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Tropical regions experience a diverse range of dense clouds, posing challenges

for the daily reconstruction of chlorophyll-a concentration data. This

underscores the pressing need for a practical method to reconstruct daily-

scale chlorophyll-a concentrations in such regions. While traditional data

reconstruction methods focus on single variables and rely on specific factors

to infer missing data at specific locations, these single-variable methods may

falter when applied to tropical oceans due to the scarcity of available data.

Fortunately, all oceanographic variables undergo similar atmospheric andmarine

dynamic processes, creating internal relationships between them. This allows for

the reconstruction of missing data through correlations between variables. Thus,

this study introduces a multivariate reconstruction approach using the extended

data interpolating empirical orthogonal function (ExDINEOF) method to

reconstruct missing daily-scale chlorophyll-a concentration data. The

ExDINEOF method considers the simultaneous relationships among multiple

variables for data reconstruction in tropical oceans. To verify the method’s

robustness, missing data were reconstructed during the formation and passage

of severe tropical cyclone Hudhud through the Bay of Bengal. The results

demonstrate that ExDINEOF outperforms traditional data reconstruction

methods, exhibiting favorable spatial distribution and enhanced accuracy

within the dynamic tropical marine environment. Furthermore, an assessment

of marine physical environmental factors associated with chlorophyll-a

concentration data provides additional evidence for the ExDINEOF method’s

accuracy. Notably, the ExDINEOF method offers comprehensive spatial

distribution aligned with underlying physical mechanisms governing

phytoplankton distribution patterns, detailed phytoplankton growth, bloom,

extinction variations in time series, satisfactory accuracy, and comprehensive

local-level details.

KEYWORDS

data reconstruction, chlorophyll-a concentration, ExDINEOF, Bay of Bengal, severe
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1 Introduction

Chlorophyll-a concentration data hold significance across

diverse scientific domains, including global climate change, the

global carbon cycle, biogeochemical cycles, and water quality

(Maeda et al., 2019; Ma et al., 2021). Ocean-color remote sensing

offers advantages over traditional methods for measuring

chlorophyll-a concentrations. However, multiscale optical remote

sensing data often suffer from extensive data gaps. The absence of

chlorophyll-a concentration data hampers research on marine life’s

geochemical cycles and global climate change. In tropical regions,

persistent cloud cover exacerbates this issue, necessitating data

reconstruction to bridge these gaps.

The presence of widespread data irregularities and sparsity

significantly impedes the progress of ocean-color remote sensing.

Consequently, addressing missing data through reconstruction has

emerged as a pivotal research aspect. Numerous researchers have

explored data reconstruction methods (Jayaram et al., 2018; Ji et al.,

2018; Liu and Wang, 2018; Yu et al., 2019). Optimum interpolation

(OI) and data interpolating empirical orthogonal function

(DINEOF) methods are commonly used in ocean-color remote

sensing data reconstruction and use empirical orthogonal functions

(Bretherton et al., 1976; Alvera-Azcárate et al., 2005; Reynolds and

Smith, 1994; Waite and Mueter, 2013; Novelli et al., 2016).

DINEOF, a parameter-free interpolation technique, was initially

proposed by Beckers and Rixen (2003). This method employs

empirical orthogonal function decomposition to reconstruct

missing data in time series, enhancing efficiency and performance

for datasets with substantial missing data and extended time series.

Thus, DINEOF has been increasingly used in diverse applications

(Beckers and Rixen, 2003; Alvera-Azcárate et al., 2009; Li and He,

2014). The DINEOF technique establishes a model grounded in

historical data within a time series of a singular variable,

subsequently enabling the prediction of absent data. However,

this approach falls short in reconstituting the spatio-temporal

domain data when the extent of valid data coverage is exceedingly

minimal (less than 2%) (Alvera-Azcárate et al., 2015). If DINEOF is

employed to reconstruct these regions, the outcome will be the

average value extracted from historical time-series datasets, which

would not accurately depict the authentic spatio-temporal

distribution. Consequently, during practical applications, raw data

marked by a high proportion of absent data tends to be excluded.

This, in turn, constrains the applicability of this method within

regions where data availability is scant.

While many studies investigate the reconstruction of

environmental factors like sea surface temperature (SST)

(Bignami et al., 2007; Zhao and He, 2012; Shropshire et al., 2016;

Ji et al., 2018; Ma et al., 2021), wind field(Jayaram et al., 2014),

turbidity(Alvera-Azcárate et al., 2015), sea surface salinity (SSS)

(Alvera-Azcárate et al., 2016), and total suspended matter (NeChad

et al., 2011)in ocean-color remote sensing, reconstruction methods

for chlorophyll-a concentration data, crucial for global climate

change and biogeochemical cycles, remain underdeveloped and

warrant further exploration (Gunes et al., 2008; NeChad et al.,

2011; Waite and Mueter, 2013). Most studies focus on regions with

fewer missing data, such as the Mediterranean Sea (Alvera-Azcárate
Frontiers in Marine Science 02
et al., 2005; Beckers et al., 2006; Antoine et al., 2008; Brando et al.,

2015), the northern South China Sea (Ping et al., 2016; Ma et al.,

2021), and the North Atlantic Ocean (Everson et al., 1996; Iida and

Saitoh, 2007; Xiu et al., 2007; Zhao and He, 2012; Jouini et al., 2013;

Waite and Mueter, 2013; Li and He, 2014; Wang and Liu, 2014; Liu

and Wang, 2016; Shropshire et al., 2016; Hilborn and Costa, 2018;

Wang et al., 2019). However, regions influenced by tropical

monsoons or tropical rainy climates, where data scarcity is

significant, have received limited attention, like the Bay of Bengal

and its environs (Sirjacobs et al., 2011; Park et al., 2013). Temporal

resolution also factors into ocean-color data reconstruction. While

common reconstruction methods demand sufficient sample data

points, current studies on chlorophyll-a concentration data

reconstruction typically employ monthly-scale data (Wang and

Liu, 2014; Yu et al., 2019). Notably, recent years have witnessed

the use of an 8-day scale for ocean-color data reconstruction,

generally yielding favorable outcomes (Jayaram et al., 2018;

Martinez et al., 2020; Jayaram et al., 2021). Although some

investigations have explored global-scale daily-scale data

reconstruction (Liu and Wang, 2018; Liu and Wang, 2019), the

approach’s application on small-to-medium spatial scales remains

limited, especially within tropical regions. The rapid generation and

dissipation of sea surface chlorophyll-a concentration features,

occurring in as little as three days for phytoplankton, accentuate

the inadequacy of monthly-scale data for research needs.

Consequently, there is an imminent requirement for higher

tempora l r e so lu t ion recons t ruc t ed da ta to ana lyze

biogeochemical cycles.

To summarize, current data reconstruction methods primarily

rely on historical data of a single variable to establish models and

predict missing data for different time periods and regions. In terms

of research focus, most studies concentrate on reconstructing SST

data, with only a small proportion addressing the reconstruction of

missing chlorophyll-a concentration data in remote sensing (Xiao

et al., 2019). While research areas for data reconstruction typically

involve temperate waters, the challenge escalates in tropical seas due

to increased cloud cover and rainfall. Existing works on

chlorophyl l -a concentrat ion data reconstruct ion are

predominantly conducted on a monthly or 8-day scale, rather

than a daily scale (Wang et al., 2019). To capture short-term

changes in the ocean environment of tropical oceans, daily-scale

long-time-series remote-sensing chlorophyll-a concentration data is

imperative. However, the presence of persistent clouds in tropical

regions poses a significant hindrance to reconstruction efforts.

Furthermore, while a few studies focus on an 8-day scale

reconstruction, daily-scale data reconstruction is scarce.

Researchers assert that studies on chlorophyll-a concentration

data reconstruction should target large-scale, long-time-series

data in regions significantly impacted by cloud cover.

Nonetheless, the reconstruction of daily data within small-to-

medium areas also warrants attention (Pottier et al., 2008; De

Montera et al., 2011; Jouini et al., 2013). Thus, conducting a

combined multivariate reconstruction of daily chlorophyll-a

concentration data in small and medium regions, particularly in

typical tropical waters like the Bay of Bengal, holds practical

significance, theoretical value, and urgency.
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Several studies have utilized the multivariate OI method for

data reconstruction. For instance, Reynolds et al. (1994) employed

the OI approach to integrate inverted SST using the Advanced Very

High Resolution Radiometer (AVHRR) and actual SST measured

by boats or buoys. This successfully produced widely used daily and

weekly average temperature analysis products globally (Reynolds

and Smith, 1994). Grodsky and Carton (2001) utilized sea surface

height (SSH) and the mixing layer rate to validate near-surface

currents in the tropical Pacific Ocean (Grodsky and Carton, 2001).

These studies demonstrated that employing multiple variables in

data reconstruction yields more realistic reconstructed data. Despite

the advantages of the OI approach, such as practical interpolation

and reduced computational costs, it selectively employs adjacent

information for interpolation calculations. This process is subjective

and does not objectively estimate covariance between variables or

obtain the error statistics needed for OI analysis. In contrast, the

DINEOF method establishes relationships within inherent available

data for variable reconstruction, eliminating the need for subjective

parameter estimation. However, the traditional DINEOF method

has limitations, filling missing data solely based on the inherent

spatiotemporal relationship of a single variable. When dealing with

extensive missing data areas, inadequate samples result in unreliable

outcomes. Alvera-Azcárate et al. extended the traditional DINEOF

method as ExEOFs in the West Florida Shelf. By incorporating

environmental factors like SST, chlorophyll-a, and wind field within

a specific space-time region, this improved ExEOFs method

effectively reconstructed missing SST data. Comparative analysis

with actual SST measurements revealed that the ExEOFs method

achieved notably higher accuracy than the traditional monovariate

DINEOF method (Alvera-Azcárate et al., 2007). Addressing

DINEOF’s limitations in reconstructing daily data in tropical seas
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with high missing data quantities, this study employs an adapted

multivariate ExDINEOF method. This approach utilizes

combinations of parameters closely linked to chlorophyll-a

concentration, including SST, SSH, SSS, and wind field, to

reconstruct missing data.

The paper’s structure is as follows. Section 2 introduces the

study area, data, and methodology. Section 3 discusses the results

and data reconstruction validation. Further commentary and

conclusions are presented in Sections 4 and 5, respectively.
2 Materials and methods

2.1 Study area

The study area encompasses the Bay of Bengal (Figure 1),

situated between 5°–24°N and 79°–123°E. The climate in this

region predominantly constitutes tropical oceanic monsoon

type, featuring minor variations in daily and annual

temperatures. Observed SST averages fall within the range of

25–29°C, with an estimated annual temperature range of about

6°C (Roxy et al., 2014; Thompson et al., 2017). Notably, the

average humidity exceeds 80%, and annual precipitation ranges

from 1500–2000 mm. This climate pattern results in frequent

cloud cover, particularly during the rainy season, posing

challenges for optical remote sensing. The study area stands

out for its sparse chlorophyll-a concentration data records.

Moreover, the Bay of Bengal is among the world’s most active

tropical cyclone regions. Consequently, investigating missing

data reconstruction in this tropical region holds both practical

significance and theoretical value.
FIGURE 1

Study area and the path of the severe tropical cyclone Hudhud. Region A covers the area 9°–12°N and 80°–88°E, and Region B covers the area 16°N
and 80°–88°E.
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2.2 The severe tropical cyclone Hudhud

On October 7, 2014, the severe tropical cyclone Hudhud

developed in the Andaman Sea, subsequently traversing the

Andaman Islands toward the Bay of Bengal (Figure 1) (Chacko,

2017). Hudhud brought substantial cloud cover, leading to

widespread missing data in daily chlorophyll-a concentration

records. Given the brief duration of tropical cyclones, daily data

reconstruction proves invaluable in illustrating spatial and temporal

chlorophyll-a concentration patterns during short-term cyclones or

typhoons. Notably, the reconstruction of daily chlorophyll-a

concentration data in the tropical study area around the time of

severe tropical cyclone Hudhud encountered formidable challenges.
2.3 Data

Level-3 integrated daily chlorophyll-a concentration data,

generated using the OC5 algorithm (ChlOC5) (Gohin et al.,

2010), were combined with Level 2 ChlOC5 data from various

sensors: the Medium Resolution Imaging Spectrometer, the

MODerate Resolution Imaging Spectroradiometer, the Sea-

Viewing Wide Field Sensor, the Visible and Infrared Imaging

Radiometer Suite, and the Ocean and Land Color Instrument.

The spatial resolution of Level-3 integrated data was 4 km

(Table 1). As depicted in Figure 2A, multi-year average data

coverage in the study area exhibits significant variability. Most

areas in the region of interest feature data coverage of around 25-

35%, with notably low coverage of approximately 10-15% in the

estuarine coastal zone (Figure 2A). Data coverage in October 2014

varies widely, ranging from 3.92% to 82.88%, with a 31-day average

coverage of 39.13% (Figure 2B). The presence of only a limited 31-

day dataset in a tropical sea area with persistent data scarcity

throughout the year presents considerable challenges for data

reconstruction studies.

Besides, the wind field data of the advanced scatterometer, the

photosynthetically available radiation (PAR) data, and the thermal

infrared and microwave remote-sensing data from satellite

observations of the SST, the SSS, the sea surface density (SSD),
Frontiers in Marine Science 04
the mixed layer depth (MLD), and the SSH were analyzed in this

study (Table 1). Moreover, the Hybrid Coordinate Ocean Model

(HYCOM) reanalysis data, combining remote-sensing, in-situ

measured, and model-simulated datasets, were utilized,

encompassing SST, SSS, SSH, Eastward Sea Water Velocity (U-

velocity), and Northward Sea Water Velocity (V-velocity)

parameters (Table 1). Table 1 details the spatial resolutions of the

datasets, ranging from 4 km to 25 km for ChlOC5 and PAR data,

and 0.25° for SST, SSH, SLA, Wind Speed, and Wind Stress. The

resolution for MLD, SSS, and SSD data is 25 km, while HYCOM

reanalysis data has a resolution of 1/12°. All datasets, as shown in

Table 1, are formatted in Network Common Data Form (NetCDF)

format. For easier processing, ChlOC5 and PAR data were

resampled to 9 km in MATLAB 2018. Subsequently, all data were

integrated into a 3D dataset in MATLAB 2018 for subsequent

reconstruction steps, marking the completion of data preprocessing.
2.4 Methods

Marine physical environmental factors, such as SST, wind, sea

surface flow field, SSH, and sea-surface chlorophyll-a concentration

data, are all impacted by atmospheric and marine dynamics

(Figure 3). These factors are inherently interconnected, enabling

the utilization of these connections to reconstruct missing data.

However, disparities exist between the reconstructed chlorophyll-a

concentration data and data reconstructed from other

environmental parameters.
2.4.1 Difficulties in reconstructing daily
chlorophyll-a concentration in tropical ocean
during the transit of severe tropical cyclones

Research efforts have primarily concentrated on reconstructing

missing SST data. Notably, chlorophyll-a concentrations

significantly impact global climate change and biogeochemical

cycles. However, studies on chlorophyll-a concentration

reconstruction remain in their nascent stages. This is due to

several factors. Firstly, sea surface chlorophyll-a concentrations

are influenced by numerous environmental variables, with their
TABLE 1 The data sources used in this study.

Parameter Spatial Resolution Website

ChlOC5 4 km,9 km,25 km http://hermes.acri.fr/index.php?class=archive

SST 0.25°(About 25 km) http://www.nodc.noaa.gov/satelliteData/ghrsst

SSH 0.25° (About 25 km) https://www.aviso.altimetry.fr/index.php?id=422&L=0

PAR 4km,9km,25km http://hermes.acri.fr/index.php?class=archive

WindField 0.25°(About 25 km) ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/MWF/L3/ASCAT/

SSS 25 km http://marine.copernicus.eu/services-portfolio/access-to-products/

SSD 25 km http://marine.copernicus.eu/services-portfolio/access-to-products/

MLD 25 km ftp://my.cmems-du.eu/Core/MULTIOBS_GLO_PHY_REP_015_002/

HYCOM 1/12°(About 9 km) https://hycom.org/dataserver/gofs-3pt0/reanalysis
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spatial and temporal variability, as well as data distribution

irregularities, surpassing those of parameters such as SST and

salinity. Moreover, the wavelengths used for chlorophyll-a

concentration inversion in remote sensing primarily fall within

the blue-green spectrum, susceptible to cloud cover, aerosols, water

vapor, and sun glint. Additionally, limitations of inversion

algorithms and the influence of turbid waters near shorelines

contribute to larger areas of missing chlorophyll-a concentration

data compared to other parameters. Consequently, the inversion of

sea surface chlorophyll-a concentration data poses greater

challenges. These challenges result in extensive missing areas in

chlorophyll-a concentration data due to algorithmic effects and

cloud interference, leading to inadequate sample sizes for

effective reconstruction.

Several complexities emerge when undertaking reconstitution

studies for daily chlorophyll-a concentration products in the study

area. Initially, the study reconstructed daily-scale chlorophyll-a

concentration data in the tropical oceanic region during the

transit of severe tropical cyclones. Notably, from October 8 to 12,

2014, when robust tropical cyclones passed through the study area,

data coverage remained slightly below 20%. Particularly, data

coverage stood at merely 3.92%, 8.05%, and 8.45% for October

10-12, respectively. Secondly, the ExDINEOF method did not

incorporate lagged version data, resulting in a reduced sample

size. Severe data deficiencies stem from three key factors: tropical

marine regions, small and medium spatial scales, and abbreviated

time series durations. Even with the inclusion of lagged data,
Frontiers in Marine Science 05
insufficient reference information persists, hindering the

reconstruction of missing data points. Thirdly, only 31 days of

daily chlorophyll-a concentration data, in contrast to the 180 days

utilized for SST reconstruction (Alvera-Azcárate et al., 2007), were

employed for reconstructing the daily missing data. This limitation

arises due to the brief duration of strong tropical cyclone transit,

lasting barely a week. Utilizing data from an extensive time series

would result in low-pass filtered outcomes, owing to the Empirical

Orthogonal Function (EOF) effect.

2.4.2 The ExDINEOF method
Alvera-Azcárate and colleagues (2007) initially expanded the

mono-variate DINEOF method to reconstruct absent SST data in

the coastal region of the Gulf of Mexico. The outcomes

demonstrated that the extended EOFs (ExEOFs) achieved greater

precision than the mono-variate DINEOF. The reconstructed

chlorophyll-a concentration data exhibits distinct attributes.

Multiple environmental elements, including aerosols, thin clouds,

fog, extremely turbid Class-II waters, and sun glint, impact

chlorophyll-a concentration data (Sravanthi et al., 2017). As

outlined in Mie scattering theory, shorter wavelengths in the

blue-green spectrum result in a more pronounced influence of

these environmental factors on the chlorophyll-a concentration

inversion algorithm (Wang et al., 2020). In contrast, SST

measurements derived from thermal infrared inversion possess a

larger valid data coverage area compared to chlorophyll-a

concentration data, attributed to their longer wavelengths and
A B

FIGURE 2

Multi-year (January 1, 1998 - December 31, 2018) average ChlOC5 data coverage (A) and 31-day ChlOC5 data coverage in October 2014 (B).
A B C

FIGURE 3

Comparison of data coverage for chlorophyll-a concentration (A), SST (B), and SSH (C).
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day/night availability (Figure 3). Consequently, the spatio-temporal

variability and irregular distribution of chlorophyll-a concentration

data surpass those of SST data concerning data reconstruction

(Figure 3). Therefore, this study eschewed extensive historical

data sets and instead leaned towards the relationship between

chlorophyll-a concentration and closely associated environmental

factors to reconstruct missing data within a small and medium-

sized spatial range in tropical ocean settings.

This section presently examines the connection between the

chlorophyll-a concentration datasets and various environmental

factors influencing the temporal and spatial fluctuations of short-

term chlorophyll-a concentration cycles through the application of

the ExDINEOF technique (Ji et al., 2018; Yu et al., 2019). The

fundamental mathematical formulation of ExDINEOF can be

outlined in the ensuing steps:

XExDINEOF =

a1 a2 a3 · aN

b1 b2 b3 · bN

c1 c2 c3 · cN

d1 d2 d3 · dN

e1 e2 e3 · eN

f1 f2 f3 · fN

g1 g2 g3 · gN

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

(1)

where XExDINEOF is the multivariate reconstruction array; a1, a2,

…, aN are the column vectors of the time series that contain all the

space points in matrix a at times 1, 2,…, N. Matrices a, b, c, d, e, f,

and g are the chlorophyll-a concentration data and the relevant

environmental factors. The size of the matrices is estimated as: a =

M×N, b = O×N, c = P×N, d = Q×N, e = R×N, f = S×N, and g = U×N,

whereM, O, P, Q, R, S, and U are the spatial dimensions of matrices

a, b, c, d, e, f, and g, respectively; and N is the temporal dimension of

each matrix. Specifically, for severe tropical cyclone Hudhud, the

spatial matricesM, O, P, Q, R, S, and U cover the range 78–99°E and

8–23°N with around 263*189 spatial-dimension pixels (the data are

resampled to obtain a 9-km resolution to enhance the

computational efficiency). The numerical value of N in this

context is 31. Consequently, the data pertaining to each of the

seven variate products comprises a three-dimensional array

containing 26318931 pixels. It should be noted that the spatial

size of the matrices M, O, P, Q, R, S, and U can differ, but the

numbers of their temporal dimensions must be identical. In this

paper, the spatial matrices M, O, P, Q, R, S, and U all have the

same size.

The datasets, which are stored in a matrix XExDINEOFand

averaged in time and space, are subtracted beforehand. The

missing data are initialized to zero to ensure that they are

unbiased with respect to XExDINEOF. Utilizing the initial

estimation, a first-order EOF is employed, denoted as (k = 1), for

the purpose of executing the initial singular value decomposition

(SVD). Subsequently, the absent data are substituted with the

derived EOF in the subsequent manner:

XExDINEOF
i,j =ok

p=1rP(up)i(v
T
p )i (2)
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Where i, j are the spatial and temporal indices of the missing

data in matrix XExDINEOF; up and vp are the pth columns of the

spatial and temporal EOF U and V; rP is the corresponding singular
value, P = 1… k, and k is the number of EOF modes used for

reconstruction, where k = 2,3,4,…, kmax, respectively. The SVD is

iterated once more to incorporate the updated values for the absent

data. These final two steps are reiterated until convergence is

achieved in the values of the missing data. Subsequently, for each

iteration index k, an approximation of the missing value is acquired.

The most suitable count of EOFs to be retained for the purpose of

reconstruction is determined through a cross-validation approach: a

subset of data points (typically constituting 1% of the initial dataset)

is pre-selected and designated as missing values. During each

iteration of EOF estimation, the discrepancy between these initial

points and their reconstructed counterparts is computed, allowing

for the identification of the optimal number of EOFs that minimizes

this discrepancy. Concurrently with the reconstructed dataset, a

localized field of error is generated, reflecting the precision of the

reconstruction. To enhance computational efficiency, the Lanczos

method is employed within DINEOF to compute the empirical

orthogonal functions (Alvera-Azcárate et al., 2007).
3 Results

3.1 Reconstructed daily chlorophyll-a
concentration data for cyclone Hudhud in
the tropical bay of Bengal

Figure 4 illustrates the spatial distribution of daily chlorophyll-a

concentration data (ChlOC5) prior to, during, and subsequent to

the occurrence of cyclone Hudhud spanning from October 1 to

October 30, 2014. In the period preceding the cyclone’s occurrence

(October 1–5, 2014, depicted in Figures 4A–C), a substantial

expanse was occupied by daily data points that were missing.

During the passage of cyclone Hudhud (October 7–13, shown in

Figures 4D–G), the deficiency in data coverage became more severe,

with a considerable area devoid of any data. As the cyclone

traversed the region (as evidenced in Figures 4H–O), a substantial

portion of data was still found to be absent, except for the case

depicted in Figure 4M, where the data coverage was extensive. This

absence of data coverage hindered the subsequent analysis of

variations in chlorophyll-a concentration post the cyclone’s passage.

Figure 5 displays the daily reconstructed chlorophyll-a

concentration data achieved through the implementation of the

ExDINEOF technique. Upon scrutinizing the spatial arrangement,

it can be observed that the reconstructed data effectively reinstated

the situation of missing data across a substantial area. The outcomes

of the reconstruction were determined to be comprehensive, devoid

of any missing data points. Across the overall reconstruction, the

values exceeded 1 mg/m3 within the northern coastal region of the

Bay of Bengal, particularly at the Ganges River estuary. In certain

extreme instances, the values even reached 3 mg/m3. In contrast, for

vast offshore regions, the reconstructed values predominantly ranged
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from 0.1 to 0.3 mg/m3. Moreover, in the middle region of the Bay of

Bengal, northwest of the Andaman Islands (as depicted in Figure 1), a

significant striped area characterized by maximal chlorophyll-a

concentrations was observable. On October 1, 2014, prior to the

arrival of cyclone Hudhud, the chlorophyll-a concentration within

the striped region was approximately 0.25 mg/m3 (Figure 5A), only

slightly higher than that of neighboring areas. Additionally, the

striped pattern with respect to chlorophyll-a concentration was not

distinctly discernible. However, between October 3 and 7, an

augmentation in chlorophyll-a concentration was evident in that

region (Figures 5B–D). By October 13, when cyclone Hudhud made

landfall (Figure 5G), the chlorophyll-a concentration had risen to
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approximately 2 mg/m3. Subsequently, the concentration continued

to increase, reaching its pinnacle of around 3 mg/m3 (Figure 5I), after

which it began to recede, stabilizing around 0.3 mg/m3. Ultimately, by

October 29, the chlorophyll-a concentration further diminished to

roughly 0.2 mg/m3.

Upon analyzing the reconstructed data graph (Figure 5), it

becomes apparent that near 90°E and 18°N, situated in the northern

sector of the Bay of Bengal, a circular region characterized by low

chlorophyll-a concentration began to take shape gradually from

October 1 (Figures 5A–F). Between October 15 and 19, this circular

pattern became distinctly evident, exhibiting a peripheral chlorophyll-a

concentration of approximately 0.1 mg/m3. The central portion of the
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FIGURE 4

Original daily ChlOC5 chlorophyll-a concentration data before, during, and after passage of tropical cyclone Hudhud from October 1–30, 2014.
(A–O) show the daily original ChlOC5 chlorophyll-a concentration data at an interval of two days from October 1–30, 2014. The distributions of
randomly chosen data points for numbers 1001–1200 (200 data points in total) of the study area are shown as red points.
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circle manifested a slightly elevated chlorophyll-a concentration

ranging from 0.2 to 0.3 mg/m3 (Figures 5H–J). This circular pattern

persisted until October 29 (Figure 5O).

By comparing Figures 4 and 5, it can be inferred that the

ExDINEOF methodology exhibited commendable efficacy in

reconstructing the daily missing data within confined regions

both before and after the occurrence of tropical cyclone Hudhud.

The deficient chlorophyll-a concentration data within the time

series were adequately reconstructed within local contexts,

whether preceding, during, or succeeding the cyclone’s passage.

Furthermore, the formation and dissipation of the circular region

characterized by lower chlorophyll-a concentration, which would

have remained obscured due to data gaps in the initial dataset, were

clearly elucidated. This successful demonstration further attests to

the practicality of the ExDINEOF reconstruction approach.
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3.2 Comparison of the spatial distribution
of the reconstructed results using
alternative methods

To further evaluate the method’s efficacy, namely the

ExDINEOF method, alongside DINEOF and the bidirectional

autoregressive model (BAR) approaches, were utilized to

reconstruct variations in chlorophyll-a concentrations within the

study region during and subsequent to the passage of the rapidly

changing typhoon. A comparison of the methods was performed

based on the spatial distribution of the reconstructed outcomes.

The bidirectional autoregressive model (BAR) employed in this

research entails the repetition of forward and backward time-series

vectors within MATLAB. The values of the reconstructed missing-

like metadata are determined via calculating the mean values of
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FIGURE 5

Daily ChlOC5 chlorophyll-a concentration data for the Bay of Bengal (October 2014) reconstructed using the ExDINEOF method. (A–O) show the
daily ChlOC5 chlorophyll-a concentration data reconstructed using the ExDINEOF method at an interval of 2 days from October 1–30, 2014.
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both the forward and backward autoregressive models (Zhang et al.,

2009). It can be discerned from Figure 6 that the correlation

coefficient between times T and T+1 for chlorophyll-a

concentration stands at 0.72, surpassing the requisite threshold of

0.5. As such, the essential prerequisites for BAR data reconstruction

are fulfilled.

Through the application of the EOF approach, the

reconstructed chlorophyll-a values within the region of missing

data undergo iterative decomposition and synthesis until the cross-

validated error attains its minimum. The optimal eigenmode

retention is then ascertained, aligning with the most effective

reconstruction of data. The time series of daily chlorophyll-a

concentrations data for the study area was preprocessed using

MATLAB and organized into a three-dimensional m×n matrix,

where m signifies the daily ChlOC5 data within the study region

(spatial, two-dimensional), and n denotes the count of time series

ChlOC5 data points (temporal, one-dimensional). For the purpose

of extracting oceanic pixels, a land mask was applied to the m×n

matrix. Subsequently, the DINEOF package was employed on this

matrix to complete the missing daily chlorophyll-a ChlOC5 data.

Figure 7 illustrates the original (Figures 7A, E, I, M, Q) and

reconstructed daily ChlOC5 data during the occurrence of severe

tropical cyclone Hudhud, derived through traditional univariate

DINEOF, BAR, and ExDINEOF data reconstruction methods.

Figures 7B, F, J, N, R presents the reconstructed data using the

BAR method, focusing on both temporal and spatial dimensions of

pixel reconstruction. Consequently, when substantial areas

exhibited missing daily data for extended durations, the BAR

method encountered challenges in obtaining sufficient samples for

autoregressive modeling. In such scenarios, reconstruction would

falter due to the absence of valid data, giving rise to noise points due

to unnatural pixel transitions (depicted by red circles in Figures 7B,

F, G, N, R), consequently failing to capture the surge in bloom and

the attenuation of chlorophyll-a concentration information.

Clear ly , the DINEOF method experienced fai lure in

reconstruction due to the significant lack of original sample data

(depicted by red oval boxes in Figures 7C, G, K, O, S).
Frontiers in Marine Science 09
By contrasting the reconstruction outcomes attained via various

methods, as exhibited in Figure 7, it becomes evident that the

ExDINEOF approach yielded the most comprehensive spatial

distribution of reconstructed results, encompassing the most

intricate temporal variations, and offering the most exhaustive

local details. In summary, when compared with the commonly

adopted univariate DINEOF and BAR methods, the ExDINEOF

approach showed superior performance in terms of daily

reconstruction for small-scale regions in relat ion to

spatial distribution.
3.3 Accuracy assessment of the
reconstructed results for chlorophyll-a
concentration data for ExDINEOF and the
alternative methods

3.3.1 Evaluation of the accuracy of randomly
selected points via bootstrap-type analysis

In this study, a validation dataset comprising 200 randomly

selected points per day (totaling 6200 data points) with valid data,

yet without data reconstruction, was employed. These pre-selected

points were subjected to one-to-one comparison with the

reconstructed data points at corresponding locations. The

findings demonstrated that the ExDINEOF method exhibited

satisfactory accuracy, along with stability in correlation

coefficients, residuals, and relative errors, thereby showing

potential for application.

A prevalent technique for evaluating data reconstruction

methods involves conducting a bootstrap-type analysis. This

entails removing a portion of the original non-missing data

before data reconstruction (with these data points not being

involved in the reconstruction calculations). Subsequently, the

removed original data is compared with the reconstructed data.

In this study, the same methodology was adopted to validate the

results of data reconstruction. Specifically, 200 pixels

(corresponding to numbers 1001–1200 of the original data) were
A B

FIGURE 6

Correlation and residual analysis of chlorophyll-a concentration data at adjacent times: (A) Correlation of chlorophyll-a concentration data at times
T and T+1 of the time series. (B) Residual distribution of the correlation of the time-series data between adjacent times.
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randomly chosen within the study area to assess the ExDINEOF

method (as depicted in Figure 4). The outcomes of data

reconstruction for a small spatial scale on a daily basis are

presented in Figure 8.

The outcomes of data reconstruction were demonstrated for the

31-day time series of tropical cyclone Hudhud, encompassing its

occurrences before, during, and after transit from October 1 to 31,

2014. In this process, the 200 sample points were preemptively

removed to facilitate comparison. The time series correlation

coefficients between the reconstructed and the original data are

introduced in Figure 8, where the highest correlation coefficient

exceeded 0.95 and the lowest correlation coefficient stood around

0.6. Among these coefficients, a certain level of variability was

observed. The overall correlation coefficient between the original

and ExDINEOF data for the 6200 data points was 0.859.

Additionally, the data for residuals and relative errors exhibited

robustness (Figure 9).
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3.3.2 Evaluation of accuracy of time series for
selected spatial points

Conducting data reconstruction studies within the estuarine

coastal zone, characterized by heightened dynamic forces in its

water bodies compared to other regions, poses increased challenges.

In this regard, the region delineated by the red dashed box in panel

(a), situated at the mouth of the Ganges River in the northern Bay of

Bengal, was singled out for time series assessment. A comparison of

the absolute values and trends of the 30-day time series (outliers

excluded) was carried out based on the regional mean.

The reconstructed values for the regional average preceding,

during, and subsequent to the passage of tropical cyclone Hudhud

over 30 consecutive days were selected to illustrate the

phytoplankton’s biogenesis and extinction processes. Additionally,

the 30-day time-series data reconstructed by the three methods

were compared with the original satellite data to ascertain the

method yielding the most accurate absolute results and trends in
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FIGURE 7

Spatial distribution of the original (A, E, I, M, Q) and reconstructed ChlOC5 data using the BAR (B, F, J, N, R), DINEOF (C, G, K, O, S), and ExDINEOF
(D, H, L, P, T) methods.
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the time-series changes. Panel (b) of Figure 10 presents a

comparison of the regional averages for the 30-day time series

within the test area. The red dotted line in panel (b) signifies that the

concentration values of chlorophyll-a within the phytoplankton in

this region were low (around 4 mg/m3) from the start of October

until approximately day 10. From October 12, the chlorophyll-a

concentration values surged rapidly, peaking around October 23 (12

mg/m3), before swiftly declining to around 4 mg/m3. The complete

journey of phytoplankton’s growth and subsequent extinction can
Frontiers in Marine Science 11
be traced by examining the regional average values displayed in

panel (b) spanning from day 1 to day 30.

The original chlorophyll-a concentration data and the

reconstructed remote sensing data (validated regional average)

were compared in terms of trends, mean values, and correlation

coefficients. In panel (b), the differences in absolute values of the

reconstructed and original values for the 30-day time series within

the region were compared. In the initial 5 days of October, the BAR

reconstruction exhibited significant differences in both trend and
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FIGURE 8

Bootstrap-type analysis of 200 data points for the reconstructed and original ChlOC5 chlorophyll-a concentration data in the study area using the
ExDINEOF method. (A–O) show the daily comparison using the ExDINEOF method at an interval of 2 days from October 1–30, 2014.
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absolute value due to the scarcity of sample data arising from the

extensive missing data area. This disparity notably improved by

mid-October, as the area of missing data diminished and sample

size increased. Both DINEOF (triangular line) and ExDINEOF

(rectangular line) closely aligned with the original satellite data in

terms of overall trend, making it difficult to discern apparent

distinctions between the two methods from panel (b). Panel (c)

facilitates a comparison of the mean values for the study area (panel

(a)), indicating that the mean values for ExDINEOF showed the

least divergence from the original data, while the BAR

reconstruction exhibited the largest error. A correlation analysis

between the original and reconstructed data was carried out, with

panel (d) illustrating that the correlation coefficient between the

ExDINEOF data and the original data stood at 0.748, surpassing

both DINEOF (R of 0.714) and BAR (R of 0.592).

Overall, the reconstructed data reflect the phytoplankton’s

growth and extinction processes, with ExDINEOF yielding

superior results for reconstructed outcomes, followed by

DINEOF. Meanwhile, the BAR results proved the most variable,

as they were heavily contingent upon the number of sample

data available.
Frontiers in Marine Science 12
4 Discussion

4.1 Marine physical environmental
factors associated with
chlorophyll-a concentration

Overall, in Region B (depicted in Figure 1), traversed by cyclone

Hudhud within the central-western expanse of the Bay of Bengal, the

flow field’s velocity exhibited continuous augmentation, reaching its

zenith during October 9–13 (Figures 11E–G). Notably, during intense

winds, the sea surface height (SSH) in the region diminished to its

nadir during October 9–13, subsequently showing a gradual ascent.

The reconstructed chlorophyll-a concentration achieved its zenith

during October 15–19 (Figures 5H–J), subsequently experiencing a

decline. Moreover, a circular striped area with low SST was

discernible in the region during October 9–15 (Figures 12E–I). The

SSH and SST values exhibited an inverse relationship with the

chlorophyll-a concentration. Specifically, lower SSH and SST values

corresponded to higher chlorophyll-a concentration. However, a

discernible time lag existed between SSH, SST, and chlorophyll-a

concentration, with the maximal chlorophyll-a concentration
A B

C

FIGURE 9

The overall correlation coefficients (A) and error distribution (B, C) for all 6200 data points.
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occurring approximately 4–5 days subsequent to the nadir in SSH

and SST values (Figure 13F).

It should be noted that both Region B and Region A

(corresponding to the regions of Figure 1) displayed areas

characterized by low SSH but high flow rates. However, Region A

exhibited low chlorophyll-a concentration. As depicted in Figure 12,

an anomalous region with considerably lower SST (approximately

3°C below surrounding areas) was evident in Region B, contrasting

with Region A’s elevated SST values (Figure 13D).

In conclusion, a discernible correlation emerged between

chlorophyll-a concentration and the variation of environmental

factors. Specifically, anti-clockwise cyclonic winds (Figure 13A)

induced anti-clockwise sea surface current rotation, culminating

in an anti-clockwise vortex (Figure 13B). These forces dispersed

surface waters into adjacent regions, consequently lowering sea

surface height within the eddy zone compared to its surroundings

(Figure 13C). This, in turn, triggered the upwelling of cooler

nutrient-rich waters from the depths to the surface through

Ekman Pumping, leading to lower sea surface temperatures than

neighboring regions (Figure 13D).

Phytoplankton underwent distinct movements based on the sea

layers. On the one hand, Ekman pumping led to the upwelling of

subsurface phytoplankton into the sea surface layer. On the other hand,

phytoplankton blossomed in the mixed layer post-upwelling of cold

water. Adequate temperature, ample light, and nutrients from cold

water beneath facilitated phytoplankton bloom, peaking 4-5 days after

the severe tropical cyclone passage (Figures 13F, 5I, J). Subsequently,
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nutrient depletion reduced phytoplankton amounts (Figures 5M–O).

Reflecting upon this and taking environmental elements into account,

the ExDINEOF-based reconstructed chlorophyll-a concentrations

excellently documented phytoplankton development pre, during, and

post the severe tropical cyclone passage. These findings underscore the

efficacy of employing the ExDINEOF technique for reconstructing

daily-scale chlorophyll-a concentrations.
4.2 Analysis of the causes of differences in
the accuracy of the time series

Figure 14 shows the spatial distribution of points (red data

points within the red oval box) displaying correlation coefficients

exceeding 0.8 ( Figures 14A–L) and hovering around 0.6 (Figures

14M–R) between reconstructed and original data. As highlighted by

Figure 14, the distribution of points with correlation coefficients

exceeding 0.8 and around 0.6 lacks a discernible pattern. To probe

into the reasons behind discrepancies between original satellite and

ExDINEOF-reconstructed data, the relative error encompassing the

entire Bay of Bengal was calculated.

To scrutinize the technical proficiency of ExDINEOF, an

evaluation of the spatial distribution of relative errors was

executed on several days following the severe tropical cyclone

Hudhud’s transit. Data for October 16 and 18 pertained to

phytoplankton blooms, while data for October 24 and 25 related

to phytoplankton extinction.
A B
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FIGURE 10

Comparison of time series for selected spatial regions (A). (B) Time series analysis of different reconstruct methods for selected region. (C) The
comparison of region average values. (D) Comparison analyses of reconstructed results of different methods.
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Figure 15 displays the original satellite data in the left column

(a, d, g, j), outcomes of ExDINEOF reconstruction in the middle

column (b, e, h, k), and relative errors between the two in the right

column (c, f, i, l). The spatial distribution of relative errors generally

fell below 0.3 across most areas. Especially on October 25, when

phytoplankton were diminishing, relative errors were mostly below

0.1. Notably, ExDINEOF didn’t manifest significantly higher

relative errors in the nearshore area—typically marked by

substantial errors and complex influencing factors. This highlights

ExDINEOF’s applicability in nearshore regions characterized by

high turbidity, dynamics, and complexity. Regions featuring

substantial relative errors were predominantly situated near the

phytoplankton blooms zone within the central Bay of Bengal.

Instances of rapid phytoplankton blooms and extinctions are

marked by their high-frequency characteristics in remote sensing

data. The spatial distribution of the relative errors provides insight.
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Notably, ExDINEOF successfully reconstructs a significant portion

of the high-frequency information, displaying reasonable spatial

distribution and discernible texture features. However, certain

aspects of high-frequency information remain filtered out due to

the inherent low-pass filtering nature of DINEOF. Consequently,

the relative errors exhibit greater magnitudes in areas where

phytoplankton blooms and extinctions manifest prominently.
4.3 Differences between the DINEOF and
ExDINEOF methods

ExDINEOF and DINEOF methods distinctly diverge in

outcomes, suggesting distinct intrinsic mechanisms at play. The

conventional DINEOF method hinges on an extensive time series of

sample datasets to identify trends within data. This method then
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FIGURE 11

Daily reanalyzed SSH and flow field in the Bay of Bengal in October 2014. (A–O) show the daily reanalyzed SSH and the flow field at intervals of 2
days from October 1–30, 2014.
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extracts key modes of these trends to define the overall spatio-

temporal characteristics of the original dataset, thus excelling at

recuperating trends within long-term data. However, DINEOF

tends to filter out spatial information at small and medium scales,

as well as high-frequency information, over short timespans,

treating them as noise.

In contrast, ExDINEOF eschews dependence on extended

sample information, reconstructing missing data based on

inherent nonlinear correlations between various environmental

factors and simultaneous chlorophyll-a concentrations. These

correlations arise as both factors are simultaneously influenced

by atmospheric and oceanic dynamical processes. ExDINEOF

captures high- and low-frequency information adeptly,

demonstrating heightened sensitivity to high-frequency
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information (i.e., day-scale, rapid non-long-term shifts). This

renders ExDINEOF effective in reconstructing missing

chlorophyll-a concentrations within dynamic, nearshore water

bodies. This distinction likely underpins differences in time

series accuracy.

Conventional DINEOF has some drawbacks: (1) It

inherently performs low-pass filtering and smoothing within

three-dimensional spatio-temporal data across time and space

dimensions. A limited set of key modes characterizes the overall

spatio-temporal traits, favoring long-term trend analysis.

However, this method erases small-to-medium-scale spatial

and temporal information as noise. (2) Randomly selected

cross-validation data for DINEOF reconstruction can

incorporate anomalous values, propagating errors if these data
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FIGURE 12

Daily reanalyzed SST in the Bay of Bengal in October 2014. (A–O) show the daily reanalyzed SST at an interval of 2 days from October 1–30, 2014.
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points are flawed. The selection of such data significantly

influences subsequent er ror de te rminat ion , opt ima l

reconstruction mode, and the number of reconstructions. (3)

To ensure reconstruction precision, pixels within time series

covering less than a certain ratio (2%) must be preemptively

removed, marking them as land areas. Failing to do so results in

the reconstructed image becoming an average of the original,

potentially leading to reconstruction failure. This issue

historically prompted reconstructions on a monthly scale to

ensure adequate data samples (Wang and Liu, 2014; Wang

et al., 2019).

ExDINEOF supersedes original DINEOF due to: (1) Embracing

the self-adaptive nature of original mono-variate DINEOF, negating

the need for prior variable correlation values. (2) Recovery of the

same variable’s correlations at different moments and of different

variables at the same moment. (3) Utilization of spatial and

temporal proximity to reconstruct missing data based on closely

correlated factors’ signals. (4) Incorporating multiple data sources

like thermal infrared remote sensing, optical remote sensing,

microwave remote sensing, numerical model ing, and

observations, all influenced differently by clouds and thus

complementary (Figure 3).
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5 Conclusion

This paper presents the adaptation and utilization of the

ExDINEOF, a DINEOF-based data reconstruction method, for

the purpose of reconstructing daily chlorophyll-a concentration

data while considering various closely linked environmental factors.

The ExDINEOF method, initially devised for small-scale daily

reconstruction of SST data in the West Florida Shelf Alvera-

Azcárate et al., 2007), was applied to reconstruct daily

chlorophyll-a concentrations in the challenging context of a

severe tropical cyclone passage over the Bay of Bengal, marked by

limited data availability. The improved ExDINEOF proved valuable

in reconstructing fine-grained daily chlorophyll-a concentrations

during the transit of a severe tropical cyclone, with an emphasis on

local spatial information. Comparative analysis was undertaken

among the ExDINEOF method and similar data-reconstruction

techniques, with a focus on the spatial distribution of the

reconstructed outcomes. Furthermore, to gauge the absolute

accuracy of the original satellite data and the reconstructed data,

a bootstrap-type analysis was executed. This involved removing a

portion of the initial data (specifically satellite chlorophyll-a

measurements in this scenario) prior to the data reconstruction
FIGURE 13

Relationship between chlorophyll a concentration (E, F) and environmental factors such as SST (D), Flow field (B), wind speed (A) and SSH (C).
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process. Subsequently, the removed original data were juxtaposed

against the reconstructed data. Additionally, a time series

comparison was performed for selected spatial points to further

evaluate the performance of the ExDINEOF method.

The findings unequivocally demonstrate that the ExDINEOF

method successfully recuperated the absent daily chlorophyll-a

concentrations within the timeframe of a typical severe tropical

cyclone. This was achieved with comprehensive and detailed spatial
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information at a local scale. Moreover, the method aptly captured the

progression of phytoplankton growth, bloom, and extinction. In terms

of spatial distribution of the reconstructed data, the ExDINEOF

method showed superior results when contrasted with other

prevalent data reconstruction methods. Evaluation of the accuracy

for chlorophyll-a concentration data reconstruction confirmed that the

ExDINEOF method surpassed the BAR method and the traditional

mono-variate DINEOF method in terms of accuracy.
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FIGURE 14

Spatial distribution of the points (red oval box) randomly selected by bootstrap-type analysis with correlation coefficients greater than 0.8 (A–L) and
around 0.6 (M–R) between the original and reconstructed data.
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The ExDINEOF approach yielded satisfactory outcomes in

reconstructing daily chlorophyll-a concentrations within the

designated study area. These results serve as a valuable reference for

future endeavors focused on reconstructing daily chlorophyll-a

concentrations in similar small-to-medium regions. Additionally,

they lend support to subsequent investigations concerning the

impact of short-term, small-scale fluctuations in environmental

factors on marine phytoplankton. Nevertheless, the methodology

employed in this investigation carries certain limitations. First, the

validation data points were constrained due to the abbreviated duration

of the severe tropical cyclone. Second, the multitude of environmental

factors influencing chlorophyll-a concentrations is intricate and

diverse. As a consequence, not all these factors were incorporated

into the reconstruction model. Looking ahead, with the advancement

of numerical simulation technology in marine ecology, the challenge of

reconstructing missing (daily) data can be tackled through the

amalgamation of remote sensing and numerical modeling.
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