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Subantarctic pCO2 estimated
from a biogeochemical float:
comparison with moored
observations reinforces the
importance of spatial and
temporal variability
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Understanding the size and future changes of natural ocean carbon sinks is

critical for the projection of atmospheric CO2 levels. The magnitude of the

Southern Ocean carbon flux has varied significantly over past decades but

mechanisms behind this variability are still under debate. While high accuracy

observations, e.g. from ships and moored platforms, are important to improve

models they are limited through space and time. Observations from autonomous

platforms with emerging biogeochemical capabilities, e.g. profiling floats,

provide greater spatial and temporal coverage. However, the absolute

accuracy of CO2 partial pressure (pCO2) derived from float pH sensors is not

well constrained. Here we capitalize on data collected for over a year by a

biogeochemical Argo float near the Southern Ocean Time Series observatory to

evaluate the accuracy of pCO2 estimates from floats beyond the initial in water

comparisons at deployment. A latitudinal gradient of increasing pCO2 southward

and spatial variability contributed to observed discrepancies. Comparisons

between float estimated pCO2 and mooring observations were therefore

restricted by temperature and potential density criteria (~ 7 µatm difference)

and distance (1° latitude and longitude, ~ 11 µatm difference). By utilizing high

quality moored and shipboard underway pCO2 observations, and estimates from

CTD casts, we therefore found that over a year, differences in pCO2 between

platforms were within tolerable uncertainties. Continued validation efforts, using

measurements with known and sufficient accuracy, are vital in the continued

assessment of float-based pCO2 estimates, especially in a highly dynamic region

such as the subantarctic zone of the Southern Ocean.
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CO2 partial pressure, BGC Argo float, mooring, Southern Ocean, carbon flux, absolute
accuracy estimate
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1 Introduction

With the unabated continuation of anthropogenic carbon

emissions, understanding the magnitude and variability of natural

carbon sinks is of critical importance for the projection of

atmospheric CO2 levels (Crisp et al., 2022). While the global

oceans sequester approximately 25% of total CO2 emissions every

year (Sabine et al., 2004; Gruber et al., 2019; Friedlingstein et al.,

2022), the Southern Ocean plays a disproportionately important

role in this uptake, with some estimates as high as 50% over the past

125 years (Froehlicher et al., 2015; Le Quéré et al., 2018). In the

Southern Ocean south of 35˚S, deep waters rich in dissolved

inorganic carbon (DIC) and macronutrients upwell to the surface

(Lumpkin and Speer, 2007; Marshall and Speer, 2012), stimulating

both a natural release of CO2 into the atmosphere through air-sea

exchange, and an uptake of carbon through enhanced primary

productivity (Gruber et al., 2009). The net magnitude of the carbon

flux has varied significantly over the past decades (Landschützer

et al., 2015; Lovenduski et al., 2015; Ritter et al., 2017; Keppler and

Landschützer, 2019). Additionally, the strength in the different

mechanisms driving this variability remains under debate, with

each being influenced by a number of factors and external forcing,

including changing wind patterns and upwelling intensities as well

as changes in temperature, ocean circulation, and primary

productivity (Gruber et al., 2019; McKinley et al., 2020; Wright

et al., 2022).

High-quality carbon system observations are important to help

improve models and track efforts to reduce anthropogenic carbon

emissions. The highest quality CO2 partial pressure (pCO2)

observations come from direct ship-based measurements that are

calibrated in situ with CO2 reference gases (≤ 0.5% μatm

uncertainty). Similar methods are also used on Uncrewed Surface

Vehicles (USVs), sailboats (Landschützer et al., 2023) and surface

buoys (0.5% μatm uncertainty). Seawater pCO2 calculated from

discrete CTD water sample DIC and total alkalinity (TA) have

slightly lower quality (~ 3% uncertainty). However, all

aforementioned high-accuracy observations are limited in time

and space, and are particularly scarce for the winter season in the

Southern Ocean (Bakker et al., 2016). Observations from moored

platforms can provide high accuracy data year-round but are

limited spatially (Sutton et al., 2014a). Observations from

autonomous platforms, such as USVs (Sabine et al., 2020; Sutton

et al., 2021) or profiling floats (Gray et al., 2018; Sutton et al., 2021),

provide greater spatial and temporal coverage. However, the

accuracy of pCO2 derived from pH sensors on biogeochemical

(BGC) Argo floats, is not well constrained. The uncertainty

assessment described in Williams et al. (2017) suggests a relative

uncertainty in float-based pCO2 of 2.7%, yet direct validation was

limited to underway ship data taken at the time offloat deployment.

Assessments spanning the lifetime of a float are often made by

comparing float-based pH data at depth to climatologies rather than

continuous in-situ measurements over extended periods of time

(Maurer et al., 2021). Comparisons between float based pCO2

estimates and high accuracy observations beyond the time of

deployment are limited by the rare overlap between float
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locations and shipboard or moored observations, such as floats

passing by Time Series sites, e.g. the Drake Passage (Fay et al., 2018).

The Southern Ocean Time Series (SOTS), a part of Australia’s

Integrated Marine Observing System (IMOS), provides high

accuracy, direct pCO2 observations from annually serviced

Southern Ocean Flux Station (SOFS) moorings in the Indian

sector of the subantarctic Zone (SAZ) southwest of Tasmania,

(~47˚S, 142˚E, Figure 1). The SAZ is an important region of the

Southern Ocean, where deep winter mixing to >400m (Rintoul and

Trull, 2001) replenishes surface nutrients and, via the formation of

Subantarctic Mode Water, supplies the subsurface southern

hemisphere subtropical gyre with nutrients and oxygen

(Sarmiento et al., 2004; Rintoul, 2006; Helm et al., 2011). This

subduction of surface waters and the anthropogenic carbon they

have sequestered, is a key process in the removal of anthropogenic

carbon from the atmosphere for timescales that are meaningful in

the context of human-induced climate change and mitigation

(Langlais et al., 2017).

During the Southern Ocean Large Areal Carbon Export

(SOLACE) voyage in 2020 (Ellwood et al., 2021) a BGC Argo

float, equipped with a pH sensor (Sea-Bird Scientific SeaFET), was

deployed within 40km of the SOTS site. For over a year this float

drifted within an area between -46 to -51˚S and 140 to 145˚E

(Figure 1), providing the unique opportunity to repeatedly compare

high-accuracy in-situ mooring pCO2 measurements with pCO2

derived from float pH sensor data.

We will first compare float pH data and derived parameters

such as TA and pCO2 to other platforms, investigate sources of

uncertainty and then discuss reasons for any disagreement

between platforms.
2 Materials and methods

2.1 BGC Argo float data

BGC Argo float 5906623 was deployed in December 2020

during SOLACE voyage IN2020_V08 on the RV Investigator

(https://mnf.csiro.au/en/Voyages/IN2020_V08). Due to the

science objectives of this voyage the float was programmed with a

non-standard sampling schedule at the start of its mission. This

meant that for the first 5 months, deep cycles (to ~2000m) were

interspersed with a set of shallow profiles (to 500m and 12h later to

1000m) every 2 days. This reduced the deep profile sampling

frequency from the usual 10 days to between 11 and 15 days,

with no deep profiles between 3 Feb 2021 and 4 March 2021.

A similar sampling schedule was re-instated in October 2021 to

April 2022, with 12-hourly shallow profile sampling interspersed

between deep profiles and only one deep profile between 21 October

2021 and 16 December 2021.

For float pCO2 and air-sea flux calculations we used the delayed

mode qua l i t y - cont ro l l ed (QC) da ta (Argo var i ab l e

PH_IN_SITU_ADJUSTED, pHadj) as available from the Argo

Global Data Assembly Center (GDAC). Delayed-mode quality

control (DMQC) adjustment of float pH was performed at the
frontiersin.org
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Australian BGC Argo facility and followed Maurer et al. (2021)

using reference estimates calculated from LIPHRv2 equation 7 at

1500m depth. Although there were discrete timeframes for which

data at this depth was not available, using an alternate reference

depth throughout these periods was not advised due to the greater

uncertainty in reference estimates at shallower depth (Carter et al.,

2018). Additionally, the longest period for which profiles did not

reach QC depth was 32 days, with each period bounded on either

side by deep profiles, providing anchors for DMQC assessment.

Furthermore, erratic sensor drift during short time frames would be

uncharacteristic of pH sensor behavior, so use of deep profiles at the

frequency available was deemed sufficient in the DMQC process.

For float TA estimates (TAPF, where PF stands for profiling float

and is added to all float related parameters) we used the Locally

Interpolated Alkalinity Regression (LIARv2) as described in Carter

et al. (2018), which uses adjusted values of temperature, salinity

(psal) and dissolved oxygen to estimate total alkalinity. Quality

control of these parameters followed currently available best

practice as outlined in Maurer et al. (2021). If pCO2 is calculated

from pH and TA, it differs from results based on DIC and TA

samples and direct pCO2 measurements. This is due to a difference

between pH measured spectrophotometrically and pH calculated

from DIC and TA (Carter et al., 2013; Williams et al., 2017).

Therefore, before profiling float-based pCO2 estimates (pCO2
PF)

can be compared to mooring observations, a bias correction was

applied to each profile, as per Williams et al. (2017):

pHadj corr   =  pHadj   − 0:034529   *   pH1500m,  25˚C,  0dbar   +   0:26709

Where pH1500m, 25˚C, 0dbar is the pHadj at 1500m (the standard

QC reference depth), adjusted to 25˚C and 0dbar. Note that
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application of this bias correction is in line with the current

operational procedure for calculating pCO2 from floats with

SOCCOM and GO-BGC arrays (Riser et al., 2023).

The Matlab script CO2SYSv3.1.1 (Lewis and Wallace, 1998; van

Heuven et al., 2011; Sharp et al., 2021) was used to calculate pCO2
PF

from float measured pHadj corr and float estimated TAPF, with

dissociation constants of carbonate by Lueker et al. (2000), of

fluoride from Perez and Fraga (1987), of sulphate from Dickson

(1990) and the boron to salinity ratio by Lee et al. (2010). Silicate

and phosphate concentration was taken from WOA18 annual

averages as 2.5 μmol kg-1 and 0.9 μmol kg-1, respectively. NH4

was set to 2 μmol kg-1 and H2S to 0 μmol kg-1. Orr et al. (2018)

found combined uncertainties in carbon system parameter

estimates to be largely driven by uncertainties in dissociation

constants. We therefore tried the most commonly used K1 and K2

constants by Lueker et al. (2000), as well as more recently refined

constants by Schockman and Byrne (2021), which are

experimentally determined with spectrophotometric methods and

evaluated with shipboard and laboratory data.

For air-sea flux calculations (FCO2
PF) we averaged the top 20m

of each profile (Gray et al., 2018).

Air-sea fluxes were calculated as follows:

FCO2 = k  a  DpCO2 (2)

where k is the gas transfer velocity, scaled according to Fay et al.

(2021) to account for the fact that we use ERA5 windspeeds, a is the

coefficient of CO2 solubility according to Weiss (1974) and DpCO2

is the gradient between seawater pCO2 and atmospheric pCO2 such

that negative FCO2 indicates CO2 uptake by the ocean and positive

FCO2 indicates outgassing.
FIGURE 1

SOFS mooring (red * SOFS-9 deployed 31 August 2020, blue dot SOFS-10 deployed 20 April 2021) locations and BGC Argo float track (red line). The
black diamond marks the deployment position of the float, the black star marks the last profile included in this study. Climatological mean frontal
positions (Orsi et al., 1995) are indicated by the thick black lines, Subtropical Front (STF), Subantarctic Front (SAF). The background colormap shows
SST (illustrated for January 2021) as estimated from satellite remote sensing (Ocean Productivity [oregonstate.edu)].
frontiersin.org

oregonstate.edu
https://doi.org/10.3389/fmars.2023.1231953
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wynn-Edwards et al. 10.3389/fmars.2023.1231953
Atmospheric pCO2 data (pCO2
PF_air) for the float location and

profile times were calculated from mole fractions of CO2 in dry air

(xCO2) from the CSIRO Oceans and Atmosphere and the

Australian Bureau of Meteorology Kennaook/Cape Grim Baseline

Air Pollution Station in Tasmania, Australia (https://

capegrim.csiro.au/). The monthly data were interpolated on daily

timesteps using piecewise cubic Hermite polynomials (Gray et al.,

2018). Hourly windspeed and mean sea level pressure data from the

ERA5 reanalysis product (0.25˚ gridded data, Hersbach et al., 2018)

were subset to the nearest space coordinate of each float profile and

interpolated on minute timesteps to the time of the float profile

using piecewise cubic Hermite polynomials. Float seawater

temperature and salinity together with ERA5 mean sea level

pressure were used to calculate atmospheric pCO2 from

atmospheric xCO2 following the method of Zeebe and Wolf-

Gladrow (2001). For annual flux (FCO2
PF) calculations, pCO2

PF

data were interpolated on daily timesteps using piecewise cubic

Hermite polynomials (Gray et al., 2018) and then integrated for the

calendar year 2021. Where more than one profile existed per day,

the results were averaged for daily fluxes.
2.2 SOFS mooring sensor data and
quality control

The SOFS mooring is recovered, and a new mooring deployed

once a year from research voyages on RV Investigator, and mooring

named sequentially (for more details refer to annual reports Wynn-

Edwards et al., 2019; Wynn-Edwards et al., 2022). This study covers

data from SOFS-9 (deployed 31 August 2020, recovered 25 April

2021) and SOFS-10 (deployed 20 April 2021, recovered 13 May

2022). Mooring seawater and atmospheric pCO2 (from here on

called pCO2
M and pCO2

M_air, respectively, where M stands for

mooring and is added to all mooring related parameters) were

measured by a Moored Autonomous pCO2 System (MAPCO2)

mounted on the surface buoy with an estimated uncertainty of< ± 2

μatm for seawater and< ± 1 μatm for air (Sutton et al., 2014a; Sutton

et al., 2019, Table 1). The system uses an equilibration-based

method and measures xCO2 with a nondispersive infrared gas

analyzer (LI-COR LI-820), which is calibrated prior to each
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measurement with a CO2 reference gas standard (Sutton et al.,

2014a). Seawater temperature and salinity were measured at 1m and

30m by Sea-Bird Electronics SBE37 MicroCAT sensors and quality-

controlled following (Jansen et al., 2020; Jansen et al., 2023). Salinity

and temperature data were gridded to UTC hour by averaging all

values of equal depth within 30 minutes of the hour (Jansen et al.,

2022). Hourly windspeed data were measured by a Woods Hole

Oceanographic Institution ASIMET Sonic Wind Module (Schulz

et al., 2012) and paired with the nearest (<10min) three-hourly

pCO2 measurements. Data gaps in the windspeed record of less than

6 hours were interpolated on hourly timesteps using piecewise cubic

Hermite polynomials. Data gaps of more than 6 hours were filled

with ERA5 hourly data on single levels (Hersbach et al., 2018). The

ERA5 wind speed product was chosen due to its high temporal

(hourly) and spatial resolution (0.25˚ x 0.25˚) and the availability of

data for the time period of interest. For the calendar year 2021, the

time period for which we calculated air-sea fluxes, the mean

difference between mooring and ERA5 windspeeds was 0.27 ms-1

(± 1.09).

Air-sea fluxes were calculated per equation (2) and mooring air-

sea fluxes are from here on called FCO2
M. For annual flux

calculations, daily averaged fluxes were integrated for the calendar

year of 2021.

In late April 2021, there was a four day overlap in

measurements between SOFS-9 and SOFS-10 sensors, while both

moorings were in the water between recovery and deployment

(Figure S1). Measurements of pCO2
M and calculated FCO2

M of

SOFS-9 and SOFS-10 were averaged for this period.

The SOFS moorings are S-tether designs that allow their surface

floats to move in large ‘watch circles’. When referring to the

mooring location in this manuscript, we refer to the GPS tracked

location of the surface buoy, as opposed to the anchor location of

the mooring.
2.3 Voyage data and mooring
water samples

During the time period of the two moorings discussed here, five

research voyages on RV Investigator visited and/or passed the SOTS
TABLE 1 Summary of float, mooring, ship underway system and CTD cast bottle measurement and combined uncertainties.

Summary of uncertainties

Seawater pCO2 [µatm] Mooring Float (pH, TA) CTD (DIC, TA) Ship underway

± 2 ± 11 (Williams et al., 2017)
± 22 (CO2SYS error estimate)

± 15 (CO2SYS error estimate) ± 2

xCO2 air
[µmol mol-1]

Mooring Ship underway

± 1 ± 0.1

pH Float

± 0.007 (Maurer et al., 2021)

TA [µmol kg-1] Mooring (salinity) Float (LIARv2) CTD

± 8 ± 8 ± 2
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site (for more information refer to Table S1). RV Investigator is

fitted with an automated underway pCO2 measurement system with

an accuracy of ± 2 μatm (Pierrot et al., 2009, Table 1). These data

(pCO2
UW) were used for comparison with pCO2

M measurements.

During the SOLACE and mooring deployment and recovery

voyages DIC and TA samples from CTD casts were collected and

analyzed coulometrically and with an (open cell) potentiometric

titration, respectively, following standard procedures (Dickson

et al., 2007). Regular collection of TA samples during SOTS

voyages allowed for the establishment of a robust relationship

between TA and salinity at the SOTS site. This linear relationship

was derived from samples collected in the upper 100m between

2010 and 2019 and has an error associated with the fit of ~ 8 μmol

kg-1 (Shadwick et al., 2020, Table 1).

TAM   ( μmol   kg−1) = 39:23*salinity + 937:3 (3)

The SOFS mooring surface float houses a modified McLane

Remote Access Sampler (RAS), which collects discrete seawater

samples at regular intervals. These samples are analyzed for TARAS

onshore once recovered. Details on quality assurance and QC of

these RAS data are published in Shadwick et al. (2020). CTD DIC

and TA sample results were used to calculate seawater pH (pHCTD)

with CO2SYS v3.1.1, as described for float data. The calculation of

pH from DIC and TA samples introduces an uncertainty that could

be avoided in future work if pH was measured directly.

RAS, CTD and mooring TA data were used for comparison to

the float estimates of TAPF. The pCO2
CTD from CTD samples were

calculated with CO2SYSv3.1.1 (Lewis and Wallace, 1998; van

Heuven et al., 2011; Sharp et al., 2021) with dissociation

constants and nutrient concentrations as outlined for

float calculations.
2.4 pCO2 and air sea flux comparisons
between float and mooring

For the most stringent comparison between mooring

observations and float estimates, we subsampled the higher

resolution mooring data with the following thresholds:
Fron
- mooring observations within two days of float profiles

- mooring temperature measurements at 1m and 30m both

within 0.3˚C of float temperature measurements averaged

over the top 20m

- mooring potential density (sigma theta0) at 1m and 30m both

within 0.03 kg m-3 of float potential density (sigma theta0)

averaged over the top 20m
These temperature and potential density thresholds are

indicative of well mixed water masses at SOTS (Weeding and

Trull, 2014; Shadwick et al., 2015; Jansen et al., 2020; Jansen

et al., 2023) and comparable to thresholds used widely for the

definition of mixed layer depth (de Boyer Montégut et al., 2004);

they are used here to limit the comparison to water masses of

similar physical properties. For an overall average seawater pCO2 of
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383 μatm (combining mooring and float data), this temperature

difference of 0.3°C would equate to a 5 μatm pCO2 difference

(Takahashi et al., 1993).

For the comparison between pCO2
M and pCO2

UW we used the

same temperature and potential density criteria but averaged

underway data 3h either side of mooring observations and

restricted voyage data to within 1° latitude and longitude of

mooring location.

To assess the potential influence of distance between mooring

and float on the difference in the pCO2 data (when restricted to

temperature and potential density thresholds) we used a model II

regression. This reflects the fact that both variables are not

controlled and that there is no a priori assumption that there is a

dependent variable. Model II regression calculations were

performed with the Matlab script lsqfitgm.m (Edward T Peltzer,

MBARI, https://www.mbari.org/products/research-software/

matlab-scripts-linear-regressions/).
3 Results

In the following sections we compare the individual parameters

(pH, TA, etc.) between all available platforms in the area before

addressing the main question of pCO2
PF accuracy. This will put the

uncertainties of float estimates and differences between pCO2
M and

pCO2
PF into context. We will provide uncertainty estimates where

available and list these and the results of all comparisons for easier

reference in Table 2.
3.1 Float pH vs pH calculated from DIC and
TA samples

Two CTD casts within 24h of the first three float profiles

indicate that pHadj corr compares well to pHCTD calculated from

discrete water samples of DIC and TA collected from the CTD

rosette (Figures S2, S4; Table 3). Only float profile data within 5m of

each Niskin bottle sample depth were used in the comparison.

The average difference between pHadj corr of the first profile (13

Dec) and pHCTD (12 Dec) in the upper 20m was 0.001 (± 0.0002).

The average difference over the full depth of the CTD cast, ~ 1000m,

was 0.003 (± 0.003). The CTD cast occurred within ~6km of the first

float profile. In doing the same comparison between the first profile

and a CTD a day later (13 Dec), the mean difference in pH for the

top 20m was 0.007 (± 0.0003) and 0.009 (± 0.006) for all samples

down to ~ 1000m. The distance between the second cast and the

float profile was about 7km (Figures S2, S3; Table 3).

The second and third float profiles occurred on 14 December, ~

roughly 12 hours apart. We compared these two float profiles to

CTD data from 13 December, as described above. For the second

float profile the mean difference in pH for the top 20m was 0.008 (±

0.0006) and 0.009 (± 0.007) for all samples down to ~ 850m, with a

distance of ~13km between float and CTD cast. For the third profile

the mean difference in pH for the top 20m was 0.009 (± 0.0005) and

0.010 (± 0.006) for all samples down to ~ 850m and a distance of ~

18km (Figures S4, S5; Table 3).
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3.2 Float TA comparisons

Since computing pCO2 from float pH measurements requires a

second carbon system parameter, i.e. TA, we also compared LIARv2

estimates of TAPF with TACTD from the two CTD casts within 24h

of the first three float profiles. We again compared CTD bottle data

to float profile data within 5m of each Niskin bottle sample depth.

The average difference in TAPF between the first float profile (13

Dec) minus TACTD (12 December) was 0.22 (± 0.64) μmol kg-1 for

the top 20m and -1.83 (± 1.93) μmol kg-1 for the entire cast to about

1000m. The CTD cast occurred within ~6km of the first float

profile. In doing the same comparison between the first profile and

CTD cast from 13th December, the mean difference in TA was 2.16

(± 0.51) μmol kg-1 for the top 20m and -2.24 (± 5.66) μmol kg-1 for

all samples down to ~ 1000m. The distance between the second cast

and the float profile was about 7km (Table 3).

The second and third float profiles occurred on the 14th of

December, roughly 12 hours apart. We compared these two float

profiles to CTD data from the 13 December, as described above. For
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the second float profile the mean difference in TA was 2.34 (± 0.62)

μmol kg-1 for the top 20m and -2.14 (± 5.68) μmol kg-1 for all

samples down to ~ 850m, with a distance of ~13km between float

and CTD cast. For the third profile the mean difference in TA was

2.32 (± 0.63) μmol kg-1 for the top 20m and -2.15 (± 6.01) μmol kg-1

for all samples down to ~ 850m and a distance of ~ 18km between

float and CTD cast (Table 3).

Sharp et al. (2021) included error estimates in their updated

CO2SYS Matlab script based on the error propagation analysis by

Orr et al. (2018), which calculated TAPF associated uncertainty of

about 8 μatm kg-1 (0.36%, Table 1). The uncertainty of TACTD and

TARAS is typically ± 2mmol kg-1 (95% confidence interval, Shadwick

et al., 2020, Table 1).

We also compared TAPF with TAM estimates and applied the

same rules as outlined in the Methods section to limit mooring

salinity data (1m and 30m sensors) and TAM estimates for our

comparison. Overall, the difference between TAM and TAPF was

0.11 ( ± 2.49) μmol kg-1 (Table 2), with a maximum difference of ~ 4

μmol kg-1. Only two RAS samples fell within the restrictions for this
TABLE 2 Summary of average parameter comparisons between float, mooring, ship underway system and CTD cast bottle samples. Also listed are
measurement and combined uncertainties.

Seawater pCO2 [µatm]

pCO2
M minus pCO2

PF pCO2
M minus

pCO2
UW

pCO2
M minus

pCO2
CTD

SOFS-9 minus SOFS-10
during overlap

-6.0 (± 11.82) (first 10 profiles,
within 1° latitude)
-3.4 (± 8.39) (whole float record,
within 1° latitude)
-11.1 (± 4.76) (temp, potential
density restriction, no spatial
restriction)
-7.0 (± 2.19) (temp, potential
density and within 1° lat and
lon restriction)

2.3 (± 3.93)
(temp, potential density
restriction)

-6.3 (± 4.46) 12.4 (± 3.45)

xCO2 air
[µmol mol-1]

Mooring minus Cape Grim

-0.9 (± 0.60)
(co-incident with temp,
potential density restriction)
-0.9 (± 0.61)
(2021 only)

pH Float minus CTD (DIC, TA)

0.007 (± 0.003) (deployment
CTDs only)

TA [µmol kg-1] TAPF minus TACTD TAM minus TAPF TAPF minus
TARAS

2.0 (± 0.91)
(deployment CTDs only)

-0.1 (± 2.49)
(temp, potential density
restriction)

0.9 and 2.5
(n=2)

Windspeed
[m s-1]

Mooring minus ERA5

-0.1 (± 1.92)
(co-incident with temp,
potential density restriction)
-0.3 (± 1.85)
(2021 only)

2021 Air-sea flux FCO2

[mol m-2 yr-1]
FCO2

M minus F_CO2
PF (ERA5

winds)
FCO2

M minus FCO2
PF

(mooring winds)

-0.8 -0.8
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comparison (23/6/2021 and 1/7/2021) and the difference between

TARAS samples and average TAPF estimates of the top 20m was 2.46

and 0.93 μmol kg-1, respectively.
3.3 Mooring SOFS-9 pCO2 vs
SOFS-10 pCO2

In late April 2021, there was a four day overlap between SOFS-9

and SOFS-10 with the moorings about 35km apart (Figures S1, S6).

The overlapping seawater temperature sensor data show that the

two moorings were exposed to different water masses in the top

~350m, with a temperature difference of about 4˚C and a salinity

difference of 0.83. While SOFS-10 was in warmer waters than SOFS-

9, it recorded on average seawater pCO2 of about 12.35 μatm (±

3.45) lower than SOFS-9 (Figure S6), indicating that the difference

in pCO2 was not due to temperature effects but likely due to

different water masses, likely warmer, saltier subtropical water,

with lower DIC (and thus lower pCO2; e.g. Pardo et al., 2019),

observed by SOFS-10.
3.4 Comparisons between float pCO2 and
mooring, CTD and underway pCO2

The mean difference between pCO2
M minus pCO2

CTD was -6.33

μatm (± 4.46, n=5 CTD samples, Table 2). The CTD casts for this

comparison were within<70km of the mooring. We also compared

pCO2
M with pCO2

UW measurements with the same temperature

and potential density criteria as described for pCO2 and air sea flux.
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The mean difference between pCO2
M with pCO2

UW across the five

voyages was 2.29 μatm (± 3.93) with a range of -8.03 μatm to 17.94

μatm (mostly within 60km, with some observations up to ~120km

apart, Table 2). Comparisons between the mooring pCO2 MAPCO2

sensor and the ship underway pCO2 system in the lab have shown

the two systems to be within 2 μatm of each other under ideal

conditions (pers. comm. Craig Neill).

Figure 2 shows that between Dec 2020 and May 2021, there

were times of close agreement between pCO2
M and pCO2

PF, but also

times of significant difference. The mean combined uncertainty for

pCO2
PF estimates based on the error propagation routine of the

CO2SYS package (Sharp et al., 2021) is 22 μatm (5.6%) for all

observations considered here. This assumes a temperature

uncertainty of 0.002°C, psal uncertainty of 0.01 (Gray et al.,

2018), and no assigned error for nutrients and errors associated

with dissociation constants after Orr et al. (2018). Alternatively, if

we are to apply a general uncertainty estimate of 2.7% for pCO2
PF as

outlined in Williams et al. (2017), which is based on a top-down

uncertainty analysis of float pCO2 estimates as compared to

shipboard underway measurements, this reduces the magnitude

of uncertainty to an average of 11 μatm throughout the period of

interest. For pCO2
PF, both error estimate approaches are displayed

in Figure 2 as uncertainty envelopes. The pCO2
M fall within the

bounds of uncertainty for pCO2
PF for the majority of the study

period, except for ~90 days in Jan to May 2022 and ~12 days in May

2022 for which they deviated beyond the uncertainty envelopes.

Over the entire study period the float drifted in an area of up to ~ 4°

Latitude and ~ 3° Longitude from the mooring location (Figure 1).

This equates to distances of up to ~ 414km, although over 83% of

profiles were within 300km of the mooring. If we restrict the
TABLE 3 pHadj corr, salinity (psal), temperature and TAPF comparisons to CTD bottle data.

CTD cast 12-Dec-2020 09:35 CTD cast 13-Dec-2020 21:02

Mean (± SD) for top 20m Mean (± SD) to~1000m Mean (± SD) for top 20m Mean (± SD) to~1000m

Profile 1, 13-Dec-2020 03:33

DpH 0.001 (± 0.0002) 0.003 (± 0.003) 0.007 (± 0.0003) 0.009 (± 0.0057)

Dpsal -0.02 (± 0.006) -0.02 (± 0.007) -0.02 (± 0.080) -0.05 (± 0.080)

Dtemp [° C] 0.11 (± 0.026) 0.07 (± 0.080) -0.00 (± 0.024) -0.15 (± 0.386)

DTA [μmol kg-1] 0.22 (± 0.64) -1.83 (± 1.93) 2.16 (± 0.51) -2.24 (± 5.66)

Profile 2, 14-Dec-2020 01:47

DpH 0.008 (± 0.0006) 0.009 (± 0.0066)

Dpsal -0.02 (± 0.001) -0.05 (± 0.078)

Dtemp [° C] 0.01 (± 0.001) -0.16 (± 0.377)

DTA [μmol kg-1] 2.34 (± 0.62) -2.14 (± 5.68)

Profile 3, 14-Dec-2020 13:45

DpH 0.009 (± 0.0005) 0.010 (± 0.0064)

Dpsal -0.02 (± 0.001) -0.06 (± 0.085)

Dtemp [° C] 0.01 (± 0.002) -0.23 (± 0.401)

DTA [μmol kg-1] 2.32 (± 0.63) -2.15 (± 6.01)
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comparison to only the first 10 profiles, within 1˚ latitude from the

mooring and use average pCO2
M 6 hours either side of the float

profile, then pCO2
PF estimates were 6.04 μtam (± 11.82) higher than

the average of pCO2
M. If we extend this to the whole float record

and compare mooring data within 6h of the float profiles when both

are within 1° latitude, the difference in pCO2
M minus pCO2

PF was

-3.4 μatm (± 8.39).

A recent uncertainty propagation estimate for the marine

carbon dioxide system by Orr et al. (2018) showed that

dissociation constants K1 and K2 contribute the most to the

combined standard uncertainty. Therefore we also calculated

pCO2
PF with those recently presented by Schockman and Byrne

(2021 ) wh i ch a r e expe r imen ta l l y de t e rmined w i th

spectrophotometric methods and evaluated with shipboard and

laboratory data. The pCO2
PF using the K1 and K2 constants by

Schockman and Byrne (2021) are ~4 μatm higher than those

calculated using constants by Lueker et al. (2000), increasing the

gap between pCO2
M and pCO2

PF further. To remain consistent with

other float-based pCO2 estimates available in this region and used

within other studies (Johnson et al., 2017; Gray et al., 2018; Johnson

et al., 2022), for the remainder of this work, we therefore focus on

calculations based on constants by Lueker et al. (2000) but note the

size of the uncertainty introduced by the different choices in K1 and

K2 constants. We also note that the application of the Williams et al.

(2017) bias correction reduces pCO2
PF estimates by ~5.9 μatm (±

0.29) over the entire float record, or in other words, without the

application of said bias correction the gap between pCO2
M and

pCO2
PF would be larger.
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The comparison between the overlapping SOFS-9 and SOFS-10

at close proximity (~35km) shows that limiting comparisons by

distance alone may not be enough. We therefore used temperature

and potential density as criteria for comparable water masses. Of

the 242 float profiles that occurred during the time covered in this

study, only 27 profiles passed the temperature and potential density

criteria outlined in the Methods section, highlighting the great

spatial variability in seawater properties in this region. Considering

only the subset of data that passed these criteria, pCO2
PF was always

higher than pCO2
M (overall mean difference of -11.06 μatm ± 4.76,

Table S2). This was most noticeable for the winter period of 2021

(grey shading Figure 2A). Application of the Takahashi temperature

correction (Takahashi et al., 1993) before comparing pCO2
PF to

pCO2
M for this subset of data makes little difference to the average

discrepancy (– 11.17 μatm ± 7.74). Diurnal variations in pCO2

could contribute to the discrepancy between pCO2
PF and pCO2

M

comparisons when averaging pCO2
M either side of float profile

times. A comparison with mooring observations 2 days either side

of the float profile averages this diurnal signal and therefore has an

overall small effect on the comparisons. We also calculated the

overall mean difference between pCO2
M and pCO2

PF estimate with

the same temperature and potential density criteria, but 6 hour

(-10.48 μatm ± 3.95) and 3h (-9.92 μatm ± 4.04) either side of the

float profile and note that this does not make a statistically

distinguishable difference.

To investigate the influence of distance between the mooring

and float on the pCO2 differences under the most stringent

comparison conditions (temperature and potential density), we
A

B

FIGURE 2

(A) pCO2
M (dark blue), pCO2

PF (orange circles) and CO2SYS error propagation (light blue lines) and Williams et al. (2017) (purple lines) error estimates
for pCO2

PF. (B) Distance mooring minus float [km]. Grey shading indicates points that met the temperature and density criteria detailed in the
Methods section (in-situ temp within 0.3˚C and potential density within 0.03 kg m-3 at dates within 2 days).
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calculated a Model II regression between the difference in pCO2 and

the distance in km between mooring and float for those data only

(Figure 3). Mooring pCO2
M that met the temperature, potential

density and time criteria (outlined in the Methods) were averaged

before subtracting pCO2
PF. Float profiles included in this regression

were south and north of the mooring locations (Figure 4), yet the

differences between pCO2
M and pCO2

PF were all negative, unlike

the differences between pCO2
M and pCO2

UW described above,

which were both negative and positive.

There is a clear signal that the farther away the float was from

the mooring, the larger the difference in pCO2. While the float

moved east and west around the mooring, it predominantly moved

south, with only one short excursion to the north (Figure 4). Only

10 profiles (November 2021) met the temperature and potential

density criteria and were within 1° latitude and 1° longitude of the

moorings. The average difference in pCO2 under those conditions

was -7.01 μatm (± 2.19). For these profiles (unlike the other

comparisons) the float measured higher temperatures in the top

20m compared to the mooring sensors at 1m and 30m, and

therefore applying the temperature correction to pCO2
PF reduces

the discrepancy to -3.27 μatm (± 2.57).

To investigate whether there were any co-varying properties

along with distance, we overlaid float dissolved oxygen,

chlorophyll (Chl a), mixed layer depth, nitrate concentration

and windspeeds at the location of the float profiles (not shown).

However, none of these parameters correlated with the distance to

the mooring. There was also no correlation between these

parameters and the difference in seawater pCO2 between

mooring and float. Figure 4 shows the float track in relation to

the mooring locations colored with the DpCO2. To illustrate the

difference in pCO2 for all float profiles, we averaged pCO2
M within

2d of float profiles, but not taking into account temperature and

potential density differences (Figure 4). This highlights that the

greatest differences in pCO2 are seen in profiles that occurred

south of the mooring, which occurred during autumn months. In

Figure 4 we also marked those profiles that additionally met the

temperature and potential density criteria with grey hexagons,
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which shows that the profiles with the overall largest (negative)

difference between pCO2
M and pCO2

PF did not meet temperature

and density criteria.

If the majority of the difference in mooring and float pCO2 was

attributable to distance, then the two results could be brought in line

via the above regression. We therefore applied the slope and

intercept to all pCO2
PF data, as per equation (4):

regressed   float   pCO2   =   dm−f *( − 0:12) + 7:17 + pCO2
PF (4)

Where dm-f is the distance (km) between mooring and float.

This brings pCO2
PF closer in line with pCO2

M for parts of the time

period discussed here, particularly during the autumn/winter period

of 2021 (Figure 5B). The intention of this was not to “correct”

pCO2
PF estimates but to test the theory that some of the difference

in pCO2 is based on a true (predominantly latitudinal)

distance gradient.
3.5 Float vs mooring air-sea flux estimates
and associated input parameters

The annual FCO2
M for the calendar year 2021, without limiting

the data otherwise, was -1.68 (± 0.004) mol m-2 yr-1 compared to

FCO2
PF -0.89 (± 0.003) mol m-2 yr-1 (Figures 6; Figure S8). Most

notable are short periods of outgassing seen in the float estimates

during austral autumn 2021 (April and May), when the mooring

estimates show significant CO2 uptake instead. This was also the

time period of the largest difference in seawater temperature and

salinity (Figure 6), when a warmer, saltier water mass that extended

to ~ 350m was recorded by SOFS-10 for about a month (Figure S6).

Both mooring and float agree, however, on periods of outgassing in

austral spring 2021 (Sept and Oct).

Since squared windspeed factors into air-sea flux calculations

we also calculated air-sea fluxes for the float with windspeed

observations from the mooring instead of ERA5 windspeeds. For

this we used the average windspeed mooring data 3h either side of

the float profile time (Figure S8) and equation 2, but with the same
FIGURE 3

Model II regression for distance between mooring and float (km) and difference in pCO2
M minus pCO2

PF (µatm) for data that met the most stringent
criteria for being in comparable water masses (see Methods). Slope = - 0.12 ( ± 0.02), y-intercept = 7.17 ( ± 2.99), r2 = -0.69, noting that for a Model
II regression the correlation coefficient is a measure of the linearity of the data and not how well the line fits the data.
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scaling factor for the gas transfer coefficient. Mooring windspeed is

not assumed to be more accurate than ERA5 winds for the location

of the float profile (a comparison between ERA5 winds and

moorings winds is shown in Figure S7), rather this calculation is

to visualize the effect of choosing different windspeed products on

air-sea flux calculations. The mean difference between mooring

windspeed minus ERA5 windspeed at the float locations for 2021

was -0.27 (± 1.79) m s-1, with a range of 0.02 to 5.47 m s-1 and no

bias over time. Using mooring windspeed for the float calculations

resulted in a near identical annual flux of -0.88 (± 0.003) mol m-2 yr-

1. To exemplify the impact of pCO2
PF uncertainties as compared to

the impact of the choice of windspeed, we calculated FCO2
PF with a

Monte Carlo approach (1000 simulations) using a mean pCO2

uncertainty of - 11.2 μatm (± 7.7), - 7 μatm (± 2.2) and – 3.3 μatm (±

2.6) for the calendar year 2021, which resulted in an air-sea flux of

-1.92 mol m-2 yr-1 (± 0.004 for ERA5 winds, vs -1.89 mol m-2 yr-1 ±

0.004 for mooring windspeeds), - 1.54 mol m-2 yr-1 (± 0.004 ERA5,

-1.51 mol m-2 yr-1 ± 0.004 mooring windspeed) and – 1.20 mol m-2

yr-1 (± 0.003 ERA5, - 1.18 mol m-2 yr-1 ± 0.003 mooring

windspeed), respectively; indicating that the uncertainty in

pCO2
PF has a far great impact on air-sea flux estimates than the

choice of windspeed product.
4 Discussion

The aim of this work was to evaluate the accuracy of pCO2
PF

estimates beyond the initial in water comparisons with CTD

samples at the time of deployment. For this we drew on direct

pCO2 observations from two moorings, as well as shipboard

underway systems, and estimates from discrete CTD samples, and
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the proximity of a BGC Argo float to the SOTS mooring site for

more than a year.
4.1 Comparisons close in space

The spatial variability in this region of the Southern Ocean is

well known and makes direct comparison of drifting float

measurements and fixed-mooring observations difficult. A

comparison based purely on time is not appropriate for periods

when the float was up to ~360km away and/or “up- or downstream”

of the mooring site. Ideally, only measurements in the same water

mass would be used. Therefore, we started by comparing

observations between platforms when they were close in time and

space first, e.g. CTD casts shortly after the deployment of the float.

The initial comparison between CTD samples and float

measurements showed that the float pH sensor was calibrated

and functioning correctly at the time of deployment. Extending

the comparison to the first 10 profiles, which were within 1˚ latitude

from the mooring, pCO2
PF estimates were about 6.0 μtam (± 11.82)

higher than mooring observations within 6h of each profile. This

agrees with previous reports (using various methods) of a bias in

float pCO2 estimates of about 4 – 8 μatm higher (Gray et al., 2018;

Williams et al., 2018; Bushinsky et al., 2019; Long et al., 2021; Wu

and Qi, 2022). It is also important to note that Maurer et al. (2021)

stated that float pH measurements adjusted according to the

method described in their paper (and applied in this study) are

accurate to approximately 0.007 (based on validation efforts which

compared adjusted float pH to shipboard data taken alongside

deployment). This also matches our comparison between float

pHadj corr and pHCTD estimates at the time of deployment. An
FIGURE 4

Float track with overlaid difference in pCO2 (mooring observations within 2 days of float profiles minus float estimates in µatm, not distance corrected).
Mooring locations are indicated by the blue star symbols, the start of the float track is indicated by a red diamond, the final profile included in this study
is marked by a red star. Float profiles that met the temperature and potential density criteria are marked by superimposed grey hexagrams.
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uncertainty of 0.007 pH units roughly equates to 7 μatm pCO2,

which is only ~ 1 μatm higher than the magnitude of the difference

between mooring and the first 10 float profiles close in space

reported in this study. Gray et al. (2018) (based on Williams,

2017), estimated pCO2
PF uncertainty to be in the order of 2.9%,

which equates to 11 μatm for the entire observation period

presented here. Combined uncertainties after Orr et al. (2018)

were about twice as large (~ 22 μatm, 5.6% relative uncertainty,

Table 1). Therefore, we emphasize that comparing pCO2
PF to

pCO2
M close in space and time yields differences that are well

within the limits of stated pH sensor capabilities and pCO2 estimate

uncertainties. This was also true when we compared the whole float

record (over a year) to mooring data, while applying the latitude

and time restrictions (see below).
4.2 Comparisons in comparable
water masses

It is not clear howmuch of the observed difference in pCO2 over

the course of the year can be attributed directly to uncertainty in
Frontiers in Marine Science 11
float estimates. As from the overlapping mooring observations,

pCO2 can be significantly different if water masses with genuinely

different characteristics are encountered. We therefore used

temperature and potential density as criteria for when mooring

and float were in comparable water masses. The difference between

pCO2
M and pCO2

PF when only looking at data restricted with this

water mass criteria was around 11 μatm (Table 2), which is within

stated uncertainties. Mean uncertainty estimates of TAPF were

about 8 μmol kg-1, which is larger than the 5 μmol kg-1 reported

by Williams et al. (2018). Comparison between TAPF, TAM and

CTD samples were well within these uncertainties. A relative

uncertainty in TA of 0.4% (based on the LIARv2 TA) would

translate to a relative uncertainty of 0.4% in pCO2 (Dickson and

Riley, 1978). Thus, the difference in pCO2
PF is not predominantly

due to uncertainties in TAPF, but could be attributed to

uncertainties in seawater carbonate system thermodynamics as

well as uncertainties in the adjusted float pH measurements,

which would also include any uncertainty in measured dissolved

oxygen concentration used to adjust the pH and used for LIARv2

estimates of TA (Johnson et al., 2016; Johnson et al., 2017; Williams

et al., 2017; Gray et al., 2018). Orr et al. (2018) found combined
D

A

B

C

FIGURE 5

(A) pCO2
M (blue) compared to pCO2

PF for the top 20m (orange) and after application of the distance regression (dark red). (B) Difference in pCO2

mooring minus float, for pCO2
PF (purple) and distance corrected float pCO2 (light green). For the comparisons in (A, B) all mooring data/mooring

minus float data within 2 days of float profiles were plotted. (C) DLatitude and DLongitude mooring minus float profiles within 2 days of profiles; grey
horizontal lines demark ± 1˚ Latitude/Longitude. (D) Distance mooring minus float [km].
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uncertainties in carbon system parameter estimates to be largely

driven by uncertainties in dissociation constants. We therefore tried

the most commonly used K1 K2 constants by Lueker et al. (2000), as

well as more recently refined constants by Schockman and Byrne

(2021). The pCO2
PF estimates were about 4 μatm higher when

using constants by Schockman and Byrne (2021) and therefore

increased rather than reduce the difference between pCO2
M

and pCO2
PF.

The comparison of pCO2
M and pCO2

PF when restricted to

temperature and potential density criteria revealed a relationship

of increasing difference in pCO2 with increasing distance between

mooring and float. While application of a calculated distance

regression reduced the gap between pCO2
PF and pCO2

M, there

were times when the opposite was true, particularly during the

autumn of 2022 (Figure 5A, in late March 2022), when the float

drifted up to ~ 400km away from the mooring yet the distance

corrected float pCO2 disagreed more with pCO2
M than with the

uncorrected pCO2
PF. This indicates that distance-associated

variability is not the only factor contributing to the observed

difference between pCO2
PF and pCO2

M.
4.3 The importance of spatial and
temporal variability

For most of the study period, mooring seawater temperature in

the top 30m was higher than float averages for the top 20m. Thus,

the expected change in pCO2 (Takahashi et al., 1993) for the

difference in seawater temperature would not explain the

disagreement, but in fact emphasize it (note the above mentioned

exception for the November 2021 period). A latitudinal gradient in

seawater pCO2 in this part of the SAZ has recently been shown from

ship-based repeat measurements along a transect from Tasmania to

Antarctica (Brandon et al., 2022). Data presented by Brandon et al.

(2022) show a southward increase in seawater pCO2 of up to 25

μatm for the latitudinal range between mooring and float
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encountered in the study period. They attributed this gradient in

part to an increasing influence of subtropical waters in the SOTS

region of the SAZ. Temperature profiles from both mooring and

float for the time period where their pCO2 data disagree the most

(February to October 2021) also indicate that there were water

masses coming past the moorings that were not encountered by the

float (e.g. May 2021, Figure 7). As discussed above, the difference in

pCO2 between SOFS-9 and SOFS-10 when they encountered

different water masses, was ~12 μatm, highlighting the

importance of such events for surface pCO2 variability.

Bushinsky et al. (2019) used high-resolution ocean

biogeochemical models to investigate the underlying cause of the

differences between float and ship-based estimates and found that

some of the difference can be explained by spatial and temporal

sampling differences. This has more recently been confirmed,

particularly for the SAZ, by Djeutchouang et al. (2022). By

comparing the surface pCO2 of a high-resolution coupled physical

and biogeochemical model with reconstructed pCO2 after sampling

the model in time and space the way a BGC float and ship would,

they show that reducing the uncertainty in the reconstructed pCO2

depended on how well the spatial and meridional gradients and the

temporal, seasonal and intra-seasonal pCO2 variability was

resolved. High temporal sampling resolution (ideally at least

daily) and a meridional gradient resolving sampling strategy were

best equipped to achieve that (Djeutchouang et al., 2022). In other

words, a moored observation platform with high frequency

sampling, resolves the seasonal and intra-seasonal variability well,

and also captures mesoscale variability but it does not resolve the

meridional gradient, which is particularly important in the SAZ and

could explain the discrepancies between pCO2
M and pCO2

PFas the

float drifted away.

Between 10 and 25% of the uncertainty in float based carbon

flux estimate was previously attributed to the low temporal

resolution of 10-day cycling which may frequently miss short-

lived but significant changes in mixed-layer depth due to storms

and wind-stress and the associated changes in up-welling of carbon-
A

B

FIGURE 6

(A) Mooring (blue) and float (orange) air-sea fluxes (mmol m-2 d-1). (B) Mooring 1m temperature/salinity minus average top 20m float temperature/
salinity (± 2 days). Grey shading indicates points that met the temperature and density criteria detailed in the Methods section (in-situ temp within
0.3˚C and potential density within 0.03 kg m-3 at dates within 2 days).
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rich deep waters and this was found to be particularly true for the

SAZ (Monteiro et al., 2015; Nicholson et al., 2022). In our study,

positive float-based air-sea fluxes (i.e. outgassing) between April

and June 2021 - and to a lesser degree in September 2021 – suggest

that the float measured regional events which the mooring did not,

and that these outgassing events may be possibly genuine

oceanographic features.

The 3 – hourly resolution mooring observations show how

variable seawater surface pCO2 is in this region of the SAZ

(Figures 5, 6), with subtropical water masses reaching the site

intermittently. If we limit the comparison of the whole pCO2
PF

data to mooring data within 2d either side of float profiles, 0.3°C

temperature and 0.03 kg m-3 potential density restriction and a

latitudinal and longitudinal difference of less than 1˚, we find a

mean difference in seawater pCO2 of -7.0 (± 2.19) μatm, indicating

again a generally higher pCO2 estimate from the float, but well

within stated pCO2 uncertainty estimates. Based on the comparison

with previous findings and the potentially large uncertainty of

pCO2
PF, we find that the difference between pCO2

PF and pCO2
M

observed in this study appears to be a combination of a potential

small positive bias in pCO2
PF estimates, a zonal gradient in seawater

surface pCO2 in this sector of the SAZ, and relatively fine scale

spatial and temporal variability.
Frontiers in Marine Science 13
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Understanding and observing the Southern Ocean carbon

uptake is of great interest in the face of continued rise in

anthropogenic carbon emissions. Due to the dynamic and

complex nature of the processes that govern the uptake and

outgassing of carbon in this region, sufficient temporal and spatial

coverage in carbon system measurements is vital. Autonomous

platforms such as BGC Argo profiling floats address an important

gap in carbon system observations in the Southern Ocean and have

greatly expanded spatial and temporal coverage. And, while

spatiotemporal coverage may be limited from a single float,

through the continued expansion of the BGC Argo array a

cohesive dataset is emerging which is already providing key

information on biogeochemical cycling on seasonal and even diel

timescales (Johnson and Bif, 2021; Johnson et al., 2022; Stoer and

Fennel, 2022). However, the absolute accuracy of pCO2 estimates

from pH measurements on these floats is still under debate, with a

number of factors contributing to overall uncertainties. To address

this question, we capitalized on the opportunity of a year of float

profiles in the vicinity of the long-term Southern Ocean Time Series

observatory. Comparing measurements from a drifting float with

those from two fixed-point mooring sensors, we found pCO2
PF
A

B

FIGURE 7

(A) Mooring and (B) float (MLD in red, 0.3°C absolute difference to 10m reference depth) temperature contours for the period of largest
disagreement in pCO2.
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estimates to be ~ 11 μatm higher than pCO2
M, when only

comparing measurements within strict temperature and density

criteria. Further limiting the comparison between pCO2
PF and

pCO2
M to a spatial limit of 1° latitude and 1° longitude resulted

in a difference of ~ 3-7 μatm. Both these differences are well within

float-based pCO2 estimate uncertainties with the observed positive

bias contributing significantly to this uncertainty. Therefore, the

differences in pCO2 estimates of the drifting BGC Argo float and

pCO2 observations from two fixed-moorings over the course of a

year are a combination of pCO2 estimate uncertainties and spatial

and temporal variability within this region of the SAZ. Continued

validation efforts, using measurements with known and sufficient

accuracy, are vital in the continued assessment of pCO2
PF, especially

in a highly dynamic region such as the SAZ, and our findings need

to be validated in other areas of the global oceans. This work

reinforces that, even when considering observational uncertainty,

the Indian Ocean sector of the subantarctic zone is a carbon sink on

an annual basis, but with a latitudinal gradient that may encompass

areas of outgassing over the winter season.
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Wright, R. M., Le Quéré, C., Mayot, N., Olsen, A., and Bakker, D. (2022). Fingerprint
of Climate Change on Southern Ocean carbon storage (Authorea Preprints).

Wu, Y., and Qi, D. (2022). Inconsistency between ship-and Argo float-based p CO2

at the intense upwelling region of the Drake Passage, Southern Ocean. Front. Mar. Sci.
9. doi: 10.3389/fmars.2022.1002398

Wynn-Edwards, C. A., Davies, D., Jansen, P., Bray, S. G., Eriksen, R., and Trull, T. W.
(2019). Southern Ocean Time Series (SOTS Annual Reports: 2012/2013. Report 2.
Samples. CSIRO) (CSIRO, Hobart Australia).

Wynn-Edwards, C. A., Davies, D., Jansen, P., Trull, T. W., and Shadwick, E. H.
(2022). Southern Ocean Time Series (CSIRO, Australia: SOTS Annual Reports).
doi: 10.26198/wsf3-9r77

Zeebe, R. E., and Wolf-Gladrow, D. (2001). CO2 in seawater: equilibrium, kinetics,
isotopes (Amsterdam: Gulf Professional Publishing).
frontiersin.org

https://doi.org/10.1038/s41467-021-27780-w
https://doi.org/10.1016/j.marchem.2018.10.006
https://doi.org/10.1016/0967-0637(95)00021-W
https://doi.org/10.1038/s41598-019-44109-2
https://doi.org/10.1016/0304-4203(87)90036-3
https://doi.org/10.1016/j.dsr2.2008.12.005
https://doi.org/10.31029/32000jc000329
https://doi.org/10.6075/J0SB45XQ
https://doi.org/10.1002/2017GL074837
https://doi.org/10.1126/science.1097403
https://doi.org/10.1126/science.1097403
https://doi.org/10.1175/JTECH-D-20-0010.1
https://doi.org/10.1016/j.gca.2021.02.008
https://doi.org/10.1029/2012GL052290
https://doi.org/10.26198/5f3f23c8b51d6
https://doi.org/10.1002/2014GB004906
https://doi.org/10.1002/lol2.10295
https://doi.org/10.5194/essd-11-421-2019
https://doi.org/10.5194/essd-6-353-2014
https://doi.org/10.1029/2020GL091748
https://doi.org/10.1029/93GB02263
https://doi.org/10.1029/93GB02263
https://doi.org/10.5670/oceanog.2016.66
https://doi.org/10.1002/2013JC009302
https://doi.org/10.1016/0304-4203(74)90015-2
https://doi.org/10.1002/2016GB005541
https://doi.org/10.1029/2017JC012917
https://doi.org/10.3389/fmars.2022.1002398
https://doi.org/10.26198/wsf3-9r77
https://doi.org/10.3389/fmars.2023.1231953
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Subantarctic pCO2 estimated from a biogeochemical float: comparison with moored observations reinforces the importance of spatial and temporal variability
	1 Introduction
	2 Materials and methods
	2.1 BGC Argo float data
	2.2 SOFS mooring sensor data and quality control
	2.3 Voyage data and mooring water samples
	2.4 pCO2 and air sea flux comparisons between float and mooring

	3 Results
	3.1 Float pH vs pH calculated from DIC and TA samples
	3.2 Float TA comparisons
	3.3 Mooring SOFS-9 pCO2 vs SOFS-10 pCO2
	3.4 Comparisons between float pCO2 and mooring, CTD and underway pCO2
	3.5 Float vs mooring air-sea flux estimates and associated input parameters

	4 Discussion
	4.1 Comparisons close in space
	4.2 Comparisons in comparable water masses
	4.3 The importance of spatial and temporal variability

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


