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Cryopreservation is a technique to maintain biological materials’ physiological

and genetic stability at an ultralow temperature. For commercially important

livestock or aquatic species, gamete and embryo cryopreservation could play a

significant role in breeding programs and commercial production. For example, it

could help overcome key problems such as asynchronous maturation and an

unbalanced sex ratio. However, the physiochemical stresses imposed by

cryopreservation can negatively affect gametes and embryos, leading to a poor

survival rate. Recent studies on cryoinjury have demonstrated that the

cryosensitivity of lipids is one of the key causes of cryodamage in mammalians,

as lipid compositions in membranes of gametes and embryos are closely related

to their cryoresistance. In addition, the cryotolerance of gametes and embryos in

some mammalian species has been improved by lipid modification. However,

studies on the role of lipids in the cryopreservation of gametes, embryos, and

larvae are rare in fish and shellfish. Therefore, this review focuses on recent

methodological advances to improve cryotolerance by lipid modification,

including lipid application or manipulation in human and livestock sperm,

oocytes, and embryos, and how these novel approaches could improve

cryopreservation techniques in aquatic species, especially for oocytes

and embryos.
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1 Introduction

Cryopreservation is a technique to store living materials (such

as gametes, embryos, larvae, cells, and tissues) at an ultralow

temperature to maintain their long-term physiological and genetic

stability (Kopeika et al., 2015; Dhali et al., 2019). Cryopreservation

of gametes, embryos and larvae (fish and shellfish) could play a

significant role in reproductive and genetic improvement programs

for commercially important livestock or aquatic species. It could

also reduce the costs of transporting live animals for breeding and

manage issues related to asynchronous maturation and unbalanced

sex ratios (Huang et al., 2019; Dıáz et al., 2021). The development of

gamete and embryo cryopreservation protocols has been an integral

step in advancing assisted reproductive technology (ART). From

the first human infant derived from frozen sperm in 1953 (Bunge

and Sherman, 1953) to the first human live birth after embryo

cryopreservation in 1984 (Zeilmaker et al., 1984), ART in humans

has become a mature technique. Cryopreservation techniques have

also been greatly improved in livestock and pet animals (Galiguis

et al., 2014; Mandal et al., 2014; Nagashima et al., 2015). In addition,

the technical details of the governing factors and mechanisms

contributing to cryoinjury have been gradually revealed (Kopeika

et al., 2015; Dhali et al., 2019).

Several physical and chemical factors causing severe cryoinjuries

have been reported in previous reviews in mammalian species

(Amstislavsky et al., 2019; Dhali et al., 2019). Among them,

intracellular ice crystal formation, osmotic shock, free radicals such

as reactive oxygen and nitrogen species (ROS and RNS), and lipid

phase transition (LPT; a transition from a liquid phase to a

crystalline-gel phase) are the primary factors causing cryoinjuries

(Figueroa et al., 2019). Additionally, many adverse impacts of

cryopreservation have been identified. For example, frozen-thawed

sperm are characterized by lower motility, acrosome integrity, and

mitochondrial membrane potential, resulting in low fertilization

capacity (O’Connell et al., 2002; Ozkavukcu et al., 2008; Ugur et al.,

2019). Fracture and membrane damage, mitochondrial dysfunction,

and rupture and disruption of the cytoskeleton structure can

negatively impact the further development of cryopreserved oocytes

and embryos (Saunders and Parks, 1999; Kasai, 2002; Iussig et al.,

2019; Gualtieri et al., 2021). At the molecular level, genomic DNA

lesions and mitochondrial DNA damage have been detected in

cryopreserved mammalian gametes and embryos (Lin and Tsai,

2012; Valcarce et al., 2013; Liu et al., 2016). Additionally, epigenetic

and transcriptomic profiles are also susceptive to the stress caused by

cryopreservation (Chatterjee et al., 2017; Barberet et al., 2020).

Lipids are hydrophobic or amphiphilic molecules, including

fatty acids (FAs), sterols, phospholipids (PLs) and triglycerides, and

function as energy, signaling transduction, and cell membrane

components (Fahy et al., 2009; Subramaniam et al., 2011). Lipid

droplets (LDs) are also a significant component of oocytes, embryos

and early-stage larvae in aquatic species. In gamete and embryo

cryopreservation in mammalian species, among all chemical

constituents, lipids such as the PLs - the main component of the

plasma membrane, are the most susceptible to freezing damage

(Quinn, 1985; Sieme et al., 2015). During the freezing process, LPT
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occurs, which is accompanied by the alteration in PLs structure and

composition (Jung et al., 2014; Fang et al., 2016; Jung et al., 2021).

The membrane then loses its high elasticity and becomes rigid,

resulting in poor membrane permeability and hydrophobic

molecule diffusion (Amstislavsky et al., 2019). Ultimately, this

process leads to the loss of cellular functionality (Hinkovska-

Galcheva et al., 1989; Schuffner et al., 2001; Fang et al., 2016).

Therefore, LPT at the nonphysiological temperature is considered

one of the major causes of freezing damage. In general, mammalian

gametes or embryos with lower LPT temperatures are likely to have

better cryotolerance (Drobnis et al., 1993; Ghetler et al., 2005).

Given that the LPT temperature is greatly dependent on lipid

composition, features of the lipid profile are related to the

cryoresistance of gametes and embryos. For example, the ratio

between cholesterol and PL, and unsaturation rates are related to

cryotolerance of spermatozoa (Waterhouse et al., 2006; Oldenhof

et al., 2012), and lipid-rich oocytes or embryos usually exhibit high

cryosensitivity. Therefore, lipid modification has become one of the

key approaches to further improve post-thaw performances in

mammalian gamete and embryo cryopreservation. For example,

cryotolerance has been enhanced significantly by delipidation in

lipid-rich oocytes and embryos (Amstislavsky et al., 2019) and

membrane lipid replacement (MLR) in sperm (Vireque et al., 2016).

In aquatic animals, cryopreservation of oocytes, embryos and

larvae is more challenging than sperm. Apart from their larger size

and complex structure, the higher lipid content is another key

factor that contributes to the chanlleges. For example, the egg lipid

content is 32.4% on a wet weight basis in the whitefish Coregonus

albula (V’uorela et al., 1979) and 38% on a dry weight basis in the

Pacific oyster Magallana gigas (Massapina, 1999). These lipids

serve as a vital energy reservoir for the early development of

aquatic species as their digestive system has not fully evolved.

Since lipid content and composition can affect cryotolerance, it is

anticipated that lipid modification could play a similar role as in

mammalians and improve the cryopreservation techniques in

aquatic animals. Indeed, a few studies have demonstrated the

potential of lipid modification in cryopreservation of gametes and

larvae in aquatic animals. For instance, embryos produced from

broodstock fed with diet supplemented with a fish oil showed a

better permeability to cryoprotectants in Prochilodus lineatus

(Costa et al., 2018). The supplement of exogenous lipids in

cryoprotectants resulted in the improved performances in post-

thaw fish sperm, and coral and oyster larvae (Cirino et al., 2021;

Dıáz et al., 2021; Zhu et al., 2023).

This review aims to update the recent development in lipid

manipulation in the cryopreservation of sperm (both mammalian

and aquatic species), oocytes (mammalian species), embryos

(mammalian species), and larvae (aquatic species) and explore

their applications to overcome some key challenges in aquatic

species. In this review, we first discuss the effect and modification

of lipids in the sperm, oocyte and embryo cryopreservation in

mammalian species. We then present the recent development of

lipid manipulation in cryopreservation of aquatic species.

Finally we draw conclusions and propose future studies in

aquatic species.
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2 The effect of lipids on
sperm cryopreservation in
mammalian species

2.1 Current status of sperm
cryopreservation

The cryopreservation of sperm is a reliable technique and has

been extensively used in human ART and genetic germplasm

conservation in livestock, and pet animals (Mandal et al., 2014).

This technique, however, has also showed several adverse effects

on post-thaw spermatozoa, such as a decrease in motility and

viability, the increase of single-strand DNA lesions, and the

elevation of abnormal morphological characteristics (O’Connell

et al., 2002; Ozkavukcu et al., 2008; Figueroa et al., 2019). It has

been found that fluidity and permeability of the membrane serve a

significant part in sperm cryoresistance and are related to the nature

and percentage of PLs, polyunsaturated fatty acids (PUFAs), and

cholesterol (Waterhouse et al., 2006; Oldenhof et al., 2012).
2.2 Plasma membrane lipid composition
and sperm quality

Membrane lipid composition is diverse among organisms, cell

type, organelle, membrane, bilayer-leaflet, and membrane subdomain

levels (Harayama and Riezman, 2018). Compared with other tissues,

spermatozoa membrane lipid is characterized by high PUFAs,

especially dipolyunsaturated fatty acid (Bell et al., 1997; Fang et al.,

2016). Given the low LPT temperature of PUFAs and the kinks of

double bonds in PUFAs hindering the acyl chains from packing,

PUFAs increase overall membrane fluidity (Israelachvili et al., 1980;

Sieme et al., 2015). In addition to the small size of spermatozoa, the

high quantity of PUFAs also contributes to better cryoresistance in

spermatozoa than in oocytes and embryos.

Spermatozoa membrane lipid composition varies between

individuals, ages, and seasons (Kelso et al., 1996; Cerolini et al.,

1997; Argov-Argaman et al., 2013aArgov-Argaman et al., 2013b).

These variations contribute to the difference in fresh sperm quality

including motility and viability. In boar semen, for example, several

lipid parameters such as the total lipid content, cholesterol, PL, n-3

PUFAs and Docosahexaenoic acid (DHA) are positively associated

with sperm quality. On the other hand, saturated fatty acids (SFAs)

and the ratio of n-6 to n-3 PUFAs are negatively correlated with

sperm quality (Am-in et al., 2011). Similarly, in humans, PUFAs

(especially DHA) play a significant role in normal sperm motility,

concentration, and morphology, whereas monounsaturated fatty

acids (MUFAs) adversely influence the quality parameters (Aksoy

et al., 2006; Andersen et al., 2016).
2.3 Effect of cryopreservation on sperm
lipid composition

The alteration of lipid composition in sperm can result in

irreversible damage to the cellular membrane and the shift of cell
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homeostasis after cryopreservation (Schiller et al., 2000; Maldjian

et al., 2005). In general, the changes can be summarized as follows:

First, PUFAs and SFAs are commonly decreased and increased

respectively as the result of lipid peroxidation after sperm

cryopreservation in humans and domestic mammalians (Alvarez

and Storey, 1992; Schiller et al., 2000; Maldjian et al., 2005).

Second, cryopreservation can reduce cholesterol levels (Cerolini

et al., 2001). Cholesterol plays a vital role in the structure and

function of cell membranes, including the stability, permeability

and fluidity of the cell membrane and the microenvironment of

membrane proteins (Crockett, 1998; Partyka et al., 2016; Zhang et al.,

2019). The loss of cholesterol can trigger the degeneration of the

plasma membrane and apoptosis (Aitken, 2011). Third, the alteration

of PLs composition and the translocation of membrane PLs have

been found in frozen-thawed sperm (Schuffner et al., 2001; Fang et al.,

2016). Normally, the distribution of PLs on the bilayer of the cellular

membrane is asymmetric. For example, phosphatidylserine (PS),

phosphatidylinositol (PI), and phosphatidylethanolamine (PE) are

primarily distributed on the cytoplasmic leaflet, while

Phosphatidylcholine (PC) and sphingomyelin (SM) are mainly

located on the outer leaflet (Quinn, 2004; Fadeel and Xue, 2009).

The asymmetric distribution of PLs plays an important role in

maintaining the physiological function of cells. Some specific

proteins (e.g. protein kinase C, annexin, membrane skeletal

proteins) are distributed on the cytoplasmic side by binding with

PS (Manno et al., 2002). In the frozen-thawed sperm of ram, a

significant reduction of PLs (PS, PI, PE, PG), an increase of

diphosphatidylglycerol (DPG), and translocation of PLs between

the cytoplasmic and outer layers were observed (Fang et al., 2016).

Additionally, externalizations of PS and DPG were detected in

cryopreserved ram sperm (Hinkovska-Galcheva et al., 1989;

Schuffner et al., 2001). Hinkovska-Galcheva et al. (1989)

suggested that the externalization of DPG inhibited the

subsequent acrosome reaction and eventually impaired the

fertilization capacity of sperm.
2.4 Lipid manipulation and
sperm cryopreservation

Maintaining the lipid composition (PUFAs, cholesterol, PLs)

and the physiological function of the membrane has been one of the

key methods to improve the success rate of spermatozoa

cryopreservation in many investigations (Ferreira et al., 2018).

Egg yolk has become a common ingredient in the sperm extender

in many mammalian species due to its protective influence (Anzar

et al., 2019), which was first identified in bull semen (Phillips and

Lardy, 1940). Despite the complex composition of egg yolks, low-

density lipoprotein (LDL) plays a significant role in protecting

spermatozoa in cryopreservation (Prapaiwan et al., 2015). In

addition to egg yolk and LDL, other lipids, such as FAs and

cholesterol, can also protect sperm during cryopreservation

(Purdy and Graham, 2004; Moore et al., 2005; Hossain et al., 2007).

Three main strategies are currently used to modify the lipid

compositions to counteract the cryopreservation stress in

mammalian sperm. The first is the supplementation of PUFAs in
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diet, which has enhanced the performance of post-thaw sperm in a

few species, such as water buffalo, and goat (Souza et al., 2019; Silva

et al., 2020). The second is the in vitro sperm incubation with

exogenous lipids to improve sperm cryotolerance in humans,

bovine, and swine (He et al., 2001; Röpke et al., 2011; Ferreira

et al., 2018). The third and most common strategy is the

supplementation of exogenous lipids in the cryopreservation

extender, which can provide almost instantaneous protection

from cold shock and freezing to increase the sperm cryoresistance

(Quinn et al., 1980; He et al., 2001; Vireque et al., 2016).

While the mechanism of freezing protection of sperm by

exogenous lipids is not fully understood, some theories have been

proposed. First, a “loose interaction” between PL and membrane

bilayers was inferred by Quinn et al. (1980) and Simpson et al.

(1987) in ram and boar sperm, where the protection of PC against

the cold shock was instantaneous and could be readily disrupted by

a gentle wash. Second, the adhesion of PL micelles to and possible

formation of PL protective film on the membrane surface have been

suggested for the improvement of sperm cryotolerance in many

studies (Ricker et al., 2006; Zhang et al., 2009; Vireque et al., 2016).

Third, the monomeric transfer and the fusion between the liposome

and spermmembrane bilayers were detected by Gadella et al. (1999)

using 6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino-caproyl

(C6NBD) labeled PLs in boar. The incorporation of exogenous

lipids into the sperm has also been confirmed by 14C-labeled FAs

and octadecyl rhodamine B (Neill and Masters, 1972; Vasquez and

Roldan, 1997). Therefore, the properties of the sperm membrane

can be modified by manipulating exogenous lipids, which could

improve sperm cryotolerance.

It is worth noting that the application of antioxidants in

combination with exogenous lipids could enhance sperm

cryoresistance by neutralizing the ROS produced during

cryopreservation as lipids (especially PUFAs) are highly

susceptible to this chemical (Ortega Ferrusola et al., 2009;

Towhidi and Parks, 2012; Towhidi et al., 2013).
3 The impact of lipids on oocyte and
embryo cryopreservation in
mammalian species

3.1 Current status of oocyte and
embryo cryopreservation

Aside from maternal genetic material, oocytes provide essential

nutrients, energy, and mitochondria for subsequent development

after fertilization (Kopeika et al., 2015). On the other hand, the

embryo contain genetic material from both maternal and paternal

sides. Compared to sperm, the larger size of oocytes and embryos

reduces their cryotolerance (Pai et al., 2021). As oocytes and

embryos share similarities in freezing sensitivity, the methods to

modify their lipid compositions are discussed together.

After decades of effort, the viability of post-thaw oocytes and

embryos in mammalians has improved substantially (Tharasanit

and Thuwanut, 2021). In human, for example, the live birth rates of
Frontiers in Marine Science 04
cryopreserved embryos and oocytes reach 41% and 32%,

respectively (Fraison et al., 2023). In bovine, this rate has been

improved to the fresh control level of 53% (Gómez et al., 2020).

Compared with sperm, the substantially lower surface-to-volume

ratio and higher cytoplasmic lipid content in oocytes and embryos

also contribute to their higher cryosensitivity in mammalians

(Amstislavsky et al., 2019). In oocytes and embryors, lipids also

aggregate into LDs, which are often structurally bound to key

cellular organelles, such as mitochondrion and endoplasmic

reticulum (ER), cytoskeleton (microfilaments and microtubules),

and cellular membrane (Guo et al., 2009; Zhou and Li, 2009). While

this structural association has yet to be fully understood, the cluster

of LDs, ER, and mitochondrion facilitate lipid metabolism (Guo

et al., 2009). LDs normally contain triglycerides, PLs, sterols, and

FAs (Dunning et al., 2014) and serve as an energy resource during

the development of oocytes and embryos (Romek et al., 2011;

Amstislavsky et al., 2019). The phase separation and further

consolidation of LDs during cryopreservation could reduce the

chance of successful cryopreservation of oocytes and embryos

(Amstislavsky et al., 2019).
3.2 Lipid composition and cryopreservation
of oocytes and embryos

Simi lar to sperm, the occurrence of LTP during

cryopreservation is the primary source of cryodamage of oocytes

and embryos (Arav et al., 1996; Amstislavsky et al., 2019), which can

change the properties of cellular membrane and disrupt its function

(Quinn, 1985; Van Meer et al., 2008). Changes in lipid composition

have also been observed in post-thaw oocytes and embryos. For

instance, in comparison with the fresh controls, the levels of certain

PLs were significantly lower in post-thaw bovine embryos (three

lysophosphatidylcholines; Janati Idrissi et al., 2021) and mouse

oocytes [phosphatidic acid (PA), lysophosphatidic acid (LPA),

lysophosphatidylglycerol (LPG); Jung et al., 2021].

Lipid content and composition in oocytes and embryos are

species-specific and important for assessing their quality and

potential cryotolerance (Pereira and Marques, 2008). Empirically,

those species with lipid-rich oocytes and embryos (e.g. pig and

domestic cat) have poor cryoresistance (Nagashima et al., 1999;

Pereira and Marques, 2008; Galiguis et al., 2014). However, a higher

proportion of unsaturated lipids can also produce a better

cryosurvival rate due to lower LPT temperatures (Amstislavsky

et al., 2019). For example, in comparison with bovine or ovine, the

higher survival rate of cryopreserved embryos of domestic cats is

attributed to being richer in unsaturated lipids (Pope, 2014;

Amstislavsky et al., 2019). Lipid compositions also vary among

breeding strains, individuals and seasons (Zeron et al., 2001; Sudano

et al., 2012). For example, by using the MALDI-MS/MS laser-

induced fragmentation technique (LIFT), Sudano et al. (2012)

revealed that embryos of Simmental subspecies showed a better

cryosurvival rate than Nellore subspecies due to significant

differences in particular PCs [e.g. PC(32:0), PC (34:1), PC (34:2)

and PC (36:5)], and suggested these PCs be used as biomarkers to

predict the outcome of cryopreservation.
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3.3 Lipid modification and oocyte and
embryo cryopreservation

The modification of lipid composition is an important strategy

to further improve the cryopreservation technique in mammalian

oocytes and embryos in recent years. The main strategies include: 1)

nutritional management; 2) delipidation using mechanical

methods; 3) delipidation using chemical methods; and 4)

cholesterol level modification. They are summerized in Table 1.

3.3.1 Nutritional management
The lipid composition of a female diet can affect the quality of

oocytes and embryos (Childs et al., 2008a; Childs et al., 2008b;

Wonnacott et al., 2010), which can affect their resistance to freezing.

For instance, a diet with the addition of PUFAs can increase the

quality of oocytes in ewes (Zeron et al., 2002). The increase of long-

chain PUFA content in the follicle component could lower the

midpoint of the LPT temperature of sheep oocytes and result in a

better membrane integrity rate after chilling (Zeron et al., 2002).
Frontiers in Marine Science 05
As lipid is the primary energy resource for oocytes and embryos,

the lipid content can be reduced if the nutrient restriction is applied

in vitro (Abe et al., 2002). Sudano et al. (2011) also found that when

a high fetal calf serum (FCS) concentration was used in the culture

medium, LDs accumulated in both fresh and post-thaw bovine

embryos, leading to a lower re-expansion rate after vitrification.

Compared to the whole sheep serum, delipidated sheep serum in

the culture medium could reduce the LDs content of ovine

cumulus-oocyte complexes (Barrera et al., 2018). The application

of serum-free culture medium has improved the survival rates of

post-thaw bovine and domestic cat embryos (Abe et al., 2002;

Murakami et al., 2011).

Some FAs have also been supplemented in the in vitro culture

medium to improve the cryosurvival of mammalian oocytes and

embryos by altering their lipid compositions (Al Darwich et al.,

2010; Leão et al., 2015; Aardema et al., 2022). For example,

conjugated linoleic acid (CLA) could reduce the accumulation of

lipids to large- and medium-size LDs by inhibiting the expression

and activities of stearoyl–CoA desaturase and lipoprotein lipase
TABLE 1 Lipid modification for improving the cryopreservation of oocytes and embryos in mammalian species.

Lipid modification
strategy

Method Material Post-thaw parameter
improved

Reference

Nutritional management Application of serum-free culture medium Bovine embryos Survival rate
Hatching rate

Aardema et al.,
2022

Application of serum-free culture medium Domestic cat
embryos

Hatching rate Murakami et al.,
2011

Conjugated linoleic acid treatment Bovine embryos Intact embryos rate
Re-expanded embryos rate

Pereira et al., 2007

Bovine embryos Re-expansion rate Leão et al., 2015

Bovine oocytes Survival rate
Cleavage rate

Matos et al., 2015

Docosahexaenoic acid or
linolenic acid treatment

Bovine embryos Survival rate Al Darwich et al.,
2010

Oleic acid treatment Bovine embryos Survival rate Aardema et al.,
2022

Delipidation using
mechanical method

Centrifugation
and micromanipulation

Porcine oocytes Survival rate
Germinal vesicle breakdown rate
Metaphase II rate

Hara et al., 2005

Porcine embryos Blastocyst rate Nagashima et al.,
1999

Bovine zygotes Survival rate
Hatching rate

Diez et al., 2001

Centrifugation Domestic cat
oocytes

Degeneration rate (reduced) Galiguis et al.,
2014

Delipidation using chemical
method

Forskolin treatment Swamp buffalo
embryos

Morula rate
Blastocyst rate
Hatched blastocyst rate
Cell numbers of blastocyst

Panyaboriban
et al., 2018

Bovine embryos Blastocyst rate
Hatched blastocyst rate
Cell numbers of blastocyst

Panyaboriban
et al., 2018

Porcine oocytes Survival rate Fu et al., 2011

(Continued)
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(Pariza et al., 2001). CLA could also improve membrane fluidity by

incorporation between CLA fatty acyl residues and SM or PC (Leão

et al., 2015), and it has a better free radical scavenging property than

linoleic acid or methyl linoleate (Fagali and Catalá, 2008). Due to

these three functions, CLA-treated bovine embryos showed a higher

survival rate after cryopreservation than the untreated control

(Pereira et al., 2007; Leão et al., 2015). In addition to CLA, the

supplementation of linolenic acid, docosahexaenoic acid (DHA),

and oleic acid in the in vitro medium could also improve the

cryosurvival of bovine embryos (Al Darwich et al., 2010; Karas ̧ahin,
2019; Aardema et al., 2022).

3.3.2 Delipidation using mechanical methods
The mechanical approach is an option to remove lipids in lipid-

rich oocytes and embryos (Nagashima et al., 1994; Nagashima et al.,

1999). LDs can be extruded by centrifugation under a hypertonic

condition or removed by micromanipulation after polarization by

centrifugation. Both methods have significantly improved the post-

thaw survival rate and further developmental capacity of porcine

oocytes, embryos, and domestic cat zygotes (Hara et al., 2005; Karja

et al., 2006; Nagashima et al., 1994). Furthermore, when the lipid

polarization method was used in domestic cat oocytes, the

cryosurvival rate was improved in partially polarized cat oocytes

(Galiguis et al., 2014). In contrast, the developmental competence

was compromised in fully polarized oocytes, probably due to the

adverse effect of lipid redistribution (Galiguis et al., 2014).

3.3.3 Delipidation using chemical methods
In comparison with mechanical delipidation, the in vitro

chemical treatment is a more prevalent lipid modification method
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in cryopreservation of oocytes and embryos. Forsklin, L-carnitine,

and Phenazine ethosulfate are the main chemicals used in the

culture medium to enhance lipolysis (Borges and Vireque, 2019).

Forskolin

Forskolin triggers adenylate cyclase, which can raise the cyclic

adenosine monophosphate (cAMP) level and induce lipolysis

(Paschoal et al., 2016). When 10 mM forskolin was applied in the

medium for in vitro maturation, the development competence of

porcine oocytes was not impaired and showed higher resistance

against cryopreservation (Fu et al., 2011). Likewise, after incubation

with 5.0 mM forskolin for 24 hours, bovine embryos had less lipid

and greater cryotolerance (Meneghel et al., 2017). Besides

diminishing lipid content, forskolin could also attenuate

cytoskeleton actin filament damages caused by vitrification in

bovine oocytes (Meneghel et al., 2017).

L-carnitine

In animal cells, the primary role of L-carnitine is to transfer

long-chain FAs across the inner mitochondrial membrane for the

subsequent b-oxidation. It is, therefore, an enhancer of lipid

metabolism (Longo et al., 2016; Borges and Vireque, 2019). L-

carnitine supplementation could increase the rate of zygote

development to the blastocyst stage and improve the survival rate

after cryopreservation in bovine (Takahashi et al., 2013). L-carnitine

could also reduce ROS formation during vitrification (Sprıćigo

et al., 2017). Thus, the supplementation of L-carnitine could not

only lower the density of LDs and modify the PL composition, but it

could also enhance the physiological function of mitochondria

(Somfai et al., 2011; Xu et al., 2019).
TABLE 1 Continued

Lipid modification
strategy

Method Material Post-thaw parameter
improved

Reference

Bovine embryos Re-expansion rates Meneghel et al.,
2017

L-Carnitine treatment Bovine embryos Survival rate Takahashi et al.,
2013

Bovine embryos Recovery rate
Hatching rate

Ghanem et al.,
2014

Acetyl-L-carnitine treatment Buffalo oocytes Cleavage rate
Morula rate
Blastocyst rate
Mitochondrial membrane
potential

Xu et al., 2019

Phenazine ethosulfate treatment Bovine embryos Recovery rate
Hatching rate

Ghanem et al.,
2014

Porcine embryos Blastocyst rate Gajda et al., 2008

Cholesterol level
modification

Cholesterol-loaded methyl-b-cyclodextrin treatment Bovine oocytes Cleavage rate
Eight-cell rate

Horvath and
Seidel, 2006

Cholesterol-loaded methyl-b-cyclodextrin treatment
before vitrification
Methyl-b-cyclodextrin treatment
after thawing

Bovine oocytes Sperm binding capacity
Two-pronuclear rate
Cleavage rate
Blastocyst rate
Cell numbers of blastocyst

Hao et al., 2021
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Phenazine ethosulfate

Phenazine ethosulfate (PES) can oxidize nicotinamide adenine

dinucleotide phosphate hydrogen to nicotinamide adenine

dinucleotide phosphate and arouse the pentose-phosphate

pathway to generate more Adenosine triphosphate (ATP) through

glucose metabolism (De La Torre-Sanchez et al., 2006; Barceló-

Fimbres and Seidel, 2007). The lipid accumulation in bovine and

porcine embryos could be inhibited when incubated with PES (De

La Torre-Sanchez et al., 2006; Gajda et al., 2011). Ghanem et al.

(2014) found that PES-treated bovine embryos showed

enhanced cryotolerance.

3.3.4 Cholesterol level modification
A high ratio between cholesterol and PL in the cytoplasm

membrane is usually associated with higher membrane fluidity,

especially at low temperatures, meaning that cholesterol content in

the membrane bilayer can affect the cryotolerance of oocytes

(Horvath and Seidel, 2006). Methyl-b-cyclodextrin (MBC) is a

water-soluble cyclic heptasaccharide that can be used to deliver

hydrophobic substances, such as cholesterol or FAs, through its

hydrophobic cylindrical cavity (Brewster and Loftsson, 2007).

Horvath and Seidel (2006) showed that Cholesterol-loaded

Methyl-b-cyclodextrin (CLC) treated oocytes had a better

cleavage and 8-cells rate compared to untreated oocytes in bovine

vitrification, although the advantage was not apparent in

subsequent development. Conversely, Arcarons et al. (2017)

found that CLC treatment did not significantly affect the cleavage

and blastocyst rate in the same species. Nevertheless, the expression

of some development-related genes (e.g. DNMT3A and BAX)

indicates that oocytes treated by CLC could have a better quality,

especially when they are vitrified at the germinal vesicle stage

(Arcarons et al., 2017).
4 Lipid manipulation in
cryopreservation of aquatic species

4.1 Current status of cryopreservation of
gametes, embryos and larvae

The first successful fish sperm cryopreservation in aquatic

species was reported in 1953 (Blaxter, 1953), almost at the same

time as that of domestic mammalians. However, despite sperm

cryopreservation having become a lucrative global industry in the

livestock sector, it has not been widely applied to commercially

important aquatic species (Tiersch et al., 2007; Migaud et al., 2013).

The development of cryopreservation technique in oocytes,

embryos, and larvae in aquatic species is still in its early stages,

and has focused on the selection of cryoprotectant, optimization of

freezing rate, and assessment of developmental stages suitable for

freezing (Martıńez-Páramo et al., 2017). The potential application

of cryopreservation in the aquaculture industry is significant, as it

could resolve key issues during seed production, such as the

unbalanced sex ratio of broodstock, asynchronous sexual

maturation, long-distance broodstock transportation, and
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seasonal constraints. This technique could also play an essential

role in germplasm resource protection of rare breeding varieties and

endangered species, especially in the face of natural disasters,

environmental pollution, and disease outbreak (Liu et al., 2020a;

Dıáz et al., 2021).

To date, hundreds of fish sperm cryopreservation protocols

have been reported and comprehensively reviewed by Cabrita et al.

(2010), Tsai and Lin (2012), and Martıńez-Páramo et al. (2017).

Sperm cryopreservation techniques have also been developed for

most farmed and some ecologically important aquatic invertebrates

(Diwan et al., 2020). The freezing of oocytes, embryos, and larvae in

aquatic organisms is more challenging than that of spermatozoa. In

comparison with sperm, the additional challenges are their poor

membrane permeability, large size, high lipid content, and high

sensitivity to temperature shock (Martıńez-Páramo et al., 2017;

Diwan et al., 2020). Although studies on cryopreservation of early-

stage oocytes (Tsai et al., 2009), ovarian tissue fragments (Anil et al.,

2011), and primordial germ cells or a genital ridge (Kobayashi et al.,

2007; Higaki et al., 2010; Inoue et al., 2012) have occurred in some

fish species, these methods are subject to the success of subsequent

in vitro maturation or transplantation. Compared with fish, the

cryopreservation of oocytes, embryos and larvae of aquatic

invertebrates is more promising due to their holoblastic cleavage,

relatively less egg lipid content, and smaller size (Martıńez-Páramo

et al., 2017). To date, studies on larval cryopreservation have been

reported in crustaceans (Subramoniam and Newton, 1993; Huang

et al., 2017; Diwan et al., 2020) and echinoderms (Paredes, 2016;

Dupré and Carvajal, 2019), and successful cryopreservation of

oocytes, embryos and/or larvae has been published in mollusks

(Tervit et al., 2005; Liu and Li, 2015; Liu et al., 2020b; Heres et al.,

2021) and corals (Daly et al., 2018), although the post-thaw oocyte

survival rates were low (Tervit et al., 2005; Liu and Li, 2015).

Progresses of molluscan larval cryopreservation have been

summarized recently by Yang and Huo (2022).
4.2 Lipid modification and cryopreservation

As with livestock, the relationship between gamete or embryo

quality and lipid composition has been established in many aquatic

species, especially those of commercial importance (Mansour et al.,

2011; Beirão et al., 2012; Glandon et al., 2016; Dıáz et al., 2018).

However, studies on lipid composition and cryopreservation are

limited in aquatic species. Based on mammalian studies, it can be

assumed that membrane fluidity, permeability, and lipid

composition can play a similar role in the cryosurvival of

gametes, embryos and larvae in aquatic animals, which has been

demonstrated recently in Pacific oysters (Zhu et al., 2023).

Therefore, lipid manipulations could enhance cryotolerance in

aquatic species.

4.2.1 Lipid modification through
nutritional management

To improve gamete quality, gamete lipid modification through

dietary manipulation during broodstock conditioning is common in
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aquatic species (Helm et al., 1973; Fernández-Palacios et al., 1997;

Asturiano et al., 2001; Ehteshami et al., 2011; Diogo et al., 2015;

Valdebenito et al., 2015). Promising results have been reported in a

few studies related to sperm or oocyte cryotolerance. For instance, a

fish oil-supplement diet for broodstocks of Prochilodus lineatus led

to a higher amount of total PUFAs, n-6 PUFAs, and long-chain

PUFAs, and a lower amount of total MUFAs in the embryos. Those

embryos also presented better permeability to cryoprotectants (1,2-

Propanediol; Costa et al., 2018). Bivalves usually do not have

sufficient capability to elongate and desaturate short-chain

saturated FAs to long-chain PUFAs (de Moreno et al., 1976; de

Moreno et al., 1977; Helm et al., 1991). Hence dietary lipid profiles

can significantly affect the composition of FAs in bivalves (Langdon

andWaldock, 1981; Dudognon et al., 2014). In Pacific oysters, when

the broodstock was fed with microalgae containing a high fraction

of PUFAs during cold preconditioning at 9 °C, the fertilization rate

of post-thaw oocytes was significantly increased in comparison with

the control (Adams et al., 2013). These authors have proposed that

the absolute content of PUFAs, rather than the ratios between

PUFAs and MUFAs or SFAs, plays a vital role in cryotolerance of

post-thaw oocytes.

4.2.2 Lipid modification and
sperm cryopreservation

In addition to lipid modification through diet, there have been a

few examples of improving sperm tolerance by supplementary FAs,

cholesterol, and LDLs in fish sperm extenders (Table 2). According

to Lahnsteiner et al. (2009), when FAs (including palmitic acid,

arachidonic acid, linoleic acid, and arachidic acid) were added to the

rainbow trout (Oncorhynchus mykiss) sperm motility-inhibiting

extenders, the motility rate and the average path velocity were

improved after 72 h storage at 4°C. However, their cryotolerance

was not enhanced in the same study. On the contrary, when the

arachidonic acids were used in the freezing medium of Atlantic

salmon (Salmo salar), the membrane integrity and fertility rate of

post-thaw sperm were significantly increased (Dıáz et al., 2021). It is

worth mentioning that the protective effect of egg yolk in the

extender in the study by Lahnsteiner et al. (2009) was likely to be

veiled by its LDL component (Pérez-Cerezales et al., 2010). The

impact of cholesterol in sperm cryopreservation is species-specific.

Its addition had no positive effect on the viability of cryopreserved

sperm in S. Salar (Dıáz et al., 2021), whereas showed significant

improvement in cryoresistence in the common carp (Cyprinus

carpio) when was used at a dose of 1.5 mg cholesterol per 120 ×

106 spermatozoa (Yildiz et al., 2015).

4.2.3 Lipid modification and oocyte and
larval cryopreservation

Total lipid extracts from aquatic invertebrates present

cryoprotective abilities when they were added into the medium to

cryopreserve molluscan primary larval cells (Odintsova et al., 2001;

Odintsova et al., 2006; Kostetsky et al., 2008). For example, the post-

thaw survival rate of Mytilus trossulus trochophore larval cells was

increased from 5% to 13% by the addition of lipid extract of

Crenomytilus grayanus, which was further improved to 35% when
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antioxidants (vitamin C and vitamin E) were supplemented

(Kostetsky et al., 2008). The lipid profile analysis revealed that the

addition of lipid extracts and antioxidants effectively increased

percentages of MUFAs, PUFAs, n-3 PUFAs, n-6 PUFAs, and the

unsaturation index and reduced the percentage of SFAs in the post-

thaw larval cells (Kostetsky et al., 2008).

Attempts have also been made to alter the lipid composition of

oocytes and larvae to improve cryoresistance. For example, Salinas-

Flores et al. (2008) cultured the oocytes of M. gigas with CLC and

MBC to increase and decrease the cholesterol level in the oocyte,

respectively. Although the incorporation of cholesterol in oocytes

was confirmed by fluorescence assessment, the treated and

untreated oocytes showed similar post-thaw fertilization rates. In

corals, Cirino et al. (2021) reported a methodology to improve the

cryoresistance of coral larvae by adding exogenous lipids and gold

nanoparticles to the vitrification solution. The vitality rate of

vitrified Seriatopora caliendrum larvae was increased by erucic

acid liposomes, whereas the settlement rate of vitrified Pocillopora

verrucosa larvae was enhanced by PE liposomes. In addition, the

survival rate of post-thawM. gigas larvae was significantly improved

by including 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC) and a-tocopherol in the cryopreservation medium (Zhu

et al., 2023).
5 Conclusions and future research in
aquatic species

The deve lopment of oocy te , embryo and larvae

cryopreservation techniques is still in its early stages in aquatic

organisms, although progresses have been made in some species,

especially in bivalves. In comparison with mammalians, aquatic

species possess even higher intracellular lipid content in oocytes,

embryos and early-stage larvae (prior to feeding), which means that

the cryopreservation of these materials might be more challenging.

Therefore, the introduction of lipid modification might be a

cornerstone in the development of cryopreservation techniques in

aquatic species. The following will be the primary aspects the future

studies should focus on.

While the relationship between lipid composition and gamete

quality and/or development capability has been investigated in

some species, most of these studies have not been focused on

cryopreservation. Therefore, investigations on the relationship

between specific lipid composition and cryotolerance would be a

key research priority, which could be achieved by manipulating

nutritional ingredients. Theoretically, when broodstock are fed with

a diet rich in PUFAs during gametogenesis, they are likely to yield

gametes with lower LPT, thus enhancing the cryoresistance of both

gametes produced and the resulting embryos and larvae.

Given its effectiveness in larvae cryopreservation in some

bivalve and coral species, the application of exogenous lipids (e.g.

PLs, and lipid extract from hydrobiontes) in the cryoprotectant is

likely to offer a new strategy to optimize existing or develop new

larvae cryopreservation techniques. Due to the hydrophobic nature

of exogenous lipids, they usually present in the form of liposomes in
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extenders or cryoprotectants. Their particle size and other

properties could affect their interaction with plasma membrane

and subsequently the cryopreservation outcomes. For example,

sonicating the extender containing egg yolk has resulted in

smaller liposomes and better post-thaw motility in donkey sperm

compared to that without the treatment (Zhang et al., 2018). In the

study by Cirino et al. (2021), the application of gold nanoparticles

played a significant role in the success of coral larval

cryopreservation because gold nanoparticles can change the

biophysic features of liposomes such as zeta potential,

temperature of LPT (Mady et al., 2012). Therefore, understanding

the biophysical characteristics of liposomes and their effects on the

cryopreserved materials will be beneficial for the further

improvement of cryopreservation techniques.

Furthermore, partial removal of yolk through micromanipulation

would be worth trying to improve the cryosurvival of oocytes,

embryos, and larvae in aquatic animals when their cryopreservation
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has been investigated by optimizing other parameters. This method

may not only hold significance academically but could also be critical

to establish cryopreservation techniques, although the application of

this technique might be limited to specific requirements such as gene

banking and difficult to meet the quantity demands for commercial

hatchery production. With the development of extended in vitro

oocyte culture techniques in aquatic species, chemical delipidation

and in virto lipid modulation could become practicable. This method

would have broader applications than micromanipulation, since it

could manipulate a larger quantity of materials.

As the vitrification method has been routinely used in the

cryopreservation of oocyts and embryos in some mammalian

species, including lipid-rich materials (Amstislavsky et al., 2019;

Du et al., 2021; Tharasanit and Thuwanut, 2021), and has also been

successfully applied in a couple of coral species (Daly et al., 2018;

Narida et al., 2023), the integratation of lipid modification and

vitrification is likely to become a novel technological pathway for
TABLE 2 Positive effects of exogenous lipid supplements in cryopreservation in aquatic animals.

Material
cryopreserved

Species Supplements - exoge-
nous lipids
and other chemicals

Base extenders/
Cryoprotectants

Post-thaw parame-
ters improved

Reference

Sperm Prochilodus brevis Egg yolk 5% glucose
10% dimethyl sulfoxide

Membrane integrity Torres et al.,
2022

Rasbora tawarensis Egg yolk Ringer’s solution
/5% dimethyl sulfoxide

Mortility
Fertilization rate
Hatching rate

Muchlisin et al.,
2020

Salmo salar Arachidonic acid Cortland® medium Mortility
Membrane integrity
Mitochondrial membrane
potential
Fertility

Dıáz et al., 2021

Oncorhynchus
mykiss

Low density lipoprotein Erdahl & Graham’s
/7% dimethyl sulfoxide

Membrane integrity
DNA integrity
Eyed embryo survival rate

Pérez-Cerezales
et al., 2010

Cyprinus carpio Cholesterol-loaded cyclodextrin 300 mM glucose,
10% dimethyl sulfoxide

Motility
Duration of motility
Vitality rate
Fertilization rate

Yildiz et al., 2015

Larval cells Mytilus trossulus Lipid extract from Crenomytilus
grayanus,
vitamine C and vitamine E

10% dimethyl sulfoxide
1.5% trehalose

Vitality rate
Unsaturation index

Kostetsky et al.,
2008

Larval cells Strongylocentrotus
intermedius

Lipid extract from Crenomytilus
grayanus,
echinochrome

6% dimethyl sulfoxide
4 mM trehalose

Survival rate
RNA synthesis level

Odintsova et al.,
2009

Larvae Seriatopora
caliendrum

Erucic acid 2 M ethylene glycol (EG),
1 M propylene glycol (PG),
40% (w/v) Ficoll,
10% gold nanoparticles

Survival rate Cirino et al.,
2021

Larvae Pocillopora
verrucosa

Phosphatidylethanolamine 2 M ethylene glycol (EG),
1 M propylene glycol (PG),
40% (w/v) Ficoll,
10% gold nanoparticles

Settlement rate Cirino et al.,
2021

Trochophore larvae Magallana gigas 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine,
a-tocopherol

10% (v/v) ethylene glycol
(EG)
5% (w/v) Ficoll (FIC)
0.2% (w/v)
polyvinylpyrrolidone

D-stage larvae survival rate
Spat yield

Zhu et al., 2023
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the cryopreservation of oocytes, embryos, and larvae in

aquatic organisms.
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(2017). Cholesterol added prior to vitrification on the cryotolerance of immature and in vitro
matured bovine oocytes. PLoS One 12, e0184714. doi: 10.1371/journal.pone.0184714
Argov-Argaman, N., Mahgrefthe, K., Zeron, Y., and Roth, Z. (2013a). Season-
induced variation in lipid composition is associated with semen quality in Holstein
bulls. Reproduction 145, 479–489. doi: 10.1530/REP-12-0498

Argov-Argaman, N., Mahgrefthe, K., Zeron, Y., and Roth, Z. (2013b). Variation in
lipid profiles within semen compartments—the bovine model of aging. Theriogenology
80, 712–721. doi: 10.1016/j.theriogenology.2013.05.024

Asturiano, J. F., Sorbera, L. A., Carrillo, M., Zanuy, S., Ramos, J., Navarro, J. C., et al.
(2001). Reproductive performance in male European sea bass (Dicentrarchus labrax, L.)
fed two PUFA-enriched experimental diets: a comparison with males fed a wet diet.
Aquaculture 194, 173–190. doi: 10.1016/S0044-8486(00)00515-9

Barberet, J., Barry, F., Choux, C., Guilleman, M., Karoui, S., Simonot, R., et al. (2020).
What impact does oocyte vitrification have on epigenetics and gene expression? Clin.
Epigenet. 12, 121. doi: 10.1186/s13148-020-00911-8
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Ortega Ferrusola, C., González Fernández, L., Morrell, J. M., Salazar Sandoval, C.,
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