model is illustrated

in Figure 9.

The row labels on the confusion matrix represent the predicted

categories of fish. Each value on the diagonal indicates the

percentage of correctly predicted labels out of the total samples in

that category. The darker the color on the diagonal, the better the

performance of the model.
4.2 Ablation experiment

The YOLO series of algorithms permit the adjustment of

hyperparameters to yield an optimal model. The hyperparameters

we focus on in this work are epochs, batch-size, learning rate, and

the activation function of the network. Based on experience, batch

size is typically chosen as a power of 2. Constrained by hardware

considerations, this study exclusively employs a batch size of 4 in its
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experimental setups. To strike a harmonious equilibrium between

model fitting capability and generalization prowess, it is crucial to

ascertain an appropriate number of epochs. Given the relatively

modest size of the dataset employed in this paper, and in

consideration of the designated batch size, a total of 300 epochs

have been chosen for model training to forestall overfitting. A

learning rate that is too small can result in slow convergence, while

one that is excessively large may lead to rapid initial convergence

but may fail to reach the minimum value. After conducting a

comparative analysis of the loss values for learning rates of 0.01 and

0.001, it has been observed that the model with a learning rate of

0.001 performs less favorably than the one with a learning rate of

0.01, indicating inferior convergence. Therefore, we have set up a

learning rate of 0.01. Within multilayer neural networks, there

exists a functional relationship between the output of upper-layer

nodes and the input of lower-layer nodes, known as the activation

function. This activation function bestows upon the network the

capability for non-linear modeling. The utilization of non-linear

functions as activation functions empowers deep neural networks

with enhanced expressive capabilities. Consequently, the selection

of an appropriate activation function can augment the performance

of the neural network. In the realm of deep learning, numerous

novel activation functions have emerged, including SELU

(Klambauer et al., 2017), Hardswish (Howard et al., 2019), SiLU

(Swish) (Ramachandran et al., 2017), and others. For comparative

analysis, we have opted to contrast four activation functions:

Sigmoid, SELU, Hardswish, and Tanh, against the original SiLU

activation function employed in this paper. The specific results are

detailed in Table 5. It is evident that the networks with the

introduction of SIoU perform better than the networks with

CBAM added and the networks with the loss function modified.

Furthermore, we conducted ablation experiments to explore various

attention mechanisms. We compared the attention mechanisms SE

and Global attention mechanism (GAM) (Liu et al., 2021) with

CBAM in our study on attention mechanisms. SE introduces the

consideration of the relationship between feature channels. By

automatically learning the importance of each feature channel, it

enhances the features while suppressing the unimportant ones

using the learned importance. GAM, on the other hand, considers

the interaction between spatial and channel dimensions and

improves upon CBAM’s sub-modules by adopting a sequential

channel-spatial attention mechanism. This enhances the global

dimensional interaction features, enabling the extraction of

important features across all three dimensions. The experimental
FIGURE 9

Normalized confusion matrix.
TABLE 4 Training loss and validation loss.

Method
Train Train Train Val Val Val

box_loss obj_loss cls_loss box_loss obj_loss obj_loss

YOLOv7+UWCNN 0.01524 0.004279 0.0005991 0.05386 0.005673 0.003946

CBAM+CIoU+UWCNN 0.02242 0.006231 0.0028620 0.03322 0.007507 0.004239

CBAM+DIoU+UWCNN 0.01237 0.003521 0.0004692 0.02789 0.009236 0.004164

CBAM+EIoU+UWCNN 0.01392 0.003709 0.0004209 0.02668 0.008334 0.003456

CBAM+SIoU+UWCNN(Ours) 0.01211 0.003176 0.0001940 0.02970 0.008076 0.004046
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results of combining SE, GAM, and CBAM with different loss

functions are shown in Table 6. The symbol✓indicates the use of an

item for improvement, while × indicates that the item was not used

for improvement.

The first row of the table represents the original YOLOv7

algorithm. From the table, we can see that the combination of

different attention mechanisms and loss functions has different

effects on the performance of the network, and even may lead to a

decrease in network performance. The accuracy of the networks

combined with SE, GAM, and different loss functions was improved

to some extent, but most of them showedmediocre performance. The

combination of CBAM and SIoU leads to a significant improvement

in the network’s mAP, which reached 94.4%. And, combined with the

F1 score, it can be seen that the combination of CBAM+SIoU works

best. In the intricate underwater environment, target detection
Frontiers in Marine Science 13
algorithms are susceptible to the influences of background and

color, and there are problems such as false detection and missed

detection of the targets. Therefore, the incorporation of an attention

mechanism enables the model focus on the information that is more

critical to the current task, and improve the processing efficiency and

accuracy of the task. SIoU is used as the loss function because SIoU

takes into account the problem of direction mismatch between the

predicted bounding box and the ground truth, accelerates the training

convergence process, and improves the detection performance.

This passage demonstrates the visualization of thermal maps

using Grad-CAM (Selvaraju et al., 2017), depicting the effects of

various attention mechanisms on images. The resulting diagram is

depicted in Figure 10.

The intensity of color indicates the level of attention the model

places on each specific area. A darker color signifies a higher
TABLE 5 Effect of different hyperparameters in the proposed model.

Method Epoch Batch-size
Learning
Rate

Optimizer
Activation
Function

mAP@0.5

CBAM+SIoU+UWCNN 300 4 0.001 SGD SELU 88.4%

CBAM+SIoU+UWCNN 300 4 0.001 SGD Hardswish 93.8%

CBAM+SIoU+UWCNN 300 4 0.001 SGD Sigmoid 86.9%

CBAM+SIoU+UWCNN 300 4 0.001 SGD Tanh 87.7%

CBAM+SIoU+UWCNN 300 4 0.001 SGD SiLU 90.9%

CBAM+SIoU+UWCNN 300 4 0.01 SGD SELU 89.6%

CBAM+SIoU+UWCNN 300 4 0.01 SGD Hardswish 89.6%

CBAM+SIoU+UWCNN 300 4 0.01 SGD Sigmoid 84.2%

CBAM+SIoU+UWCNN 300 4 0.01 SGD Tanh 89.7%

CBAM+SIoU
+UWCNN(Ours)

300 4 0.01 SGD SiLU 94.4%
TABLE 6 Ablation experiments.

SE GAM CBAM CIoU DIoU EIoU SIoU P R F1 mAP@0.5

× × × ✓ × × × 97.7% 100% 98.8% 91%

✓ × × ✓ × × × 98.9% 95% 96.9% 91.9%

✓ × × × ✓ × × 98.1% 99% 98.5% 93.1%

✓ × × × × ✓ × 97.5% 99% 98.2% 92.5%

✓ × × × × × ✓ 98.0% 99% 98.4% 91.2%

× ✓ × ✓ × × × 98.5% 99% 98.7% 94.0%

× ✓ × × ✓ × × 98.4% 99% 98.6% 93.9%

× ✓ × × × ✓ × 98.3% 100% 99.1% 91.5%

× ✓ × × × × ✓ 98.2% 99% 98.5% 93.5%

× × ✓ ✓ × × × 95.9 % 100% 97.9% 93.7%

× × ✓ × ✓ × × 98.8% 99% 98.8% 91.9%

× × ✓ × × ✓ × 98.4% 100% 99.1% 90.5%

× × ✓ × × × ✓ 99.1% 9%9 99% 94.4%
×: none; ✓: selected.
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degree of attention and a larger allocation of weights during

training. Models incorporating different attention mechanisms

exhibit varying levels of focus on local regions within the two

original images. It is evident that the model utilizing CBAM
Frontiers in Marine Science 14
demonstrates less attention towards irrelevant factors in the

surroundings, while placing greater emphasis on the fish within

the image . As a resul t , th is approach yie lds higher

detection accuracy.
B

C D
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A

FIGURE 11

Comparison of network detection performance. (A, C, D) represent the performance of YOLOv7 algorithm, and (B, D, F) represent the performance
of the proposed algorithm.
B C D

E F G H

A

FIGURE 10

Comparison of heat maps of different attention mechanisms. (A, E) represent the original image, (B, F) represent the effect of the attention
mechanism SE, (C, G) represent the effect of the attention mechanism GAM, (D, H) represent the effect of the attention mechanism CBAM.
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Figure 11 depicts the detection performance of the network

before and after improvement in real underwater environments.

In Figures 11A, C, E represent the detection outputs of the

YOLOv7 model, while B, D, and F depict the detection results of the

model proposed in this paper.

With the experimental environment configuration and training

parameters fixed, the author compared the performance of the

proposed algorithm with that of other algorithms to verify the

effectiveness of the improvements made in this paper. This paper

mainly chooses the YOLO series algorithm as a comparison, and also

includes EfficientDet (Tan et al., 2020), Faster R-CNN, SSD (Liu et al.,

2016), Centernet (Zhou et al., 2019) and other algorithms as a

comparison. Faster R-CNN is a classic two-stage object detection

algorithm proposed by R. Girshick, and it was the first to achieve

end-to-end object detection. SSD, which stands for Single Shot

MultiBox Detector, was introduced by Liu et al. Similar to YOLO,

SSD is a one-stage object detection algorithm that transforms the object

bounding box localization problem into a regression problem. It also

employs a method similar to Faster R-CNN to obtain candidate

regions. CenterNet takes the center point of the target bounding box

as the detection target, effectively transforming the object detection

problem into a keypoint estimation problem. The EfficientDet

algorithm is a series of object detection algorithms released by

Google, which uses a weighted bi-directional feature pyramid

network proposed by Google and a composite pyramid network

scaling method to unify the resolution, depth, and width scaling of

the backbone. The YOLOv3 is the third version of the YOLO series. In

YOLOv3, the backbone was improved fromDarknet-19 in YOLOv2 to

use Residual and Darknet-35 residual networks. Additionally, it

incorporated the Feature Pyramid Network (FPN) for multi-scale

detection during the prediction phase. Two months after the release

of YOLOv4, a lightweight version called YOLOv4-tiny was introduced.

The backbone of YOLOv4 was improved to Cross Stage Partial

Darknet (CSPDarknet53), compared to Darknet-19 used in YOLOv2

and YOLOv3. On the other hand, YOLOv4-tiny uses a CSPDarknet53-

tiny backbone, which has fewer structures compared to YOLOv4, but
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its parameter count is 10 times lower. The main difference between the

two is that YOLOv4-tiny did not use the Mish activation function and

only used a single-feature pyramid. As for the differences between

YOLOv5 and YOLOv4, YOLOv4 only used the Cross Stage Partial

(CSP) structure in the Backbone, while YOLOv5 designed two CSP

structures that were respectively applied to the Backbone and Neck.

The difference between YOLOv5 and YOLOv4 lies mainly in the use of

two different CSP structures for the Backbone and Neck. While

YOLOv4 only used CSP in the Backbone, YOLOv5 applied CSP

structures in both the Backbone and Neck. Additionally, the Neck of

YOLOv5 utilized the FPN+PAN structure with newly designed CSP

blocks, which enhanced the feature fusion capability of the network,

whereas YOLOv4 used regular convolutional operations in the Neck.

RepVGG (Ding et al., 2021) is a type of image classification network,

characterized by its simple yet efficient structure, which can serve as a

replacement for the backbone of other object detection algorithms.

YOLO-X (Ge et al., 2021) is a network that builds upon the

improvements made to YOLOv3. Its most notable innovation lies in

the utilization of a Decoupled Head, Anchor-Free design, and Multi-

positives in its Head section. This has resulted in significant

enhancements to the model’s detection accuracy and convergence

speed. In contrast to the aforementioned deep learning algorithms,

the algorithm presented in this paper exhibits superior performance in

the domain of underwater object detection, as demonstrated by the

comparative results outlined in Table 7.
5 Conclusions

Underwater robots are one of the most vital instruments in today’s

exploration of the underwater environment. Utilizing underwater

robots to explore unknown underwater environs holds significant

importance for environmental preservation and resource

development. This paper proposes an improved YOLOv7 object

detection algorithm to address the issue of poor detection

performance of target detection algorithms in the field of underwater
TABLE 7 Performance comparison of different algorithms.

Method P R F1 mAP@0.5

Centernet 66.67% 90.28% 76.55% 71.25%

Faster-RCNN 60.30% 100% 75.23% 73.76%

SSD 72.29% 98.61% 83.42% 74.81%

Effcientdet 87.83% 77.83% 82.52% 81.56%

YOLOv3 98.90% 73.42% 84.27% 85.43%

YOLOv4-tiny 93.75% 61.30% 74.12% 70.27%

YOLOv5s 97.30% 99.00% 98.14% 93.50%

YOLOv5s-repvgg 93.40% 99.00% 96.11% 90.60%

YOLO-X 58.44% 97.22% 72.99% 74.79%

YOLOv7-tiny 94.10% 99.00% 96.48% 90.60%

YOLOv7 97.70% 100% 98.83% 91.00%

Ours 99.10% 99.00% 99.00% 94.40%
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exploration. By utilizing the underwater image enhancement algorithm

UWCNN, underwater optical images can be restored and enhanced.

The algorithm incorporates the CBAM attention mechanism module,

which combines both channel and spatial dimensions to improve the

network’s feature extraction capabilities. The original loss function,

CIoU, has been replaced with SIoU to accelerate model convergence

speed, resulting in a decrease in the Loss value from 2.01% to 1.55%.

Experimental results indicate that the improved YOLOv7 algorithm

has optimized all indicators compared to the original YOLOv7

algorithm, with a 3.5% increase in mAP0.5. This has effectively

increased the detection accuracy of targets in underwater

environments, surpassing other target detection algorithms in terms

of detection performance. The next step in our plan is to expand the

range of testing categories while reducing the size of the model, all

while ensuring a superior level of accuracy in target detection.
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