AUTHOR=Freitas Vânia , Gonçalves Odete , Dolbeth Marina , Ramos Sandra , Morais João , Ozorio Rodrigo O. de A. , Martins Irene , Almeida Joana R. TITLE=Optimization of plastic polymers for shellfish aquaculture infrastructures: in situ antifouling performance assessment JOURNAL=Frontiers in Marine Science VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1229634 DOI=10.3389/fmars.2023.1229634 ISSN=2296-7745 ABSTRACT=
Biofouling poses a significant challenge to bivalve aquaculture affecting both the target culture and/or the immersed infrastructure. In suspended bivalve cultures (e.g., oysters and scallops), biofouling accumulation leads to additional labor demands and increased costs for the maintenance of underwater structures. Given that the inherent properties of materials used in farming infrastructure influence the formation of fouling communities, evaluating how these materials perform under diverse environmental conditions can help the industry select the most effective materials for preventing or minimizing biofouling growth. This study evaluates the impact of aquaculture material and environmental conditions on biofouling, focusing on two commonly used plastic polymers in marine aquaculture: polyamide (PA) and high-density polyethylene (PE). Both untreated and color-additive treated polymers were tested for their response to fouling development. Performance was gauged by total fouling wet weight and the extent of fouling-induced mesh occlusion. Experimental panels were deployed for 4 months (from May to September 2021) in estuarine (oyster farm) and marine (port) environments on the northern coast of Portugal. The marine sites exhibited greater fouling species diversity, while higher biofouling loads were found in the subtidal estuarine area. Within 3 months, complete mesh occlusion occurred mainly due to colonial hydroids (