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Diving on damage—the muscle
transcriptome of parasitic
infested harbor porpoises
(Phocoena phocoena) hints at
oxidative stress but not hypoxia
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1Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Hanover MedicineHanover
Foundation, Büsum, Germany, 2Institute of Animal Cell and Systems Biology (ICS), University of
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The only native cetacean in German waters, the harbor porpoise (Phocoena

phocoena), is impacted by numerous pathological lesions in the respiratory tract

mainly caused by parasites or bacteria. Although harbor porpoises have been

observed to not use their complete lung volume, it has not been studied whether

this insufficiency leads to lower oxygen uptake, impaired diving ability, and,

ultimately, reduced foraging success. This project aims to analyze whether

harbor porpoises developed novel molecular adaptations to compensate

impairments in oxygen supply, thus remaining viable and competitive despite

the high parasitic load. Here, initial comparative transcriptome RNA sequencing

(NextSeq 2000, Illumina) was performed on muscles of harbor porpoises with a

respiratory tract considered as healthy and of harbor porpoises that suffered from

more severe lesions and parasitic infestations in the respiratory tract. Our findings

suggest an elevated response to oxidative stress in the muscles of parasitic

infested harbor porpoises compared with that of healthy animals. Higher

antioxidant and antiapoptotic gene expression in the muscles of non-healthy

harbor porpoises might function as a compensatory effect to enhanced reactive

oxygen species production and accumulation in the muscles. Simultaneously

enhanced selective proteasomal degradation and myogenesis suggest a tightly

controlled, finely tuned switch of the intrinsic muscle response to stress. Lipid

metabolism pathways and rate-limiting transcripts involved in glycolysis were

upregulated and may uphold muscle energy supply for tissue function and

energy-consuming regenerative and biosynthetic processes. These preliminary

results hint at a defined response of the muscle to oxidative stress that may be

caused by lung tissue with more severe pathological lesions and may indicate a

possible adaptation in cetaceans.
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Introduction

In the North and Baltic Seas, harbor porpoises (Phocoena

phocoena) are increasingly impacted by ever-expanding human

activities, leading to an endangered status (Carlén et al., 2021;

Nachtsheim et al., 2021). Although disturbances by shipping and

underwater noise during feeding and foraging are especially

detrimental due to their high metabolic rate and restricted energy

storage capacity (Read & Hohn, 1995; Wisniewska et al., 2016;

Rojano-Doñate et al., 2018; Wisniewska et al., 2018), it has been

observed that underwater noise even leads to behavioral changes

(Kastelein et al., 2018). Moreover, not only is entanglement in

fishing gear and bycatch affecting population sizes, but growing

contaminant exposure is thought to reduce reproduction success in

female harbor porpoises (Vinther & Larsen, 2004; Kesselring et al.,

2017). Accumulating exposure to chemical waste and pollution as

well as microplastic can compromise the immune system of the

harbor porpoises (Sonne et al., 2020a; Sonne et al., 2020b; Philipp

et al., 2021). Uptake through contaminated food sources allows for

accumulation of long-lasting pollutants in sentinel species such as

the harbor porpoise (Siebert et al., 2009; Sonne et al., 2020a). This

can weaken the ability of the immune system to defend against

illnesses and infections, thus leading to a higher susceptibility to

more frequent and severe infections or infestations with parasites

(Wünschmann et al., 2001; Siebert et al., 2009; Siebert et al., 2020).

Compared with Scandinavian and Arctic populations, German

harbor porpoises possess less blubber while also suffering from

severe pathological lesions and inflammations (Wünschmann et al.,

2001; Siebert et al., 2006; Siebert et al., 2009). Particularly in the

respiratory tract and lungs, considerable injuries have been

determined, which are mainly caused by parasites or bacteria

(Siebert et al., 2001; Lehnert et al., 2014; Siebert et al., 2020). It

has been proposed that large accumulations of parasites in the

respiratory tract may negatively affect the diving and hunting ability

of the harbor porpoises (Siebert et al., 2001; Ten Doeschate

et al., 2017).

To effectively dive and hunt under water, marine mammals

possess a plethora of adaptations that enable them to live in an

aquatic environment (Hindle, 2020). They prefer to dive aerobically

and possess a large amount of readily available oxygen stored in

their blood, lungs, and muscles (Kooyman, 1973; Davis, 2014). The

locomotor muscles of marine mammals consume vast amounts of

oxygen during aerobic dives to produce propulsion and force

(Pabst, 1993). A heterogenic distribution of oxygen-binding

myoglobin and higher concentrations in muscles of deep-diving

species has already been confirmed, strengthening the suggestion

that high myoglobin concentrations in oxidative, high-energy

tissues prolong the aerobic dive limit (Polasek & Davis, 2001).

Whereas deep-diving species preferably use the muscle-stored

oxygen, shallow-diving whales such as the harbor porpoise also

rely on their lungs as an oxygen storage (Snyder, 1983; Fahlman

et al., 2017). Although their dives are typically slow, short, and

shallow (14–32 m; Westgate et al., 1995; Otani et al., 2001; Piscitelli

et al., 2010; Nielsen et al., 2018), they can perform deeper foraging

dives (226 m; Westgate et al., 1995; Nielsen et al., 2018). Moreover,
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porpoises of the Kattegat and Belt Sea have been observed trying to

escape underwater noise with unplanned, deeper dives (Wisniewska

et al., 2018). These prolonged dives of marine mammals are

typically fueled by glycolysis following depletion of oxygen

storages (Kooyman et al., 1980; Castellini et al., 1981; Arregui

et al., 2021; Torres-Velarde et al., 2021). For small marine

mammals like the harbor porpoise, it has been proposed that a

high anaerobic buffering capacity of the locomotor muscles may

extend their ability to dive aerobically (Noren, 2004). This could be

true for fleeing or distressed harbor porpoises that, at birth, exhibit

already 69% of the adult muscle anaerobic buffering capacity

(Noren et al., 2014). In marine mammals, high baseline

antioxidant capacity and levels have been confirmed in various

tissues and species to protect from oxidative damage (Garcıá-

Castañeda et al., 2017; Allen & Vázquez-Medina, 2019 Vázquez-

Medina et al., 2006). Furthermore, growing evidence supports

accelerated evolution or positive selection of antioxidative genes

in marine mammals (Foote et al., 2015; Romano et al., 2002; Park

et al., 2015; Li et al., 2021).

A recent study in belugas found that muscle oxygen storage

capacity is correlated with overall body condition (Choy et al.,

2019). However, the skeletal muscle is known to be a plastic tissue,

swiftly adapting to changing conditions (Frontera & Ochala, 2015)

with an elevated recovery capacity upon tissue injury or disease

(Howard et al., 2020). Regeneration of muscles consists of a

conserved three step response: degradation of affected cells,

inflammation of the injured area, followed by tissue regeneration

and remodeling (Grounds, 2014; Levine & Kroemer, 2019).

Oxidative stress and hypoxia are known to induce muscle atrophy

by increasing proteolysis and inhibiting translation of proteins

(Lian et al., 2022). As a post-mitotic tissue, it is very prone to

oxidative damage induced by reactive oxygen species (ROS) and can

accumulate damage over time (Frontera & Ochala, 2015; Rom &

Reznick, 2016). Multiple muscle transcriptome studies of stressed

elephant seals have been published (Khudyakov et al., 2015a;

Khudyakov et al., 2015b; Crocker et al., 2016; Hindle et al., 2019;

Piotrowski et al., 2021; Torres-Velarde et al., 2021), and a specific

response pattern with minimal catabolism and tissue function and

suppressed energy-consuming processes such as proliferation and

development has been observed (Khudyakov et al., 2015a). To date,

mostly histological, pathologies describing or physiological studies

of harbor porpoises muscles exist (Noren & Williams, 2000; Siebert

et al., 2001; Noren, 2004; Sierra et al., 2013; Lehnert et al., 2014;

Noren et al., 2014; Sierra et al., 2017; McDonald et al., 2018). This is

the first transcriptomic study of the muscles of harbor porpoises.

Here, we have performed comparative muscle transcriptome

analyses to investigate whether harbor porpoises developed

molecular compensatory adaptations caused by damaged lungs

and impaired lung function, thus remaining viable and

competitive. We compared transcriptomes of the main locomotor

muscle (Musculus longissimus dorsalis) from German harbor

porpoises, with a respiratory tract regarded as either healthy or

non-healthy. M. longissimus dorsalis is one of the most energy-

reliant muscles in cetaceans and necessary for the upward stroke of

the fluke (Pabst, 1993; Noren & Williams, 2000), therefore
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representing an appropriate target to analyze possible adaptations

in the muscle to an impaired respiratory function. We conducted

Gene Ontology (GO) term analyses to find indicators of possible

adaptations in non-healthy harbor porpoises. Furthermore, we

identified differentially expressed transcripts (DETs) in non-

healthy harbor porpoises compared with that in healthy ones and

verified selected upregulated candidate genes in a quantitative real-

time (qRT)–PCR.
Material and methods

Animals and sampling

M. longissimus dorsalis samples of harbor porpoises (n = 14,

Table 1; see Supplementary data) were opportunistically obtained.

All harbor porpoises died of live stranding or have been by-caught

between 2015 and 2022. Fresh tissue samples were collected by the

necropsy team of the Institute of Terrestrial and Aquatic Wildlife

Research (ITAW), University of Veterinary Medicine Hannover,

Foundation, Büsum. Tissue samples were immediately preserved in

RNA stabilization solution (NucleoProtect RNA, Macherey-Nagel,

Düren, Germany) and stored at −80°C until subsequent usage. Full

necropsies and further investigations were conducted on all

individuals according to Siebert et al., 2001. On the basis of the

summary of findings, animals were categorized into healthy and

non-healthy individuals. Non-healthy animals displayed

pathological lesions due to lungworm and bacterial infections and

suffered or died from bronchopneumonia (Table 1; see

Supplementary data).
RNA isolation and quality control

The muscle samples (20–30 mg) were minced and homogenized

by bead beating in 1 mL of Trifast reagent (PEQLAB, Erlangen,

Germany). RNA was isolated from the homogenates by phase

extraction using chloroform and ethanol (70%). Total RNA was

extracted with the Crystal RNA Mini Kit (Biolab Products, Bebensee,

Germany) in accordance with the manufacturer’s instructions. In

addition, a 15-min on-column DNA I digest (Qiagen, Hilden,

Germany) was conducted. RNA concentration and quality,

indicated by the RNA integrity number (RIN), were assessed using

the Agilent TapeStation System (Agilent Technology, Santa Clara,

CA, USA). RIN scores of the muscle samples varied from 4.8 to 6.1.
Sequencing and quality trimming

The RNA sequencing (RNA-Seq) library preparation for

paired-end sequencing of 2 × 150 nucleotides (nt) was generated

from 5,000 ng of RNA of healthy (n = 2) and non-healthy (n = 2)

harbor porpoises. Sequencing was performed on an Illumina

NextSeq 2000 platform (StarSEQ, Mainz, Germany) with an

output of 25 million reads per sample. Sequence quality control,

mapping, and alignment were carried out on the Galaxy server
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(version 21.09) of the Department of Biology at the University of

Hamburg. Quality control was assessed using the FastQC version

0.73 and MultiQC version 1.11 tool on Galaxy.

The first 20 5′-terminal nucleotides and Illumina adapter

sequences (mismatch count = 2, internal match = 10) were

cropped from the raw reads with Trimmomatic version 0.38.1.

Reads below the length of 20 nt were discarded, and a minimum

average quality value of 20 was required for consideration.

The raw sequence files are available at the National Center for

Biotechnology Information (NCBI) Sequence Read Archive (SRA)

from (SRA BioProject ID: PRJNA977857, see Supplementary

Table 1 for SRA accession numbers).
Expression analysis via RNA-Seq

The trimmed sequences were mapped and aligned against the

bottlenose dolphin genome (Tursiops truncatus, mTurTru1.mat.Y,

released March 2020, RefSeq Accession: GCF_011762595.1) using

HISAT version 2.2.1 and featurecounts version 1.6.4. Individual

transcripts per million (TPM) for each transcript were counted with

the Galaxy tool “Generate CPM, TPM, RPK” (version 0.4.0), and

mean values for the healthy and the non-healthy animals

were calculated.
Differential expression analysis

DETs were determined using DESeq2 version 2.11.40.7 on the

Galaxy server. DETs were then filtered with cutoffs for up- and

downregulated genes at an adjusted p-value (padj) ≤ 0.05, fold

change (FClog2) ≥ 1 or ≤ −1, and mean TPMnon-healthy ≥ 5 (see

Supplementary data).
Gene Ontology analysis

Analysis of GO Slim terms was performed with the PANTHER

Overrepresentation Test (PANTHER version 17.0, released 2022_02)

using the human as reference list. DETs with a padj ≤ 0.05, a FClog2 ≥ 1

or ≤ −1, and a mean TPMnon-healthy ≥ 5 were considered for the

analysis. Overrepresentation was determined in the PANTHER

“Pathways” and GO Slim categories “Biological Process”,

“Molecular Function”, and “Cellular Component” categories.

Fisher’s exact test and the False discovery rate (FDR) were used as

correction for multiple testing.
Expression confirmation via qRT-PCR

Because of our small muscle sample size for the RNA-Seq, we

verified the results in a larger subset of healthy (n = 6) and non-

healthy (n = 8) harbor porpoises (Table 1). mRNA expressions of

the selected transcripts chosen as candidate genes were analyzed in

a qRT-PCR. Total RNA was isolated as previously stated. RNA

quantity and quality were determined by spectrophotometry and
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gel electrophoresis. For complementary DNA (cDNA) synthesis, a

maximum of 1,000 ng of total RNA and the RevertAid H–First

Strand cDNA Synthesis Kit (Thermo Scientific, Germany) were

used according to the manufacturer’s protocol. The synthetized

cDNA was further diluted in 20 µl of Ribonuclease (RNAse)-free

water, resulting in a total volume of 40 µl. qRT-PCR was conducted

on the ABI 7500 real-time PCR system with the Power SYBR Green

master mix (Applied Biosystems, Darmstadt, Germany). The qRT-

PCR was performed with a protocol consisting of 40 cycles (95°C

for 15 s, 58°C–60°C for 60 s, 72°C for 30 s). Species-specific primers

are presented in Supplementary Table 2. Samples were applied as

three technical replications. The qRT-PCR was used as a relative

verification of the transcriptome analysis, so no recombinant

plasmid was necessary as standard. RPLP0, RPLP1, and EF2 were

selected as reference genes. Relative FCs were calculated according

to the DDCT method (Livak & Schmittgen, 2001).
Statistical analysis

All statistical analyses of the results qRT-PCR were conducted

using GraphPad Prism version 9.5.1. Mean CT values of the
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technical replicates were calculated and tested for normal

distribution. The Mann–Whitney U-test was performed for post-

hoc analysis and testing for statistical significance.
Results

Transcriptomes of the muscles

Per sample of non-healthy harbor porpoises, a total of ~43

million paired-end Illumina reads could be generated, and a total of

~25 million and ~36 million paired-end Illumina reads were

generated per muscle sample of healthy harbor porpoises. The

quality of the raw reads was sufficient (Phred score = 33). The

mapping of the transcriptomes resulted in ~15 million ± 3 million

mapped reads in healthy porpoises and ~21 million reads in non-

healthy porpoises (67 ± 6%; Table 2). Alignment of the mapped

reads against the bottlenose dolphin genome resulted in ~38.05 ±

3.45% assigned reads (Table 2). The analysis of DETs resulted in

1,594 upregulated and 1,286 downregulated DETs in muscles of

non-healthy porpoises. For further analyses, only DETs with a p-

valueadj ≤ 0.05, FClog2 ≥ 1 or −1, and a TPMnon-healthy ≥ 5 were
TABLE 1 Important data of the individual harbor porpoise samples and for which experiments samples were used.

Pph Used in Condition Sex Date Age
(approx.) Cause of illness Cause of death

24876
qRT-PCR
and RNA-
Seq

Healthy Male 19.08.2020 Neonate None Suspicion of bycatch

26079
qRT-PCR
and RNA-
Seq

Healthy Male 23.11.2021 Juvenile
Age-appropriate minor inflammations in the
lungs, stomach, and liver

Bycatch

21708 qRT-PCR Healthy Female 19.07.2016 Neonate None Bycatch

21805 qRT-PCR Healthy Female 15.09.2016 Juvenile None Bycatch

25159 qRT-PCR Healthy Male 19.11.2020 Juvenile None, only signs of a shock event Suspicion of bycatch

24936 qRT-PCR Healthy Male 03.09.2020 Neonate
Perinatal death (amniotic fluid
aspiration, hepatic and renal fatty
degeneration)

24548
qRT-PCR
and RNA-
Seq

Non-healthy Male 12.03.2020 Juvenile Bronchopneumoniaand dermatitis

23771
qRT-PCR
and RNA-
Seq

Non-healthy Male 16.04.2019 Juvenile
Bronchopneumonia and
gastroenteritis

24394 qRT-PCR Non-healthy Male 18.12.2019 Adult Bronchopneumonia and gastritis

24138 qRT-PCR Non-healthy Female 10.09.2019 Adult
Bronchopneumonia, hepatitis, and adrenalitis
with final septicemia due to Pasteurella
multocida

Suspicion of bycatch/trauma

25266 qRT-PCR Non-healthy Male 15.12.2020 Juvenile Bronchopneumonia and steatits Suspicion of bycatch

25660 qRT-PCR Non-healthy Female 14.07.2021 Adult Bronchopneumonia and endoparasitosis Bycatch

26076 qRT-PCR Non-healthy Male 23.11.2021 Juvenile Bronchopneumonia and gastritis Bycatch

26174 qRT-PCR Non-healthy Male 08.02.2022 Juvenile
For additional data of the samples, see Supplementary Data.
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considered, comprising 739 upregulated transcripts and 194

downregulated transcripts (see Supplementary data).
High expressed transcripts in GO Slim
terms for muscle function, regeneration,
and glucose metabolism

We performed an overrepresentation analysis using the

PANTHER categories GO Slim “Biological Process,” “Molecular

Function,” “Cellular Component,” and “Pathways” to identify

overrepresented GO Slim terms. For this, we only considered

transcripts of the filtered set with cutoffs FClog2 ≥ 1, p-valueFDR ≤

0.05, and TPMnon-healthy ≥ 5 (see Supplementary data) with the

human genome as reference (Fisher’s exact test with FDR-corrected

p-value < 0.05). The top 10 overrepresented biological processes in

muscles of non-healthy harbor porpoises compared with that of

healthy porpoises are shown here (Figure 1). Many of the GO Slim

terms were associated with skeletal muscle function and

development (regulation of epithelial cell differentiation, Fold

Enrichment (FE) = 18.38; myofibril assembly, FE = 8.36; muscle

tissue development, FE = 7.29) as well as metabolic processes

(glucose homeostasis, FE = 12.77; alpha–amino acid biosynthetic

process, FE = 5.80; triglyceride metabolic process, FE = 6.13; fatty

acid catabolic process, FE = 5.25). In addition, ribosome-related
Frontiers in Marine Science 05
processes were found enriched (maturation of small subunit

ribosomal RNA (SSU-rRNA) from tricistronic rRNA transcript,

FE = 6.57; ribosomal large subunit biogenesis, FE = 7.07), and

processes associated with cell death and clearance were enriched in

the set of transcripts (autophagy of mitochondrion, FE = 6.57). The

only identified, enriched GO Slim terms in the “Molecular

Function” category were involved in “catalytic activity” and

binding (snoRNA binding, transcription factor binding; Figure 1).

Furthermore, we sorted the transcripts by their FC (FClog2) and

annotated the 10 most highly expressed DETs in non-healthy

harbor porpoises compared with that in healthy porpoises

(Table 3). The most highly expressed transcript was TRIM63

(FClog2 = 5.65), a marker gene for muscle atrophy that, under

amino acid starvation, induces proteasomal degradation of muscle

protein (Rom & Reznick, 2016). Three transcripts were identified

with their main function in metabolism (SLC2A1, FClog2 = 4.83;

AMPD3, FClog2 = 4.40; CA7, FClog2 = 4.68). CA7 also has a role in

oxidative stress and gluconeogenesis (Monti et al., 2017; Di Fiore

et al., 2018). One transcript in endocytosis and monocyte adhesion

(SORL1, FClog2 = 4.58), one transcript in ribosomal biogenesis

(RRS1, FClog2 = 4.50), and two transcripts were involved in

regeneration processes (CSRP3 , FClog2 = 4.43; LYPD3 ,

FClog2 = 4.47). Multiple transcripts (TNFRSF12A, FClog2 = 4.37;

GADD45G, FClog2 = 4.40) were associated with response to various

cell stressors.
Downregulated transcripts in non-healthy
harbor porpoise muscles are involved in
cell adhesion and cell organization

For the analysis of enriched terms within the lowly expressed

transcript set in muscles of non-healthy harbor porpoises compared

with that of healthy porpoises, only DETs with FClog2 ≤ −1, p-

valueFDR ≤ 0.05, and TPMnon-healthy ≥ 5 were considered (Table 4;

see Supplementary data). Here, we could identify development-

related biological processes (anatomical structure development, FE
FIGURE 1

Panther analysis of the upregulated differentially expressed transcripts (DETs). Only DETs with the applied cutoffs fold change (FClog2) ≥ 1, FDR-
corrected p-value (p-valueFDR) ≤ 0.05, and transcripts per million (TPMnon-healthy) ≥ 5 were considered for the analysis, resulting in 739 transcripts.
Presented are the top 10 significantly upregulated terms of the GO Slim categories “Biological Processes”, “Molecular Function”, “Cellular
Component”, and “Pathways” with fold enrichment and number of genes.
TABLE 2 Mapping and alignment of the individual harbor porpoise
muscle transcriptomes.

Pph Mapped
(percent)

Aligned
(percent)

Aligned (million
reads)

23771 72.94% 41.2% 10.2

24548 71.44% 41.5% 9.0

24876 63.16% 36.3% 5.3

26079 60.60% 34.6% 7.0
Mapping and alignment are shown as percentage of the reference genome (Bottlenose
dolphin) and the alignment additionally in million reads.
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= −2.48) and molecular functions associated with adhesion and

binding (collagen binding, FE = −40.85; actin binding, FE = −4.93)

significantly less enriched in muscles of non-healthy harbor

porpoises compared with those of healthy porpoises (Figure 2).

The top 10 downregulated DETs were also further examined

(Table 4). Within the lowest expressed transcripts in muscles of

non-healthy harbor porpoises compared with those of healthy

animals, the least expressed transcript was UCP3 (FClog2 = −4.60).

It is primarily expressed in skeletal muscle and protects from lipid-

induced oxidative stress in mitochondria. One transcript involved

in neural regeneration (NREP, FClog2 = −3.94) was found less

expressed. Several transcripts that are associated with extracellular

matrix organization and remodeling and membrane structure

(COL1A2, FClog2 = −3.88; COL1A1, FClog2 = −3.71; TMOD4,

FClog2 = −2.89) were among the top 10 downregulated DETs.

CA3 (FClog2 = −2.98), an isoform of CA7, was identified and also

catalyzes the hydration of carbon dioxide, although with a lower

efficiency than CA7 (Monti et al., 2017). ANGPTL1 (FClog2 = −2.74)

showed a low expression and is the only known vascular

endothelium growth factor. One pro-apoptotic (G0S2, FClog2 =

−2.74), one anti-proliferative transcript interacting with retinoid

acid (RXRG, FClog2 = −2.80), and one involved in cartilage

scaffolding and insulin signaling (CILP, FClog2 = −2.58) were

identified among the lowest expressed transcripts.

Moreover, important transcripts involved in gluconeogenesis and

glycolytic metabolism were found differentially expressed in the

filtered set of highly and less expressed transcripts (Figure 3; see

Supplementary data). Upregulated transcripts played key roles in
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catalyzation of acetyl-coA (ACSS1, FClog2 = 1.10), production of

glucose from lactate (PCK2, FClog2 = 2.39), and initiation of the first

step of the glucose metabolism (HK2, FClog2 = 1.90). Downregulated

transcripts were involved in regulation of gluconeogenesis (FBP2,

FClog2 = −1.78), glycolytic production of ATP (PGK1, FClog2 = −1.40),

breakdown and synthesis of glucose (PGM1, FClog2 = −1.64), or key

steps of glycolysis (ALDOA, FClog2 = −1.52).
Verification of transcriptome analysis in
qRT-PCR of selected candidate genes

Because of the limited sample set of 2 per group for the

transcriptome analysis, we verified the differential gene expression

results by qRT-PCR in additional muscle samples of non-healthy

and healthy harbor porpoises. A total of 18 candidate genes were

chosen on the basis of differences in expression between the two

conditions (upregulation): abundance of transcripts and

involvement in GO Sl im “Biologica l Process” terms

(Supplementary Table 3). Only upregulated and higher expressed

transcripts were considered as candidate genes as they are likely

involved in the active response to the possible lack of oxyen and

resulting negative consequences. For the normalization of the qRT-

PCR data, we tested three reference genes, namely, RPLP1, RPLP0,

and EF2, of which RPLP1 was the most stable reference gene and

selected for normalization. In addition, few of the candidate genes

have been mentioned in other whale or seal studies, hinting at a

possible aquatic adaptation in marine mammals but have not been
TABLE 3 Top 10 of the differentially expressed transcripts with the highest fold change in the muscles of non-healthy harbor porpoises compared
with that in the muscles of healthy harbor porpoises.

Gene ID Transcript Name FClog2
p-

valueFDR
TPM non-
healthy

TPM
healthy Function

TRIM63
Tripartite Motif Containing
63

5.65
1.73 ×
10−37

2807.07 45.53
Regulates the proteasomal degradation of muscle proteins under
amino acid starvation

SLC3A1
Solute Carrier Family 3
Member 1

4.83
9.10 ×
10−21

32.26 0.84
Membrane glycoprotein involved in neutral and basic amino
acid transport

CA7 Carbonic Anhydrase 7 4.68
4.42 ×
10−14

27.09 0.64
Zinc metalloenzyme that catalyzes the reversible hydration of
carbon dioxide

SORL1 Sortilin Related Receptor 1 4.58
6.46 ×
10−13

7.30 0.19
Plays role in endocytosis and sorting, promotes adhesion of
monocytes

RRS1
Ribosome Biogenesis
Regulator 1 Homolog

4.50
4.22 ×
10−17

60.91 2.08
Enables 5S rRNA binding activity and involved in mitotic
metaphase plate congression

LYPD3
LY6/PLAUR Domain
Containing 3

4.47
4.34 ×
10−16

109.69 3.91 Supports cell migration

CSRP3
Cysteine and glycine-rich
protein 3

4.43
9.57 ×
10−19

977.57 38.66 Regulator of myogenesis

AMPD3
Adenosine Monophosphate
Deaminase 3

4.40
3.17 ×
10−18

19.26 0.72 AMP deaminase with a role in energy metabolism

GADD45G
Growth Arrest And DNA
Damage Inducible Gamma

4.40
2.80 ×
10−19

499.80 20.45
Involved in the regulation of growth and apoptosis and
response to environmental stresses

TNFRSF12A
TNF Receptor Superfamily
Member 12A

4.37
1.17 ×
10−20

361.56 14.67
Positive regulation of extrinsic apoptotic signaling pathway and
regulation of wound healing, promotes angiogenesis
Logarithmic fold change (FClog2), FDR-corrected p-value, and mean expression in transcripts per million (TPM) in non-healthy and healthy harbor porpoises and gene function are presented.
For the description of functions, the database GeneCards version 5.14.0 was used.
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examined in more detail (FOSL1,GADD45G,GLUL,HIPK2, IGFR1,

NPY, PCK2, SIK1, TOLLIP, and TNFRSF12A). Of the chosen

candidate genes, one could not be verified in qRT-PCR

(TNFRSF12A). Because of a high content of Guanine/Cytosine

(GC) and a high number of repetitive bases, it was not possible to

generate an adequate primer pair. All candidate genes that were

found upregulated in the RNA-Seq also had a higher relative FC

(rel. FC) in non-healthy harbor porpoises in the qRT-PCRs

(Figure 4; see Supplementary data).
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We could confirm upregulation of transcripts involved in

oxidative stress response and antioxidant defense in muscles of

non-healthy harbor porpoises (HIPK2, mean rel. FCnon-healthy =

14.60; CTH, mean rel. FCnon-healthy = 10.05; GADD45G, mean rel.

FCnon-healthy = 36.93; MAFF, mean rel. FCnon-healthy = 13.86) of

which two also possess antimicrobial properties (NPY, mean rel.

FCnon-healthy = 17.23; TOLLIP, mean rel. FCnon-healthy = 12.34).

Muscles of non-healthy harbor porpoises were confirmed to

express higher degradation-associated genes (TRIM63, mean rel.
FIGURE 2

Panther analysis of the downregulated differentially expressed transcripts (DETs). Only DETs with the applied cutoffs fold change (FClog2) ≤ −1, FDR-
corrected p-value (p-valueFDR) ≤ 0.05, and transcripts per million (TPMnon-healthy) ≥ 5 were considered for the analysis, comprising 194 genes.
Presented are the top 10 significantly upregulated terms of the GO Slim categories “Biological Processes”, “Molecular Function”, “Cellular
Component”, and “Pathways” with fold enrichment and number of genes.
TABLE 4 Top 10 of the differentially expressed transcripts with the lowest fold change in the muscles of non-healthy harbor porpoises compared
with that in the muscles of healthy harbor porpoises.

Gene ID Transcript Name FClog2
p-

valueFDR
TPM non-
healthy

TPM
healthy Function

UCP3 Uncoupling Protein 3 −4.60
3.54 ×
10−18

16.85 596
Primarily expressed in skeletal muscle, protects mitochondria
against lipid-induced oxidative stress

NREP
Neuronal Regeneration
Related Protein

−3.94
1.18 ×
10−13

8.95 190.54 Involved in neural regeneration

COL1A2
Collagen Type I Alpha 2
Chain

−3.88
5.81 ×
10−26

17.16 316.29 Fibril-forming collagen in most connective tissues

COL1A1
Collagen Type I Alpha 1
Chain

−3.71
1.60 ×
10−21

12.63 208.81 Fibril-forming collagen in most connective tissues

CA3 Carbonic Anhydrase 3 −2.98
4.15 ×
10−12

109.02 1032.67 Catalyze the reversible hydration of carbon dioxide

TMOD4 Tropomodulin 4 −2.89
2.65 ×
10−09

63.53 648.99
Actin filament organization, muscle contraction, and myofibril
assembly

RXRG
Retinoid Receptor
Gamma X

−2.79
4.73 ×
10−07

10.50 90.65 Mediates antiproliferative effects of retinoic acid

ANGPTL1 Angiopoietin Like 1 −2.74
1.97 ×
10−08

8.70 71.08 Growth factor largely specific for vascular endothelium

G0S2 G0/G1 Switch 2 −2.74
2.00 ×
10−05

42.09 374.66 Positive regulation of extrinsic apoptotic signaling pathway

CILP
Cartilage Intermediate
Layer Protein

−2.58
1.66 ×
10−09

7.98 57.68 Cartilage scaffolding
Logarithmic fold change (FClog2), FDR-corrected p-value, and mean expression in transcripts per million (TPM) in non-healthy and healthy harbor porpoises and gene function are presented.
For the description of functions, the database GeneCards version 5.14.0 was used.
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FCnon-healthy = 116.88; SQSTM1, mean rel. FCnon-healthy = 15.67).

Multiple candidate genes with a role in muscle regeneration and

development were also found highly expressed in non-healthy

harbor porpoises compared with that in healthy individuals

(CSRP3, mean rel. FCnon-healthy = 1.22; ANKRD2, mean rel. FCnon-

healthy = 14.69; SIK1, mean rel. FCnon-healthy = 10.93; FOSL1, mean

rel. FCnon-healthy = 60.64). We lastly tested candidate genes with a

role in anaerobic and lipid metabolism in a larger subset of samples.

Upregulation of transcripts involved in gluconeogenesis and

glycolysis (CA7, mean rel. FCnon-healthy = 48.58; PCK2, mean rel.

FCnon-healthy = 7.36;HK2, mean rel. FCnon-healthy = 3.23), amino acid
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metabolism (GLUL, mean rel. FCnon-healthy = 23.37), and fatty acid

metabolic pathways (IGF1R, mean rel. FCnon-healthy = 5.95; CA7)

could be confirmed in qRT-PCR. The gene expression varied

strongly between the single individuals for most analyzed

candidate genes (Figure 4). The highest interindividual variation

was found for TRIM63 (rel. FC max = 815.48, rel. FC min = 0.56),

FOSL1 (rel. FC max = 410.41, rel. FC min = 0.18), CA7 (rel. FC max

= 171.86, rel. FC min = 0.18), and GADD45G (rel. FC max = 171.29,

rel. FC min = 0.69), whereas the gene expression of CSRP3 was the

most homogeneous among the non-healthy harbor porpoises (rel.

FC max = 3.60, rel. FC min = 0.04).
FIGURE 3

Glycolysis/gluconeogenesis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of the human (hsa00010). Marked in orange are identified
upregulated DETs in muscles of non-healthy harbor porpoises (2.7.1.1, HK2; 4.1.1.32, PCK2; 6.2.11, ACSS1), and marked in violet are here identified
downregulated DETs (5.4.2.2, PGM1; 3.1.3.11, FBP2; 4.1.2.13, ALDOA; 2.7.2.3, PGK1). The green colored genes stand for identified genes of the
pathway in the human.
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Discussion

Harbor porpoises from the North and Baltic Seas show a higher

level of parasitic infections and associated lesions in the respiratory

tract compared with porpoises from Arctic waters (Wünschmann

et al., 2001; Siebert et al., 2006; Siebert et al., 2020). This may lead to

an impaired oxygen uptake and available oxygen for high energy-

and oxygen-consuming organs such as the brain, heart, and

muscles. The skeletal musculature is especially essential for the

fully-aquatic living marine mammals. They not only enable

locomotion and diving ability but also play an important role in

oxygen and nutrient storage in cetaceans. To analyze whether and

how muscles are affected, we generated transcriptomes of the

muscles from two non-healthy harbor porpoises and compared

them with the muscle transcriptomes of healthy porpoises. We

performed GO analyses and identified significantly differentially

regulated transcripts in non-healthy animals. Last, we selected a set

of 18 transcripts as candidate genes for verification of the results of

the RNA-Seq in a larger subset of samples and for further analyses.
Enhanced transcripts involved in response
to oxidative stress but not to hypoxia in
muscles of non-healthy porpoises

The skeletal musculature is necessary for locomotion and

consumes large amounts of energy and oxygen, which is taken up

and distributed from the lungs. We hypothesized that the observed

lung damages of the harbor porpoises reduce oxygen uptake and

supply to the muscles and thus cause hypoxic conditions in the
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tissue. Contrarily to this, we could not find a defined response to

hypoxia. We found transcripts (NPY) upregulated in non-healthy

harbor porpoises that are assumed to enhance tissue perfusion

(Mirman et al., 2020) and thus may help secure adequate oxygen

distribution in the tissue and alleviate possible hypoxic states. In

non-healthy harbor porpoises, we confirmed an elevated oxidative

stress response (HIPK2, GADD45G, MAFF, CTH, and SLC3A1;

Figures 1, 4; Table 3; Supplementary Table 3). Oxidative stress not

only can be induced by free radicals such as ROS and xenobiotics

but also form naturally during metabolic processes (Sies & Jones,

2020; Sies et al., 2022). Excessive concentrations of ROS can lead to

apoptosis (Sies & Jones, 2020). HIPK2 is thought to act as a

transcriptional switch, deciding between apoptosis or survival of

the cell (de la Vega et al., 2012) and increases survival signaling

when overexpressed (Torrente et al., 2017; Li et al., 2018).

GADD45G, which can act as a stress sensor and is associated with

oxidative stress, was also upregulated in muscles of non-healthy

harbor porpoises, but has been found decreased in blubber of

Northern elephant seals after prolonged stress conditions

(Khudyakov et al., 2017; Turner et al., 2019). The opposite

regulation observed here may be due to different functions and,

hence, regulation in the respective tissues. Three highly expressed

transcripts in non-healthy harbor porpoises were associated with

synthesis or regulation of the antioxidant glutathione (MAFF, CTH,

and SLC3A1; Figure 1; Table 3; Supplementary Table 3). Whereas

MAFF regulates glutathione concentrations (Wang et al., 2020),

CTH and SLC3A1 are involved with the synthesis of glutathione by

maintaining levels of its precursors cystine and cysteine (McBean,

2017; Cha et al., 2018; Wu et al., 2020). Glutathione is an important

factor of the antioxidant defense by effectively clearing excessive
FIGURE 4

Boxplot with median of the relative gene expression of selected candidate genes in muscles of non-healthy harbor porpoises compared with that of
healthy animals. The gene expression of the individual non-healthy harbor porpoises is represented by the dots (n = 8). The vertical y-axis is
presented logarithmically due to the high inter-individual variation of the harbor porpoises. The fold changes (FClog2) of the RNA-Seq for each
transcript are indicated above.
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reactive oxygen or nitrogen species and xenobiotics (Wilhelm Filho

et al., 2002; Cantú-Medellıń et al., 2011; Garcıá-Castañeda et al.,

2017). Therefore, it may be more likely elevated due to high

oxidative stress in the tissue and, additionally, exposure to

pollutants of the porpoises (Sies & Jones, 2020). Glutathione can

exist in two states, namely, reduced (GSH) or oxidized (GSSG). The

ratio between GSH to GSSG can be used as indicator of oxidative

stress, with increased GSSG implying higher oxidative stress (Owen

& Butterfield, 2010), which should be considered for future studies.
Transcriptome analysis hints at enhanced
clearance and regeneration of muscle cells
in non-healthy harbor porpoises

Oxidative stress and hypoxia are known to induce muscle

atrophy by increasing proteolysis and inhibiting translation of

proteins (Lian et al., 2022). However, multiple studies indicate

that autophagy is indispensable for muscle recovery after injury,

for timely clearance of cell debris and after intense exercise (Call &

Nichenko, 2020; Xia et al., 2021). In muscles of non-healthy harbor

porpoises, we found processes and transcripts upregulated that are

associated with infections, degradation, and atrophic flux (Figure 1;

Table 3). Several transcripts (NPY and TOLLIP; Figure 4) with

antimicrobial properties were found (Mancia et al., 2012; Anderson

et al., 2022). Although it is not possible to determine the specific

cause, the upregulation may protect from an easily contractible,

secondary bacterial infection due to an impaired immune system or

act as a reaction to an already existing bacterial infection (Siebert

et al., 2001; Mancia et al., 2012). Still, the muscle function of

TOLLIP has not been fully described and remains partly hidden,

highlighting it as a possible novel adaptation for further research

(Boursereau et al., 2017). The qRT-PCR results (Figure 4) could

confirm high expression in non-healthy harbor porpoises of muscle

atrophy-associated transcript TRIM63 (Rom & Reznick, 2016;

Thoma & Lightfoot, 2018) and of SQSTM1, which may be

indicative of autophagic cargo flux (Puissant et al., 2012).

Together, these result hint at a high degradation rate of debris,

defective cells or misfolded proteins in non-healthy harbor

porpoises. Interestingly, we found elevated ribosome biogenesis

(RRS1, Table 3; “ribosomal large subunit biogenesis” and

“maturation of SSU-rRNA from tricistronic rRNA transcript”,

“snoRNA binding”, Figure 1), despite it being one of the first

inhibited processes upon injury, as it is highly energy-demanding

(Shah et al., 2013). Furthermore, we found enhanced regenerative

processes and confirmed elevated expression of associated

transcripts (CSRP3, ANKRD2, SORL1, FOSL1, and SIK1; Table 3;

Figure 4; see Supplementary data). Two highly expressed transcripts

were found to promote myogenesis (SIK1) and function as master

regulator of muscle function and development (CSRP3; Stewart

et al., 2013; Mutryn et al., 2015; Williams et al., 2021). CSRP3 can

also interact with Ankyrin Repeat Domains (ANKRD2 ,

Supplementary Table 3), which are transcriptional stress

responders and upregulated under oxidative stress (Belgrano

et al., 2011; Tsompanidis et al., 2016; Cenni et al., 2019). FOSL1,
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an early response gene that mediates muscle injury, has also been

found upregulated in the brain of hooded seals after reoxygenation

(Hoff et al., 2017), so it may support perfusion of the muscle tissue

and prevention of ROS. Although we could confirm elevated

degradation processes in muscles of non-healthy harbor

porpoises, we could also confirm unexpectedly enhanced

regeneration and development, which may point to an adaptive

mechanism in harbor porpoises. A precautionary high baseline

expression of transcripts involved in muscle regeneration and

development may ensure fast replacement of degraded cells,

support tissue function, and prevent tissue loss observed in other

mammals (Nixon et al., 2016; Yadava et al., 2016; Xia et al., 2021).

However, protein turnover is a very costly process, and, therefore,

its elevation may strongly affect the maintenance of the muscles and

overall energy balance of the porpoises.
Dysregulation of lipid and glucose
metabolism for high energy processes in
muscles of non-healthy harbor porpoises

Stress such as hypoxia and ROS can affect metabolism pathways

that have been continuously suggested for and investigated in

marine mammals (Fair & Becker, 2000; Horscroft & Murray,

2014; Khudyakov et al., 2015a). Whales rely heavily on

carbohydrate and lipid energy production, changing to aerobically

metabolized lipids as preferred energy source under stress and

reduced food uptake (Kanatous et al., 2008; Velten et al., 2013;

Chicco et al., 2014; Sierra et al., 2015). In muscles of non-healthy

harbor porpoises, we identified differently regulated lipid and

anaerobic metabolic pathways like “glucose homeostasis”,

“triglyceride metabolic process”, and “fatty acid catabolic process”

(Figure 1; Table 3). Transcripts indicating a dysregulation of glucose

and lipid metabolism were identified and confirmed in non-healthy

porpoises (AMPD3 and SQSTM1, Table 3; Supplementary Table 3;

Hong et al., 2017; Calvo-Garrido et al., 2019; Caspi et al., 2020). In

concert with this, we found Insulin like growth factor (IGF)

receptor IGF1R upregulated, which enhances survival and affects

lipid homeostasis (Houser et al., 2013; Li et al., 2022; O’Neill et al.,

2016). In addition, transcripts protecting from lipid-induced

oxidative injury were found downregulated in non-healthy harbor

porpoises (UPC3, Table 4), potentially hinting at a higher capacity

of aerobic lipid metabolism (Polasek et al., 2006; Burns et al., 2010).

Moreover, gluconeogenic transcripts were found downregulated,

whereas mostly glycolytic transcripts were found upregulated

(Figure 2). Interestingly, ALDOA, which can indicate glycolytic

metabolism rates (Hoff et al., 2017), was found downregulated

(Figure 3; Supplementary data). However, other metabolic rate-

limiting transcripts were confirmed to be highly expressed

(Figures 3, 4) and are also involved in production of glucose from

lactate (PCK2 and HK2, Figure 3; Champagne et al., 2012;

Nedvedova et al., 2018), in glutamate/glutamine synthesis, which

can be used for high energy processes (GLUL, see Supplementary

data; de Theije et al., 2018; Rogeri et al., 2020) and with a function in

lipogenesis and gluconeogenesis (CA7, Table 3; Supplementary
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data; Monti et al., 2017; Di Fiore et al., 2018). Although, CA7 is the

most efficient catalytic carbonic anhydrases, it is still one of the least

researched isoforms and has not been studied extensively in marine

mammals (Tower and Young, 1973; Chegwidden and Carter, 2000;

Yang et al., 2000; Cincinelli et al., 2011). A high reliance on

glycolysis has also been observed in marine mammals under

long-term stress (Champagne et al., 2012; Park et al., 2015;

Fabrizius et al., 2016; Tian et al., 2017; Torres-Velarde et al.,

2021), which may also be true in response to ROS stress and

maintenance of high energy functions such as translation and

regeneration of energy-consuming muscles observed in this study.
Conclusion

This study is the first describing the muscle transcriptomes of the

harbor porpoise. Here, we investigated the muscle transcriptomes of

two German harbor porpoises suffering from lesions in the

respiratory tract and bronchopneumonia and compared them with

muscle transcriptomes of healthy porpoises to analyze adaptations to

reduced oxygen levels. We could find hints at adaptations like a

possibly finely tuned switch between swift degradation of cell debris

or misfolded proteins and tissue regeneration. Glutathione-associated

transcripts have been found upregulated in muscles of the non-

healthy harbor porpoises and may point to a high reliance on this

antioxidative gene. Hints at a higher capacity for glycolysis and higher

reliance on lipid metabolism have been found in muscles of non-

healthy harbor porpoises. This may be utilized by the high-energy

consuming muscle to ensure additional highly consuming processes

like regeneration and translation. Our findings suggest that harbor

porpoises do not suffer from hypoxic conditions in the muscles

exacerbated by pathological lesions in the lung but may experience

elevated oxidative stress caused by excessive ROS. Although the

function of the identified transcripts has to be further analyzed in

future studies, this study presents an important step to better

understand the adaptations to stresses of cetaceans on a

molecular level.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

Ethical review and approval were not required for the study

since the investigated animals were collected once they were dead by

stranding or by-caught within the German stranding network. The

German stranding network conducts work such as collecting and
Frontiers in Marine Science 11
holding carcasses and samples from European protected species

following appropriate licenses from the relevant authorities.
Author contributions

ED, US, and AF conceived the research idea. US provided the

samples and additional data. ED and AF derived the experimental

procedure. ED performed the experiments and data analysis and

wrote the manuscript with input from all authors. All the authors

contributed to the article and approved the submitted version.
Funding

This work was partly supported by the EU Horizon SATURN

project, which has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 101006443. This Open Access publication was

funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) - 491094227 “Open Access Publication

Funding” and the University of Veterinary Medicine

Hanover, Foundation.
Acknowledgments

The authors thank the necropsy team at the ITAW who

sampled the harbor porpoises and collected and provided

additional data of the animals.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fmars.2023.1232305/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fmars.2023.1232305/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2023.1232305/full#supplementary-material
https://doi.org/10.3389/fmars.2023.1232305
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Dönmez et al. 10.3389/fmars.2023.1232305
References
Allen, K. N., and Vázquez-Medina, J. P. (2019). Natural tolerance to ischemia and
hypoxemia in diving mammals: a review. Front. Physiol. 10, 1199. doi: 10.3389/
fphys.2019.01199

Anderson, Z. T., Dawson, A. D., Slominski, A. T., and Harris, M. L. (2022). Current
insights into the role of neuropeptide Y in skin physiology and pathology. Front.
Endocrinol. 13. doi: 10.3389/fendo.2022.838434

Arregui, M., Singleton, E. M., Saavedra, P., Pabst, D. A., Moore, M. J., Sierra, E., et al.
(2021). Myoglobin concentration and oxygen stores in different functional muscle
groups from three small cetacean species. Animals 11 (2), 451. doi: 10.3390/
ani11020451

Belgrano, A., Rakicevic, L., Mittempergher, L., Campanaro, S., Martinelli, V. C.,
Mouly, V., et al. (2011). Multi-tasking role of the mechanosensing protein Ankrd2 in
the signaling network of striated muscle. PloS One 6 (10), e25519. doi: 10.1371/
journal.pone.0025519

Boursereau, R., Abou-Samra, M., Lecompte, S., Noel, L., and Brichard, S. M. (2017).
New targets to alleviate skeletal muscle inflammation: role of microRNAs regulated by
adiponectin. Sci. Rep. 7 (1), 43437. doi: 10.1038/srep43437

Burns, J. M., Skomp, N., Bishop, N., Lestyk, K., and Hammill, M. (2010).
Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles
from harp and hooded seals. J. Exp. Biol. 213 (5), 740–748. doi: 10.1242/jeb.037929

Call, J. A., and Nichenko, A. S. (2020). Autophagy: an essential but limited cellular
process for timely skeletal muscle recovery from injury. Autophagy 16 (7), 1344–1347.
doi: 10.1080/15548627.2020.1753000

Calvo-Garrido, J., Maffezzini, C., Schober, F. A., Clemente, P., Uhlin, E., Kele, M.,
et al. (2019). SQSTM1/p62-directed metabolic reprogramming is essential for
normal neurodifferentiation. Stem Cell Rep. 12 (4), 696–711. doi: 10.1016/
j.stemcr.2019.01.023
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