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Seasonal nutrients variation,
eutrophication pattern, and
Chlorophyll a response adjacent
to Guangdong coastal
water, China

Yingxian He, Peng Zhang*, Fang Xu, Lirong Zhao
and Jibiao Zhang

College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang,
Guangdong, China
Nutrients were the key biogenic elements for the primary production in coastal

water, and the increase of nutrient concentration led to eutrophication and

frequent occurrence of harmful algal blooms. However, the seasonal nutrients

variation, eutrophication pattern, and Chlorophyll a (Chl-a) response adjacent

to Guangdong coastal water were still scarcely. In this study, to clarity the

seasonal nutrients variation, eutrophication pattern, and Chl-a, response

adjacent to coastal water, the spatiotemporal dissolved inorganic nitrogen

(DIN) and phosphorus (DIP) patterns and Chl-a were explored by field

observation using 52 stations in the coastal waters of Guangdong Province

during the dry (April and May), wet (July and August) and normal (October and

November) seasons in 2020. The results showed that the variability of Chl-a,

DIN and DIP were significantly different in seasons (P<0.01), and the mean

concentrations of Chl-a, DIN and DIP were 11.97 ± 28.12 mg/L, 25.84 ± 35.72

mmol/L and 0.59 ± 0.71 mmol/L.Among them, the mean value of Chl-a

increased significantly from 9.99 ± 9.84 mg/L in the dry season to 18.28 ±

38.07 mg/L in the wet season, and then decreased significantly to 7.65 ± 27.64

mg/L in the normal season.The mean DIN value decreased significantly from

30.68 ± 43.58 mmol/L in the dry season to 21.91 ± 35.45 mmol/L in the wet

season, and then increased to 24.91 ± 26.12 mmol/L in the normal season. the

mean DIP value decreased from 0.58 ± 0.73 mmol/L in the dry season to 0.48 ±

0.65 mmol/L in the wet season and then increased significantly to 0.70 ±

0.73mmol/L in the normal season. In addition, the DIN and DIP concentrations

at most monitoring stations met the Grade II national seawater quality

standards, and only a few monitoring stations fail to meet the Grade IV

national seawater quality standard. The DIN/DIP ratios ranged from 2.05 to

259.47, with an average of 43.77 ± 41.01, far exceeding the Redfield ratio,

indicating the presence of P limitation in the nearshore waters of Guangdong

Province. Besides, the EI values in the coastal waters of Guangdong Province

are higher at 0.00 and 82.51, with an average of 4.16 ± 10.90. DIN and DIP were

significantly and positively correlated with COD in each season (P<0.05).

Moreover, DIN/DIP showed significantly positive correlations with Chl-a in all
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1236609/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1236609/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1236609/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1236609/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1236609/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1236609&domain=pdf&date_stamp=2023-08-10
mailto:zhangpeng@gdou.edu.cn
https://doi.org/10.3389/fmars.2023.1236609
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1236609
https://www.frontiersin.org/journals/marine-science


He et al. 10.3389/fmars.2023.1236609

Frontiers in Marine Science
seasons (P<0.01), indicating that high Chl-a concentrations could be sustained

by the nutrients supply in marine ecosystems. Therefore, it is necessary to

strengthen the integrated management of land and sea and effectively mitigate

regional estuarine and coastal water eutrophication and harmful algal blooms.
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1 Introduction

The oceans cover 71% of the Earth’s surface area, and marine

primary productivity is an important foundation of marine

ecosystems. Phytoplankton in the ocean are one of the primary

producers of the ocean. They use light energy to absorb nutrients

from seawater and convert inorganic carbon into organic carbon,

while releasing oxygen, thus directly or indirectly providing the

material base on which other organisms in the ocean depend.

Chlorophyll a (Chl-a) in phytoplankton is an important indicator

to monitor changes in phytoplankton abundance and also an

important indicator of the degree of nutrient pollution of

seawater. Therefore, accurate analysis and study of the variation

of Chl-a in seawater plays a crucial role in exploring the

phenomenon of eutrophication in the ocean. (Field et al., 1998;

Falkowski et al., 2008; Lie et al., 2011; Aranguren-Gassis

et al., 2019).

Nitrogen and phosphorus from seawater are essential nutrients

for marine phytoplankton in coastal waters. At the same time, they

are also the basis of marine primary productivity and the food

chain.(Howarth, 2009; Butusov et al., 2013). Meanwhile, nitrogen

and phosphorus in seawater are limiting nutrients for

phytoplankton, and their concentration and composition directly

affect the species, quantity and disteibution of phytoplankton.

(Abell et al., 2010; Paerl et al., 2011; Paerl et al., 2016; Schindler

et al., 2016; Smith et al., 2017; Yuan et al., 2018). The distribution

and transformation of nitrogen and phosphorus elements in the

ocean have been the main sources of nutrients in the ocean,

including rivers, atmospheric deposition, and sediment release,

and play a very important role in nutrient balance and dynamics

(Liu J, et al., 2022). The growth of phytoplankton is closely related

to the nutrient salts in seawater, and the concentration of Chl-a also

changes with the nutrient salt concentration in seawater.

Insufficient nutrient salts will limit the production of

phytoplankton, leading to a subsequent decrease in the Chl-a

concentration in seawater, which affects the primary productivity

of the ocean; while too high a level of nutrient salt concentration

tends to increase the Chl-a concentration, thus causing

eutrophication and serious harm to the marine ecosystem.(Justi

et al., 1995). At the same time, the nutrient ratio also has an effect on

the concentration of Chl-a in seawater (Wang et al., 2015; Wang

et al., 2017; Zou et al., 2022).With the development of human life

science and technology production, the input of land-based sources
02
of pollutants has an increasing impact on the marine environment,

and one of the most serious problems facing mankind at present is

the eutrophication of coastal waters (Philippart et al., 2007;

Beusekom et al . , 2019 ; Ib áñez and penuelas , 2019) .

Eutrophication of water resources refers to the phenomenon that

under the influence of human activities, a large amount of nitrogen,

phosphorus and other nutrients required by organisms enter slow-

flowing water bodies such as lakes, rivers and bays, causing rapid

reproduction of algae and other planktonic organisms, a decrease in

dissolved oxygen in water bodies, deterioration of water quality, and

the death of fish and other organisms in large quantities (Conley

et al., 2009; Li et al., 2022). It is usually associated with an increase in

nutrient concentrations in the water column (Hoyer et al., 2002;

Mourão et al., 2020). Regionally, oceans with different

characteristics also exhibit different nutrient distribution

characteristics due to current current movements and biological

activities (Pan et al., 2003). Meanwhile, Chl-a production and

primary productivity of phytoplankton can directly reflect the

degree of eutrophication in water bodies (Qin et al., 2013; Li

et al., 2016).

Currently, eutrophication was one of the main issues in

worldwide coastal waters. (Yu et al., 2018; Zhang C, et al., 2020).

In addition, harmful algal blooms will persist in Chinese coastal

waters because the water bodies are disturbed by nutrient imbalance

(Zhen et al., 2017; Huang et al., 2018; Wu et al., 2022). It has been

shown that, based on historical observations, eutrophication has led

to a dramatic increase in microalgal biomass and a decrease in

diatom-methanotrophic ratios in the East China Sea, especially in

the spring; and that eutrophication has played an important role in

multiple harmful algal bloom events in the Bohai Sea, both in the

bays and near the estuaries (Zhou et al., 2022; Li et al., 2023; Wang

et al., 2023). Thus, eutrophication is one of the most prominent

environmental problems in China’s coastal waters (Vaquer-Sunyer

and Duarte, 2008; Li et al., 2013). The input of pollutants from land-

based sources to offshore waters is increasing day by day (Niu et al.,

2020). For example, the water quality of offshore waters in Bohai

Bay in Tianjin is polluted, and the increase of land-based pollutants

entering offshore waters along with surface runoff is the main

reason (Guo et al., 2005; Liu et al., 2019); the water quality near

the estuary in shallow waters of Liaodong Bay is poor (Pei et al.,

2019); the distribution of pollutants in offshore waters in Shandong

is increasing from the far shore to the near shore, and

eutrophication is serious(Yang et al., 2020); the water quality
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condition of offshore seawater in Lianyungang, Jiangsu shows that

the water quality condition in the region is seriously affected by

human activities (Wang et al., 2011; Wang et al., 2022). The Yangtze

estuary is not only the locomotive of economic development

affecting China, but also a key area of coastal pollution (Cui and

Xian, 2018). Although the problems caused by pollution of

sediment, heavy metals, ecological environment, red tide and

other major chemical pollutants in the nearshore coastal seawater

of Guangdong Province have been widely reported in the literature

(Zhang L, et al., 2020; Liu Y, et al., 2022), the eutrophication studies

in Guangdong Province are mainly focused on the coastal waters of

the Pearl River Estuary. (Huang et al., 2003; Shi et al., 2017; Chen

et al., 2023), and the spatial and temporal distribution of nutrients

and eutrophication of water bodies in the whole Guangdong

Province coastal water are scarcely understood.

With the rapid social and economic development, human

activities such as land-based pollutant discharge and marine

aquaculture in coastal areas of Guangdong Province are

expanding. The ecological and environmental problems associated

with eutrophication are (Ke et al., 2023) still to be solved. In this

paper, we analyze the survey data of Guangdong near-shore coastal

areas in 2020 to understand the water quality of Guangdong near-

shore waters by analyzing the observation data of three water

seasons: normal season, wet season and dry season. Therefore, the

objectives of this study are (1) to elucidate the spatial and temporal

patterns of nutrients and Chl-a response associated with coastal
Frontiers in Marine Science 03
waters of Guangdong Province, (2) to determine the degree of

eutrophication by eutrophication index (EI), and (3) to identify the

relationships between dissolved inorganic nitrogen (DIN),

phosphorus (DIP), and EI and control factors in different seasons,

(4) to explore the effect of seasonal changes in nutrients on Chl-

a.The results of the study can provide basic data accumulation for

the effective control of eutrophication marine environmental

problems in local nearshore seawater in Guangdong Province,

and provide scientific basis for the comprehensive management of

nearshore coastal environment in Guangdong Province in

the future.
2 Materials and methods

2.1 Study areas

Guangdong Province is located in the southern Nanling

Mountains, along the South China Sea coast, bordering Guangxi,

Hunan, Jiangxi, Fujian, Hong Kong, and Macau, and facing Hainan

across the Qiongzhou Strait (Song et al., 2022). Meanwhile,

Guangdong Province is located in the southeastern part of the

coastal economic zone, south of the South China Sea, with a sea area

of 419,300 square kilometers, making it a large marine economic

province in China (Figure 1A). Located between latitude 20°09ˊ~25°
31ˊ North and longitude 109°45ˊ~117°20ˊ East, it has a vast land
FIGURE 1

Research areas (A) and monitoring stations (B) in coastal waters of Guangdong Province, and the direction of ocean currents in summer (C) and
winter (D). (Wei et al., 2020).
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area of 179,800km2. The climate of the offshore waters of

Guangdong Province belongs to the subtropical monsoon climate.

The direction of the sea currents in the coastal waters of Guangdong

Province changes in different seasons. Generally speaking, in

summer, due to the influence of the monsoon, the currents

mainly flow from south to north, while in winter, the monsoon is

reversed, resulting in a corresponding change in the direction of the

currents, which mainly blow from the north to the South China Sea

(Figures 1C, D). In the spring and fall seasons, the alternation of the

northeast monsoon and southwest monsoon brings about changes

in the direction and strength of the currents, which may show a

more complex distribution of flow direction and speed. However,

the currents may also be affected by other factors, such as typhoons,

tides, land runoff and so on (Qian et al., 2014; Wei et al., 2020). The

total length of the mainland coastline is 4114km, and the marine

resources are abundant. According to the Guangdong Yearbook,

there are 714 species of marine organisms in Guangdong waters,

including 187 species of phytoplankton, 319 species of zooplankton,

175 species of benthic and intertidal organisms, 24 species of reef-

building stony corals, and 9 species of coral reef fish. Zhuhai,

Guangdong Province, has 147 islands, one of the cities with more

islands in China. since the 1970s, with the high economic

development and population density of Guangdong, the degree of

pollution of Guangdong’s offshore waters has been increasing.

Among them, the Pearl River estuary is the most polluted sea

area, the rising trend of pollution is more obvious, and the seawater

eutrophication is serious (Ke et al., 2022).
2.2 Data sources and laboratory analysis

Monitoring data from the Guangdong Provincial Department of

Ecological and Environmental Protection (http://gdee.gd.gov.cn/) in

2020 for the offshore waters of Guangdong Province were the source

of data for the analysis and study in this paper. Water flow seasons

were sampled during the dry, wet and normal seasons in 2020

according to seasonal hydrological changes (Ministry of

Environmental Protection of the People’s Republic of China,

2002). April and May during the monitoring period represent the

dry season, July and August represent the wet season, and October

and November are the normal seasons. In order to ensure the

comparability of data among the three water seasons, monitoring

data from 52 common station monitoring stations were used in this

paper (Figure 1B).

After the sample were collected, they were first filtered through

acetate filter membrane with a pore size of 0.45 mm. The filters need

to be rinsed with pure water before use (China National

Standardization Management Committee, 2007). Water samples

were frozen at - 20°C prior to chemical analysis. In this study, DIN

included NO�
3 N, NO

�
2 N, NH

+
4N, and PO4

3–P was considered as

DIP (Sun et al., 2021). In the laboratory analysis, where Chl-a, NO�
3

N, NO�
2 N, NH

+
4N, and DIP were analyzed by Spectrophotometric

method (Chen et al., 2016), sodium hypobromite oxidation method,

diazo-diazo method, respectively. zinc- cadmium reduction method

(Wang et al., 2022; Lu et al., 2023), and phosphorus-molybdenum
Frontiers in Marine Science 04
blue method (Murphy and Riley, 1962; Mariko et al., 2018). The

detection limit of Chl-a was 0.04 mg/L; the detection limit of NO�
3

N, NO�
2 N and PO4

3–P was 0.02 mmol/L; the detection limit of NH+
4

N was 0.03 mmol/L.The relative standard deviations of the selected

samples were determined by the standard colorimetric method

described in the Specifications for Marine Investigations (China

National Standardization Administration, 2007). The relative

standard deviations (RSDs) of the selected samples were< 5% for

repeated determinations (China National Standardization

Administration, 2007). Details of the analytical methods,

procedures and instrumentation in this study have been described

in the Specifications for Marine Investigations (China National

Standardization Administration Committee, 2007).
2.3 Data processing and statistical analysis

2.3.1 Water quality and eutrophication
evaluation methods

According to the evaluation method of seawater quality, DIN

and DIP pollution evaluation usually uses the single factor pollution

index (Pi) method (Zhou and Cai, 1998; Ming et al., 2010). And its

calculation formula is as follows:

Pi = Ci=Si (1)

Where (1): Ci and Si are DIN and DIP measured data and

Chinese national seawater quality standard values based on marine

functional zoning, respectively. When Pi>1, it is regarded as

exceeding the standard water quality, and the water body has

been polluted; when Pi<1, it indicates that the water body is not

polluted, and the degree of pollution of the water body increases

with the increase of Pi value.

In addition, to determine the number of monitoring stations

with higher DIN and DIP pollution patterns in coastal waters in

each season, the exceedance rate (%) was introduced, which is

expressed as:

Over − standard rate‐% ‐ =
Ni

oNi
� 100% (2)

Where (2): Ni and ∑Ni are the number of coastal water

monitoring stations with high DIN and DIP concentrations in

coastal waters of Guangdong (Pi > 1) and the total number of

monitoring stations by season, respectively (Ministry of

Environmental Protection of the People’s Republic of China, 2009).

In order to comprehensively evaluate the degree of

eutrophication in the near-shore waters of Guangdong Province,

this paper applies the integrated index method to calculate the

eutrophication index (EI) of the surveyed waters based on DIN, DIP

and COD survey data (Quan et al., 2005; Zou et al.,1983; Chen et al.,

2016). And its calculation formula is as follows:

EI =
CCOD � CDIN � CDIP

4500
� 106 (3)

Where (3): CCOD, CDIN and CDIP are the concentrations of

COD, DIN and DIP respectively (unit is mg/L). When the index
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EI≥1, it means that the sea water body is eutrophic, and the larger

the EI value is, the more serious the eutrophication is.

2.3.2 Data processing and analysis
This paper uses the geographic information system ArcGIS

(10.2) to draw a schematic diagram of monitoring stations in

Guangdong Province; uses Excel software to process data, and

Ocean Data View (4.0) software to draw spatial distribution maps

of Chl-a, DIN, DIP concentration, nitrogen/phosphorus ratio N/P

and eutrophication index EI; and uses Origin (2021) software to

draw coastal Guangdong Province monitoring stations of the water

quality exceedance rate, and the correlation heat map of the

relationship between DIN, DIP and EI and control factors; The

data were first tested for normal distribution in SPSS software,

(P<0.05) and the results obtained clearly did not conform to normal

distribution, and then non-parametric tests (Kruskal-Wallis test)

were used to assess the significant differences in seasonal variations,

as well as Spearman’s correlation significance test for the impact

factors of nutrients to test the statistical differences in the data.The

data in this paper are expressed using the arithmetic mean ±

standard deviation (Mean ± SD).
3 Results

3.1 Seasonal Chl-a variation in coastal
waters of Guangdong Province

There were significant seasonal differences in Chl-a

concentrations in coastal waters of Guangdong Province

(P<0.01). During the survey period, the average concentration of

Chl-a in the coastal waters of Guangdong Province was 11.97 ±

28.12 mg/L, with a concentration range of 0.18-218.40 mg/L.From a

temporal perspective, the average concentration of Chl-a in the

three water seasons was 9.99 ± 9.84 mg/L in the dry season, with a

concentration range of 1.22-36.04 mg/L; The average concentration
of Chl-a in the wet season was 18.28 ± 38.07 mg/L, with a

concentration range of 0.18-218.40 mg/L; The average

concentration of Chl-a in the normal season was 7.65 ± 27.64mg/
L, and the concentration range was 0.22-202.80mg/L.Upon

comparison, the average Chl-a concentration was the highest in

the nearshore waters of Guangdong Province during the wet season,

and its Chl-a concentration showed a trend of increasing and then

decreasing from the dry season to the normal season. In terms of

spatial distribution, during the dry season, the highest Chl-a

concentration was found in the waters near Zhanjiang City, at

Station 33, at 36.04 mg/L. This was followed by the waters near

Zhuhai City (Figure 2A). During the wet season, Chl-a

concentrations were higher in Zhanjiang City, Yangjiang City and

the outer locations of the Pearl River Estuary, which highest Chl-a

concentrations were found at Station 8 near Shenzhen City with up

to 218.40 mg/L (Figure 2B). During the normal season, the waters

with high Chl-a concentrations were mainly concentrated near

Yangjiang City, where the highest recorded in the season occurred

at Station 49. While all other areas were at low levels (Figure 2C).
Frontiers in Marine Science 05
3.2 Spatiotemporal variation of DIN
concentration in coastal waters of
Guangdong Province

There were significantly seasonal differences in DIN concentrations

in coastal waters of Guangdong Province (P<0.01). During the survey

period, the average concentration of dissolved inorganic nitrogen DIN

in the coastal waters of Guangdong Province was 25.84 ± 35.72mmol/L,

with a concentration range of 0.29-231.21mmol/L. From the perspective

of time, in the three water seasons, the average concentration of DIN in

the dry season was 30.68 ± 43.58mmol/L, and the concentration range

was 0.29-231.21mmol/L; the average concentration of DIN in the wet

season was 21.91 ± 35.45mmol/L, and the concentration range was

0.35-127.30mmol/L; the average concentration of DIN in the normal

season was 24.91 ± 26.12mmol/L, and the concentration range was

2.11-99.21mmol/L. By comparison, the average concentration of DIN

in the dry season was higher in the coastal waters of Guangdong

Province. However, the distribution of DIN concentration from the dry

season to the normal season showed a trend offirst decreasing and then

increasing. From the perspective of spatial distribution, the horizontal

distribution of DIN concentration in all three seasons showed

decreasing near-shore to far-shore, with the Pearl River port as the

center and decreasing outward concentration (Figure 3). During the

dry period, the high DIN concentration wasmainly concentrated in the

location of the Pearl River estuary, and the highest level was recorded at

the Station 1 in its nearby waters (Figure 3A); while in the wet season,

the DIN concentration at each station was generally lower than that in

the dry season. During the period of wet water, in addition to the high

DIN pollution concentration in the Pearl River Estuary, the DIN

concentration in the sea near Zhuhai, Jiangmen, Yangjiang and

Zhanjiang is also high compared to other stations (Figure 3B). In the

normal season, the distribution of DIN concentration is basically the

same as that in the wet season, but the distribution range of high DIN

concentration is much smaller than that in the wet season (Figure 3C).
3.3 Spatial and temporal variation of DIP
concentration in coastal waters of
Guangdong Province

There were significantly seasonal differences in DIP

concentrations in coastal waters of Guangdong Province (P<0.01).

During the survey period, the average concentration of dissolved

inorganic phosphorus DIP in the coastal waters of Guangdong

Province was 0.59 ± 0.71mmol/L, with a concentration range of

0.01-3.65mmol/L. From a temporal perspective, in the three water

seasons, the average concentration of DIP in the dry season was 0.58

± 0.73mmol/L, with a concentration range of 0.09-3.23mmol/L; The

average concentration of DIP during the wet season was 0.48 ±

0.65mmol/L, with the concentration range of 0.06-3.10mmol/L; the

average concentration of DIP during the normal season was 0.70 ±

0.73mmol/L, with the concentration range of 0.01-3.65mmol/L. By

comparison, the average concentration of DIP during the normal

season was the highest in the coastal waters of Guangdong Province,

and the concentration of DIP from the dry season to the normal
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season showed a first decrease and then increase. The DIP

concentration from the dry season to the normal season showed a

trend of decreasing and then increasing, and the DIP concentration in

the normal was higher than the DIP concentration in the dry season.

In the dry season, the high DIP concentrations were mainly

concentrated in the waters near the Pearl River Estuary and
Frontiers in Marine Science 06
Zhanjiang City (Figure 4A); while in the wet season, the DIP

concentrations at all stations were generally lower than those in the

dry season (Figure 4B). During the normal period, the highest value

of DIP concentration appeared in the sea near Zhanjiang City, where

the highest record was obtained at Station 28, up to 3.65 mmol/L,

followed by the location of the Pearl River Estuary (Figure 4C).
FIGURE 2

Spatiotemporal variation of Chl-a concentration during the dry season (A), wet season (B), and normal season (C) in the Guangdong coastal water.
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3.4 Spatial and temporal variation of
DIN/DIP in coastal waters of
Guangdong Province

There was a significant difference in DIN/DIP in seasonal coastal

waters of Guangdong Province (P<0.05). During the survey period,

the DIN/DIP in the nearshore waters of Guangdong Province
Frontiers in Marine Science 07
fluctuated between 2.05 and 259.47 with a mean value of 43.77 ±

41.01. The mean value of DIN/DIP in the coastal waters of

Guangdong Province decreased from 49.52 ± 41.50 in the dry

season to 37.13 ± 42.38 in the wet season, and then increased

significantly to 44.65 ± 38.91 in the normal season. The DIN/DIP

ranged from 3.05 to 259.47 during the dry season. The DIN/DIP

ranged from 2.05 to 231.02 during the wet season and from 15.73 to
FIGURE 3

Spatiotemporal variation of DIN concentration during the dry season (A), wet season (B), and normal season (C) in the Guangdong coastal water.
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238.04 during the normal season. Spatially, there were some

differences in DIN/DIP in the nearshore waters of Guangdong

(Figure 5). During the dry season, the proportion of DIN/DIP

distribution was larger near the Pearl River Estuary and smaller

away from the estuary. The highest value of DIN/DIP was found at

the monitoring station near Shenzhen, which was Station 7, with a
Frontiers in Marine Science 08
high value of 259.47. (Figure 5A). During the period of wet water, the

range with higher DIN/DIP ratio was the sea area near Zhuhai city

(Figure 5B). During the normal season, the range of higher DIN/DIP

ratio is different from the dry and wet seasons, it occurs far from the

Pearl River Estuary, and the highest record occurs near Shenzhen,

specifically at Station 2, where the DIN/DIP is 238. 04. (Figure 5C).
FIGURE 4

Spatiotemporal variation of DIP concentration during the dry season (A), wet season (B), and normal season (C) in the Guangdong coastal water.
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3.5 Spatial and temporal variation of EI in
coastal waters of Guangdong Province

There were significantly seasonal differences in EI in coastal

waters of Guangdong Province (P<0.05). During the survey period,

the average EI of the three water periods in the nearshore waters of

Guangdong was 4.16 ± 10.90, and the minimum and maximum

values of EI were 0.00 and 82.51, respectively. The EI of the
Frontiers in Marine Science 09
nearshore waters of Guangdong showed a decreasing trend from

the dry season to the normal season. During the dry season, the

range of EI in the coastal waters of Guangdong was 0.00-82.51, with

a mean value of 5.93 ± 15.44; During the wet season, the range of EI

in the coastal waters of Guangdong was 0.00-34.77, with a mean

value of 3.93 ± 8.93; During the normal season, the range of EI in

the coastal waters of Guangdong was 0.00-31.87, with a mean value

of 2.63 ± 6.09; spatially, the EI in the offshore waters of Guangdong
FIGURE 5

Spatiotemporal variation of DIN/DIP during the dry season (A), wet season (B), and normal season (C) in the Guangdong coastal water.
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showed significant differences (Figure 6). During the dry season, the

EI was higher near the Pearl River Estuary, and the further away

from the Pearl River Estuary, the lower the EI was (Figure 6A).

During the wet season, its EI is smaller than that in the dry season.

Except for the stations near the Pearl River Estuary, the EI of the

waters near Zhanjiang City, Yangjiang City, Zhongshan City,

Shenzhen City and Zhuhai City is relatively large (Figure 6B).

Normal water period, its highest EI value appeared in the sea

near Zhanjiang City, which is the Station 28 to obtain the highest
Frontiers in Marine Science 10
record of this water period, up to 31.87, followed by higher EI in the

sea near Zhongshan City and Zhuhai City (Figure 6C).
3.6 Seasonal relationships between DIN,
DIP, EI and environmental factors

The Spearman correlation coefficients showed that the influencing

factors of DIN, DIP and EI showed some seasonal variations in the
FIGURE 6

Spatiotemporal variation of EI during the dry season (A), wet season (B), and normal season (C) in the Guangdong coastal water.
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nearshore waters of Guangdong Province (Figure 7). In the dry and wet

water periods, DIN, DIP, EI and Chl-a were significantly positively

correlated (P<0.01); while in the normal season (Figure 7C), EI and

Chl-a were positively (Figures 7A, B) correlated (P<0.05), but DIN,

DIP and Chl-a were not significantly correlated. In the three water

periods, DIN, DIP, and EI were significantly negatively correlated with

pH (P<0.01). In the wet season, DIN was significantly positively

correlated with DO (P<0.05), except for the other water periods, the
Frontiers in Marine Science 11
concentrations of DIN and DO were not correlated. Meanwhile, there

was no significant correlation between DIP, EI and DO. DIN, DIP and

EI were positively correlated with COD in all three water periods

(P<0.05). The concentrations of DIN, DIP and EI were significantly

positively correlated in all three water periods (P<0.01). In addition

(Figure 7D), DIN, DIP and EI were significantly and positively

correlated with suspended matter in all three water periods (P<0.01).

DIN, DIP, and EI were positively correlated with petroleum during the
A

B

D

C

FIGURE 7

Correlation relationships among DIN, DIP, EI and environmental factors during the dry season (A), wet season (B), normal season (C) and annual (D)
in Guangdong coastal waters. (n = 52).
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dry and normal water periods (P<0.05). In addition, DIN/DIP was

significantly and positively correlated with Chl-a in all three water

periods (P<0.01) (Figure 7D).
4 Discussion

4.1 Comparison with global estuaries and
coastal water

The data of nutrient content, DIN/DIP and EI are listed in this

paper. However, in order to further elucidate the pollution levels of

nutrients in the nearshore waters of Guangdong Province, it is

necessary to compare the results of this study with those of other

studies (Table 1). The DIN concentrations in the nearshore waters of

Guangdong Province were higher than those previously reported in

Hainan Island, Kaohsiung Harbor, Laizhou Bay, Qinzhou Gang,

Weizhou Island, and Lianyungang (Chen et al., 2016; Ning et al.,

2020; Zhang P, et al., 2020; Lu et al., 2022; Wang et al., 2022; Zhang M,

et al., 2022), but lower than those in the Changjiang River, Mississippi

River (Turner et al., 2007; Cui and Xian, 2018). However, the DIP

concentrations were higher than those in Laizhou Bay, Weizhou Island

and Lianyungang (Ning et al., 2020; Wang et al., 2022; Zhang M, et al.,

2022), but lower than those in Kaohsiung Harbor, Qinzhou Gang, the

Changjiang River andMississippi River (Turner et al., 2007; Chen et al.,

2016; Cui and Xian, 2018; Lu et al., 2022). The DIN/DIP was higher

than the previously investigated Qinzhou Gang, Weizhou Island,

Lianyungang, and Mississippi River (Turner et al., 2007; Ning et al.,

2020; Lu et al., 2022; Wang et al., 2022), but lower than Laizhou Bay

and the Changjiang River (Cui and Xian, 2018; Zhang M, et al., 2022).

EI is higher than previously reported for Hainan Island, Kaohsiung

Harbor Laizhou Bay, Lianyungang (Chen et al., 2016; Zhang P, et al.,

2020; Wang et al., 2022; Zhang M, et al., 2022) and lower than the
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Changjiang River (Cui and Xian, 2018). In addition, the results showed

that the DIN pollution level in offshore waters of Guangdong Province

in 2020 was higher compared with other river estuaries, and the

pollution level of DIP concentration is not low. And in general, the

pollution level of DIN is higher than that of DIP. Therefore, DIN/DIP

is much higher than 16 and higher than the DIN/DIP values of most

other rivers. Besides, the mean value of EI is much lower than the

Changjiang River and higher than other estuaries.
4.2 Seasonal DIN and DIP change pattern
and eutrophication degree

According to the survey results, compared with the seawater

quality standard, the percentage of the number of monitoring

stations with DIN concentration exceeding the Grade IV seawater

quality standard (DIN ≤ 35.71mmol/L) to the total number of

monitoring stations was 28.85%, 19.23% and 23.08% in the dry

season, wet season and normal season respectively (Figure 8A). In

general, the level of DIN pollution in offshore waters of Guangdong

Province is small. Mainly, the DIN concentration of most monitoring

stations in the coastal waters of the Pearl River Estuary cannot reach

the seawater quality standard of Grade IV or above (Shen et al., 2022),

indicating that the coastal area of the Pearl River Estuary is seriously

polluted. With the rapid socio-economic development, human

activities such as land-based pollutant discharges, marine aquaculture

and port shipping along the Pearl River Estuary are increasingly

expanding, making the rivers along the Pearl River Estuary carry

more nutrients. As a result, DIN concentrations at several monitoring

stations in the area exceeded seawater quality standards (Li et al., 2020;

Qian et al., 2022). In addition, DIN concentrations were highest during

the dry season. Compared to the dry season, the average DIN

concentrations in both the wet and normal season were significantly
TABLE 1 Comparison of the nutrient concentrations, EI and DIN/DIP in the coastal waters of Guangdong with global estuaries and coastal water.

Region Time DIN
(mmol/L)

DIP
(mmol/L) DIN/DIP EI References

Hainan Island 2016
8.14
(0.57-27.5)

– –
0.21
(0.00-3.94)

Zhang P, et al., 2020

Kaohsiung Harbor 2012
11.43 ± 7.86
(2.86-34.29)

5.81 ± 2.26
(1.94-15.16)

– 2.24-139.39 Chen et al., 2016

Laizhou Bay 2021 9.22-54.69
0.05 ± 0.04-
0.32 ± 0.79

130.65 0.24-3.21 Zhang M, et al., 2022

Qinzhou Gang
2011-
2017

20.1 ± 17.2 1.0 ± 0.9 43 ± 46 – Lu et al., 2022

Weizhou Island 2018 3.84 0.24 16.0 – Ning et al., 2020

Lianyungang 2016 10.71 0.42
15.1
(1.6-55)

0.6
(0.1-7.2)

Wang et al., 2022

the Changjiang River 2014 118.4 1.3 91.1 11.0 Cui and Xian, 2018

Mississippi River
1997-
2006

99.6 2.6 38.31 – Turner et al., 2007

Guangdong coastal water
2020

25.84 ± 35.72
(0.92-231.21)

0.59 ± 0.71
(0.01-3.65)

43.77 ± 41.01
(2.05-259.47)

4.16 ± 10.9
(0.00-82.51)

This study
“—” indicated not detected.
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lower, because July and August are the rainy season, a high typhoon

season, and constantly affected by the intrusion of rainwater, and the

resuspended nutrients are quickly diluted.In addition, the temperature

in the coastal water gradually increases and there is sufficient light,

which is the peak period for algal growth during summer. As the

temperature meets the conditions for rapid algal growth, the algae can

absorb a large amount of nutrients from the water body while growing,

resulting in a relatively low average DIN concentration during the wet

period (Ke et al., 2022).

Compared with the national seawater quality standard, the

percentage of the number of monitoring stations with DIP

concentration exceeding the Grade IV seawater quality standard

(DIP ≤ 1.45mmol/L) to the total number of monitoring stations was

7.69%, 9.62% and 7.69% in the dry season, wet season and normal

season respectively (Figure 8B). In general, the level of DIP

pollution in the offshore waters of Guangdong Province is small,

and the DIP concentrations at most monitoring stations meet the

seawater quality standard of Grade IV or higher, but there are still

individual stations that do not meet the Grade IV standard. The

average concentration of DIP is lowest during the wet season, which

may be related to the frequent rainy season in July and August,

when rainwater replenishes the sea and dilutes the concentration of

DIP, or it may be caused by phytoplankton absorbing large amounts

of nutrients from the seawater after heavy typhoon rains (Herbeck

et al., 2011). The peak of DIP concentration occurs during the

normal water period, which is due to the input of fresh water,

domestic sewage and industrial wastewater from rivers with

greater influence.
4.3 Key environmental factors affecting
nutrient concentrations and composition
in coastal waters of Guangdong Province

DIN andDIP were significantly negatively correlated with pH in all

seasons (P<0.01). With the rapid development of industry in coastal

areas, it has led to a great increase in the amount of CO2 emitted into

the atmosphere. The seawater absorbed a large amount of CO2 from
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the air, which led to a decrease in the pH of seawater and the

phenomenon of ocean acidification (Queré et al., 2014; Stocker,

2014; Rees et al., 2017). However, DIN and DIP were significantly

and positively correlated with suspendedmatter in all seasons (P<0.01),

which may be due to the fact that suspended matter in organic

pollutants from land-based runoff carries a large amount of DIN and

DIP. DIN and DIP were significantly and positively correlated with

Chl-a in the dry and wet seasons (P<0.01), which may be due to the

input of pollutants from land-based sources, promoting the rapid

growth of phytoplankton (Han et al., 2023). DIN, DIP and COD are

important indicators for evaluating coastal water quality (Ministry of

Environmental Protection of the People’s Republic of China, 1997) (Tu

et al., 2022). In addition, DIN and DIP were significantly and positively

correlated with COD in each season (P<0.01) because surface runoff in

each season carried a large amount of pollutants of terrestrial origin,

which provided a large amount of inorganic and nutrients for a large

number of phytoplankton in the water column. DIN and DIP were

significantly and positively correlated (P<0.01) with petroleum species

during the dry and normal season, probably because DIP in surface

seawater has the same source and fate as petroleum hydrocarbons.

Nutrients are important for the growth of phytoplankton.

Phytoplankton in the ocean take up nutrients from seawater in a

certain ratio, and this constant ratio becomes the Redfield (Turner

et al., 2003). Under normal conditions, N:P is about 16. During the

survey period, DIN/DIP values ranged from 2.05 to 259.47, with a

mean value of 43.77 ± 41.01, which is much higher than the Redfield

ratio. And DIN/DIP was significantly and positively correlated with

Chl-a (p<0.01). High Chl-a concentrations can reflect the changes

of nutrient content in marine ecosystems, and the extremely strong

correlation between DIN/DIP and Chl-a indicates that the

imbalance of nutrient ratios in coastal waters of Guangdong

Province has led to the occurrence of harmful algal blooms, thus

exacerbating the eutrophication phenomenon (Schlüter et al., 2000;

Qiao et al., 2017). The DIN/DIP ratios in the dry and normal

seasons were higher than those in the wet season, which was caused

by the higher DIN concentration and relatively lower DIP

concentration in the dry and normal season. As can be seen from

Figure 5, the DIN/DIP values at the location of the Pearl River
A B

FIGURE 8

Over-standard rate of DIN (A) and DIP (B) in coastal water quality monitoring stations of Guangdong Province.
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Estuary were significantly higher, up to 259.47, indicating a serious

imbalance in the nutrient composition of the offshore waters of the

Pearl River Estuary, and the phenomenon of nutrient imbalance

indicated that the discharge of industrial wastewater, domestic

sewage and agricultural fertilizers near the Pearl River Estuary

had a dynamic effect on the DIN/DIP values of the coastal waters.

The eutrophication of nearshore water bodies in Guangdong

Province is likely to continue due to the continued disturbance of

nutrient ratios in these bodies (Wang et al., 2021).
4.4 Suggestions for effective mitigation of
eutrophication in coastal waters of
Guangdong Province

With rapid socio-economic development and rapid population

growth, industrialization and urbanization have accelerated, human

pursuit of material culture has been elevated and the scope of

activities has been expanded, leading to a gradual increase in the

discharge of nutrients imported from outside into water bodies.

Under the implementation of the 14th Five-Year Plan for Marine

Ecological Protection of Guangdong Province (Department of

Ecological Environment in Guangdong Province, 2022), land-

based pollutant inputs are reduced to improve water quality

according to the characteristics of the near-shore waters of

Guangdong Province.Combining the concentrations of Chl-a,

DIN, DIP, and the DIN/DIP stoichiometry results, we found that

the eutrophication of coastal waters in Guangdong Province is low,

but the eutrophication problem is still prominent in local waters,

especially in the Pearl River Estuary and the waters near Zhanjiang

City (Ke et al., 2023). To reduce the eutrophication in coastal waters

of Guangdong Province, firstly, numerical nutrient criteria for

estuaries and adjacent coastal waters should be developed (Wu

et al., 2010; Huo et al., 2018; Yang et al., 2019; Xie et al., 2021; Zhang

P, et al., 2022). The application of nutrient standards is not only an

effective measure to prevent eutrophication of water bodies, but also

a scientific basis for comprehensive monitoring, evaluation and

management of nutrients in estuaries. The government should

strengthen the comprehensive control of eutrophic waters and the

management related to the discharge of river pollutants into the sea.

In the time scale, we need further monitor nutrients and Chl-a

response in the ocean for a long time. Besides, considering the

spatial and temporal differences of EI, it is necessary to investigate

and analyze Chl-a and nutrients according to their distribution

characteristics at different locations and times, and to implement

suitable management measures.In addition, the publicity of river

pollution prevention and control should be strengthened to raise

citizens ’ awareness of coastal environmental protection

participation. Integrated land and sea management of coastal

water quality should be introduced in the future to control river

and coastal water quality efficiently (Zeng-Lin et al., 2012; Gao

et al., 2022).
Frontiers in Marine Science 14
5 Conclusion

Exploring the biogeochemical processes of nitrogen and

phosphorus in the coastal waters of Guangdong Province is key

to developing countermeasures to mitigate eutrophication. This

study focuses on the spatial and temporal patterns of nutrients, their

composition and their effects on mitigating eutrophication in the

offshore waters of Guangdong Province. The results showed that the

nutrients in 2020 showed seasonal variations, with DIN being

highest in the dry season and DIP being highest in the normal

season. In all seasons of the survey, DIN and DIP pollution levels

were more severe in the vicinity of the Pearl River Estuary and

Zhanjiang Bay than the other coastal water. Overall, based on the

Redfield values, it can be seen that DIN concentrations are higher

than DIP concentrations, indicating the presence of P limitation in

the nearshore waters of Guangdong Province. The eutrophication

index of seawater surface layer was significantly different among the

three water seasons. The mean value of eutrophication index in the

dry season was higher than that in the wet and normal seasons. In

addition, nutrients and EI showed significantly positive correlations

with COD(P<0.05), as well as DIN/DIP was significantly and

positively correlated with Chl-a (p<0.01), which indicated a direct

relationship between eutrophication in the water column and the

high input of nutrients. Therefore, controlling the input of total

nitrogen and total phosphorus from land-based sources can

effectively alleviate the eutrophication in the local coastal areas of

Guangdong Province. In addition, harmful algal blooms may persist

near the coastal waters of Guangdong Province due to the severely

imbalanced nutrient ratios in the coastal water. Therefore, further

research is needed on how to bring the heavily polluted coastal

waters up to the relevant nutrient standards and ratios so as to

effectively mitigate eutrophication and suppress harmful

algal blooms.
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