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Parameterization modeling for
wind drift factor in oil spill drift
trajectory simulation based on
machine learning

Darong Liu1, Yan Li2* and Lin Mu2*

1College of Marine Science and Technology, China University of Geosciences, Wuhan, China,
2College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
Marine oil spill simulations typically employ the oil particle method to calculate

particle trajectories, considering various factors such as wind, current, and

turbulence. The wind drift factor (WDF), a random element determining the

proportion of wind’s effect on oil particles, is often empirically set as a constant in

traditional oil spill models, introducing limitations. This study proposes a support

vector regression-based parameterization modeling (SVR-PM) for the WDF.

Using extensive buoy data and ocean hydrodynamic reanalysis data, we trained

an SVR model to compute the WDF in real-time based on real-time wind speed.

The SVR-PM was integrated into an oil spill model to enhance the computation

of the wind-induced velocity term. We validated the model using satellite images

of two significant oil spills, resulting in an excellent average agreement. The SVR-

PM’s advantage lies in enhancing the accuracy of wind-induced velocity term in

oil spill simulations and demonstrating strong adaptability and generalizability

over time and space. This advancement holds significant implications for

maritime departments and emergency disaster response units.

KEYWORDS

oil spill, numerical simulation, wind drift factor, parameterization modeling,
machine learning
1 Introduction

As one of the most critical fossil energy sources for humanity, oil underpins nearly all

aspects of economic and human activities. Much of the oil development and transportation

process occurs at sea, such as through offshore drilling rigs and ocean tankers, which are the

primary means of oil transportation. The increase in offshore activities associated with oil

raises the potential for pollution from offshore oil spills. Marine oil spill pollution poses a

significant threat to the marine environment, marine life, marine transportation, and sthe

livelihoods of coastal residents. In recent decades, major oil spills have occurred in China’s

offshore areas: the 7.16 oil spill in Dalian Xingang in 2010 (Guo et al., 2016), the 19–3 oil

spill in Penglai in June 2011 (Deng et al., 2013; Xu et al., 2013), the 11.22 oil pipeline

explosion in Qingdao Huangdao in November 2013 (Liu et al., 2022), and the oil spill from
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the oil tanker Sanchi in January 2018 (Pan et al., 2020; Pan et al.,

2021). These large and small oil spill incidents have caused severe

and far-reaching impacts consecutively. Therefore, accurately

simulating the behavior of offshore oil spills can assist relevant

departments in developing emergency response measures and

plans, minimizing the impact and loss in the immediate

aftermath of the disaster.

The behavior of marine oil spills and their fate are highly

complex. Related research has emerged since the 1970s (Fay,

1971). Generally, it can be divided into several stages, such as

transport, spread, dispersion, and weathering. This paper mainly

focus on the transport process. Since the introduction of the oil

particle concept (Johansen, 1982; Elliott, 1986), it has become the

primary research and modeling approach in the field of numerical

simulation related to marine oil spills (Spaulding, 1988; Spaulding,

2017). Specifically, the transport process focuses on the drifting of

oil particles under the combined influence of the marine and

atmospheric environment (ASCE, 1996), including wind,

currents, and waves.

This study focuses on the motion of wind-induced oil particles

during the transport process in numerical simulations of marine oil

spills. The transport of crude oil at sea is subject to the combined

effect of several integrated factors in the marine atmospheric

environment. Dominicis et al. (2016) and Elliott (1986) first

applied the random walk method to describe the motion of oil

particles in the water column. Since then, the Lagrangian approach

to simulate the oil particle transport process has become the scheme

used in most numerical models of oil spills (Reed et al., 1999; Al-

Rabeh et al., 2000; Lehr et al., 2002; Wang et al., 2008; Wang and

Shen, 2010a, Wang and Shen, 2010b). In these models, the factors

influencing the oil particle transport process include sea surface

winds and currents, wave, and turbulence effects. The role of waves,

currents, and turbulence in the ocean dynamics environment

(Tamura et al., 2012; De Dominicis et al., 2013a; De Dominicis

et al., 2013b; Guo et al., 2014) have been studied in detail. On the

other hand, the wind at the sea surface produces a shear force on the

oil particles on the sea surface, which distorts the motion of the oil

particles. The effect of wind on oil particles is generally considered

to be achieved by adding a fraction of the wind speed to the flow

velocity at the sea surface. To obtain this wind speed component, it

is necessary to multiply the original wind speed by a factor, which is

called the wind coefficient or wind drift factor.

The effect of sea surface winds on oil particles belongs to a

subcategory of sea surface winds on offshore passive drift processes.

In the field of maritime search and rescue, most of the

parameterization models of wind drift coefficients are corrected or

established by conducting field experiments of offshore passive drift.

For example, Zhu et al. (2019) and Tu et al. (2021) have successively

studied the passive drift process of fishing boats and overboard

individuals under the influence of wind, waves, and currents. By

releasing test targets at sea and recording the drift trajectory over a

period, the drift patterns under general conditions can be studied,

along with the corresponding marine environmental field data.

Consequently, the WDF corresponding to a class of objects under

specific marine environmental conditions can be obtained.

However, in the study of oil spill models, it is not possible to
Frontiers in Marine Science 02
obtain the WDF corresponding to the oil particles under the

influence of wind through actual sea experiments. Existing

research has investigated the effects of wind on oil spills. Kim

et al. (2014) explored the influence of WDFs on oil spill behavior

under potent tidal conditions. Chen et al. (2007) simulated oil slick

movement under the impact of tides, wind, and waves. Marques

et al. (2017) constructed a numerical model for oil spills, studying

various factors influencing coastal circulation and oil spills.

Notably, they concluded that winds and currents account for

more than 90% of oil transportation. Mohan et al. (2014)

established a hydrodynamic model and simulated an oil spill over

48 h for each month/season, considering prevalent current and

monthly mean wind conditions. As per ASCE (1996) and French-

McCay (2004), the behavior and fate of spilled oil are directly linked

to the direction and intensity of the winds. Winds play a crucial role

in the drift of the oil slick. Generally, the wind-induced velocity

term in the oil spill model is empirically determined or depends on

the magnitude of the WDF. For instance, De Dominicis et al.

(2013a) and De Dominicis et al. (2013b) set the WDF to 0%–3%.

Bozkurtoğlu (2017), in their oil spill trajectory modeling for

contingency planning, set the WDF to 3%, as per Stolzenbach

et al. (1977). Meanwhile, Reed et al. (1994) and Carson et al. (2013)

kept the WDF below 6%. In fact, the wind variation on the sea

surface varies significantly in different time periods, so determining

the appropriate WDF is crucial for simulating the oil spill behavior

process. Most current models (French-McCay, 2004; Chen et al.,

2007; Wang and Shen, 2010b; Xu et al., 2015; Spaulding, 2017) treat

the WDF as a constant or just ignore it, which has some limitations

in simulating complex oil spill behavior processes.

Machine learning is a complex statistical modeling technique

that requires high computational power and large amounts of data

for support. It can extract desired features from large datasets using

intricate models and is often employed to solve regression or

classification problems. In this study, we propose a new

parameterization model for WDFs in oil spill simulations using

support vector regression (SVR) (Smola and Schölkopf, 2004), a

model based on machine learning techniques. SVR is a machine

learning algorithm that is a regression form of support vector

machine (SVM) (Hearst et al., 1998). Compared to traditional

regression algorithms, SVR is more suitable for problems with

non-linear relationships, high-dimensional feature spaces, and

noise interference. SVR maps data into a high-dimensional

feature space, uses kernel functions to measure the similarity

between data points, and employs support vectors to fit the non-

linear relationships of the data. During training, SVR optimizes

model parameters by minimizing prediction error and model

complexity, and it utilizes cross-validation methods to select the

optimal model. SVR has many advantages, such as strong

generalization ability and noise resistance. In practical

applications, SVR is widely used in financial prediction,

environmental prediction, image processing, medical diagnosis,

and other fields. To address the limitation of setting the wind

drift coefficient as a constant in traditional numerical simulations,

we use a large amount of drifter data and ocean environment

reanalysis data to train an SVR-based parameterization model

(SVR-PM), making the WDF a dependent variable corresponding
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to the wind speed. This approach improves the accuracy of the

numerical oil spill model while addressing the shortcomings of

traditional models.

The structure of this paper is as follows. Section 2 describes the

overview of the numerical oil spill model selected for the study,

numerical methods, governing equations, boundary conditions, and

the structure of the SVR model. Section 3 presents the data sources,

experimental parameters, experimental framework, and structure

used in the study. Sections 4 and 5 use satellite observation images of

two high-impact oil spills that occurred off China—the Penglai 19-3

oil spill in June 2011 and the Sanchi oil tanker spill in January 2018

—to compare the experimental results of the model proposed in this

paper, verifying the accuracy of the model and further comparing

the parameterization model of this paper with other models to

provide the final conclusions.
2 Methodology

The problem of WDF in the oil spill simulation, which is the

concern of this study, only deals with the behavior process and fate

of oil particles on the sea surface. In general, this part of the

simulation can be divided into the advection-diffusion module

(ADM) and the weathering module. As indicated in Chen et al.

(2015), a three-dimensional underwater oil spill model was chosen

to make these simulations. The specific numerical methods and

governing equations are formulated as follows.
2.1 Advection-diffusion module

In the ADM, the Lagrangian particle tracking method (random

walk) is utilized to simulate the trajectory of oil (Al-Rabeh et al.,

1989; Wang et al., 2008; Yapa et al., 2012). The basic governing

equation is:

∂C
∂ t

+ ~V ·∇C = ∇ · ~K ·∇C
� �

+o
m

i=1
Si (1)

where C is the oil concentration (mass fraction of oil content) in

water column, ~V is the advection velocity vector, ∇ is the gradient

operator, ~K = (Kx ,Ky ,Kz) is the turbulent diffusion tensor in water,

and Kx ,Ky ,Kz are diffusion coefficients in x, y, and z, respectively. In

our model, the movement of oil particle is calculated by (Wang

et al., 2022):

d~S
dt =

~UC + ~Udiff + ~UW ,   at   the   surface

d~S
dt =

~UC + ~Udiff + wb
~k,   underwater

(2)

where~S = (x, y, z) is the displacement of oil particle, and x,   y,

and z are Cartesian coordinates. ~UC is the velocity due to the effect

of the ocean current, which is equal to the sea surface velocity of

ocean current. ~Udiff is the diffusion velocity of the oil particle due to

the turbulent diffusion process. ~UW is the wind-induced velocity of

oil particle. wb is the buoyancy velocity of oil particle and is
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calculated through the oil droplet size using the methods in (Yapa

et al., 1999). 120 k
!

is the unit vector in the vertical direction.

The ~Udiff is the diffusion velocity due to turbulent diffusion

process, which can be formulated by the random walk method as:

~Udiff = (udiff , vdiff ,wdiff ) =

ffiffiffiffiffiffi
6
Dt

r
(Rx

ffiffiffiffiffiffi
Kx

p
,Ry

ffiffiffiffiffi
Ky

q
,Rz

ffiffiffiffiffi
Kz

p
) (3)

where udiff , vdiff ,   and  wdiff are the components of the diffusion

velocity in the x, y, and zdirections, respectively.  Rx ,  Ry ,  and  Rz

are independent and uniformly distributed random numbers

ranging from −1 to 1. Kx ,  Ky ,  and  Kz are the components of

dispersion coefficients in x, y, and z directions, which can be

calculated as described by Cao et al. (2021).

The ~UW term in Eq. 2 can be calculated as follows:

~UW = (uwind , vwind) = a*
cosb sinb

−sinb cosb

" #
u10

v10

" #
(4)

where uwind and vwind are the components of the oil drift velocity

at the surface due to the wind in x and y directions. u10and v10 are

the components of the wind velocity at 10 m above sea surface in x

and y directions. a is the target to be parameterized in this study.

The detail determination of a will be discussed later. b is the wind

deviation angle, which is 40 − 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u210 + v210

4
p

when wind velocityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u210 + v210

p
is <25 m/s, or 0 otherwise (Wang et al., 2008; Wang and

Shen, 2010b).
2.2 Oil weathering module

When the spilled oil is transported through the water column or

on the sea, the oil displacement and property will be impacted by

some weathering process: dissolution, evaporation, emulsification,

etc. Details of the different stages of weathering module can be

found in Li et al. (2018) and Chen et al. (2015) and will not be

repeated here.
2.3 Support vector regression model

SVM, proposed by Vapnik (1999), is a powerful methodology

for solving non-linear classification, function estimation, and

regression problems. Numerous studies have documented the

details about SVM (Chen et al., 2009; Li et al., 2012; Chen et al.,

2016). Assuming the training dataset is xk, yk,   k = 1, 2,…,N , where

xk ∈ Rd is the kth input pattern, and ddenotes the dimension of the

input space. yk is the corresponding class label, which is a binary

variable, either 1 or −1, while in regression problems, yk indicates

the output feature value. xk is the input vector to the SVMmodel for

classification or regression. In our model, the xk is the processed

wind speed U and V components; yk is WDF calculated by the input

wind speed, which can be seen as the output of the regression

model. The process and sources of training dataset will be discussed

in the next part.
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When the training dataset is prepared, the feature space is

introduced by a function, which maps the input space to the high

dimensional feature space, i.e., f :Rm → F such that the non-linear

function under approximation in the input space becomes a linear

function in the feature space. Consider a linear function in the input

space:

f (x) = 〈w, x 〉+b (5)

where wis the function coefficient vector, b is a real constant,

and ·, · denotes the dot product on the input space. To estimate a

function fwithin a finite accuracy:

f − f̂ ≤ ±ϵ (6)

where f̂ is the estimate of f and ϵ is a real constant that is fromN

samples DN = fzi, yigNi=1. A loss function known as an ϵ−insensitive

function, as defined in Eq. 10 can be used to evaluate the robustness

of SVR.

∣ z ∣⋲ =
0, if zj j < ϵ,

zj j − ϵ, otherwise

(
(7)

It allows errors to occur within the interval ½+ϵ,−ϵ�, but no
errors are allowed outside this interval. The ϵ− insensitive function

corresponds with a probability distribution of the noise, as follows:

P(z ) =
1

2(1 + ϵ)
exp( − zϵj j), z = (y − f (x)) (8)

The cost function penalizes the large values of w by using ‖w ‖2

so that the estimated function f̂ is a smooth function. The cost

function of SVR is

minimize  1
2 ‖w ‖2

subject to 
yi − 〈w, zi 〉−b ≤ ϵ,

〈w, zi 〉+b − yi ≤ ϵ :

(
(9)

This constrained optimization problem can be solved through

the Lagrange technique:

Lp =
1
2 ‖w ‖2 −o

N

i=1
ai(ϵ − yi + 〈wi, zi 〉 +b)

−o
N

i=1
a*i (ϵ + yi − 〈wi, zi 〉 −b)

(10)

where ai,a*i are Lagrange parameters. Eq. 11 is known as the

primary objective function. The corresponding dual objective is

maximize − ϵo
N

i=1
(ai + a*i ) +o

N

i=1
yi(ai − a*i ) −

1
2 o

N

i,j=1
(ai

− a*i )(aj − a*j ) 〈 zi, zj 〉 (11)

subject to
o
N

i=1
(ai − a*j ) = 0:

ai,a*i

8><
>: (12)
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Eq. 12 represents a standard constrained quadratic problem.

The solution of the dual objective function is equal to the solution of

the primary objective function. For non-linear cases, the dot

product 〈 zi, zj〉 in Eq. 12 becomes a kernel 〈 f(zi), f(zj) 〉F =

K(zi, zj). The prediction is achieved by:

ŷ = f̂ (x) =o
N

i=1
(ai − a*i )K(x, zi) (13)

where K(x, zi) is known as a kernel function, defined as the

radial basis function (also known as Gaussian kernel function)

(Casdagli, 1989). The equation of RBF f̂ :Rd → R has the form:

f̂ (x) =o
N

i=1
cif( ‖ x − zi ‖ ) +o

k̂

i=1
mipi(x) (14)

where pi :R
N → R is a basis of the space of polynomial function

of degree at most k. k̂  and kare constant. Eq. 14 should satisfy the

following constraint:

o
N

i=1
cipj(zi) = 0forj = 1, 2,…, k̂ (15)

The most common RBF f( · ) are defined as:

f1( ‖ r ‖ ) = exp(
−r2

b2 ), f2( ‖ r ‖ ) = r2log(r) (16)

where b is constant. Let Aij = f( ‖ zi − zj ‖ ) and zji is the i the

component of zj. In the case k = 1 and k̂ = d, the coefficients are

obtained by solving:

y1(21)

y2(22)

⋮ (23)

yN (24)

0(25)

0(26)

⋮ (27)

0(28)

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

=

A11 A12 … A1N 1 z11 … z1d

A21 A22 … A2N 1 z21 … z2d

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

AN1 AN2 … ANN 1 zN1 … zNd

1 1 … 1 0 0 … 0

z11 z21 … zN1 0 0 … 0

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮

z1d z2d … zNd 0 0 … 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

c1

c2

⋮

cN

m0

m1

⋮

md

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(17)

The whole process of SVR using RBF kernel function can be

summarized as follows: for each x belonging to the testing set, a

cross-validation method is performed to select data from the

training set. The selected training examples DN = fzi, yigNi=1 are

then used to obtain the SVR function 13 by solving Eq. 12. The

prediction of x is calculated by substituting x into Eq. 13 (Lau and

Wu, 2008).
2.4 Parameterization modeling for WDF

In this study, we utilized an SVM-based regression model SVR-

PM for parameterization modeling of the WDF. The overall

technical route is illustrated as Figure 1.
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The whole parameterization modeling consisted of the parts of

pre-processing, SVR model, and oil spill simulation model. The

basic idea of the model is to integrate the pre-trained SVR-PM into

the ADM module of the oil spill simulation. At each time step of oil

spill simulation, before calculating the wind-induced speed of oil

particles, sea surface wind speed read from background

environmental field at this location at this time is input to the

SVR-PM, and the WDF corresponding to the current wind speed is

obtained in real time and applied to the calculation of wind speed.

The details of the SVR-PM are described below.

2.4.1 Preprocessing
Buoy drift at sea results from the combined effects of multiple

factors including wind, waves, currents, and turbulence.

Nonetheless, in this study, due to their lesser impacts, the

influences of waves and turbulence are not considered, focusing

instead on wind and current effects on buoys. It is crucial to note

that the drift characteristics of buoys and oil particles may differ

significantly. The actual drifting process of oil particles is not easily

captured, and only the overall drifting and convergence of oil films

can be discerned through various observation methods.

Consequently, the modeling of the oil spill drift process must rely
Frontiers in Marine Science 05
on other types of drift data. Buoy data, with its large amount, long

drift time, and wide spatial and temporal distribution, becomes a

preferable choice. It can serve as an approximation of the oil particle

transport model.

The entire data preprocessing part consists of the following steps.
2.4.1.1 Filtering undrogued buoy data

This is vital for studying the wind-induced velocity component.

For the drifting process of buoys at sea, the primary dynamic

elements originate from the currents and sea surface wind. We aim

to study the mechanism of wind effect on the buoy, and the role of a

drogue is to filter out the wind action and capture the current

magnitude. Hence, the initial step of data preprocessing involves

selecting undrogued drifter data.
2.4.1.2 Obtaining the buoy’s wind-induced speed

As noted earlier, the buoy’s drift results from the combined

effect of wind and currents. The WDF primarily illustrates the

relationship between the original wind speed and the wind-induced

velocity. Therefore, the wind-induced speed can be attained though

this equation:
FIGURE 1

Overall technical route of parameterization modeling.
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Uind = Uori − Ucurrent

Vind = Vori − Vcurrent

(18)

where Uind   and  Vind are the wind-induced velocity of drifters

in U and V directions; Uori and Vori are the original speed of drifters

on the sea; Ucurrent   and  Vcurrent are the sea current velocity

corresponding to the original speed at each position at

each moment.

2.4.1.3 Calculating the drifter’s WDF

Once the sequence of wind-induced velocity and original wind

speed has been obtained, the WDF in Eq. 4 can be calculated using

following formula:

f (W,a , b) = a · A · W,  W = (Uwind ,Vwind),A

=
cosb sinb

−sinb cosb

 !
(19)

minimize   (f (W,a , b) − U)2,U = (Uind ,Vind) (20)

where Uwind  and Vwind are the sea surface wind speed

components in U and V directions, and Uind  and Vind are the

wind-induced velocity in U and V directions. Using the least

square fitting towards Eq. 20 through inputting a sequence of

wind-induced velocity and wind speed can get the value of WDF.
2.4.2 Training and integrating with oil spill model
Since calculating theWDF requires a series of wind speed values

and the corresponding wind-induced velocity values to complete

the fitting process using mathematical methods, it is impossible to

train the SVR model with the wind speed series data as the input

and the correspondingWDF as the output of the training set. This is

because, in the final oil spill model, the only input that can be

provided at each time step for calculating the wind-induced velocity

is background environmental field wind velocity at current time

step for both U and V values. To resolve this conflict, the series of

wind speed values used for the fitting process are averaged to obtain

mean wind velocity, denoted as MeanU10 and MeanV10, which

represent the average wind speed at a 10-m height above sea level in

the U and V directions, respectively, as input data for the training

process of the SVR-PM. The corresponding WDF a obtained by

least squares fitting serves as the corresponding output (label data).

After this preprocessing, one buoy corresponds to one sample

containing the average U and V wind speed values, MeanU10 and

MeanV 10, and the corresponding WDFs. Numerous buoy sample

data are collected and split into training and test datasets for the

training and cross-validation process of the SVR model, ultimately

yielding the complete SVR-PM.

Upon completing the training, the model is integrated with the

ADM module of the oil spill simulation. The SVR-PM accepts the

wind velocity as input, then predicts the corresponding WDF value

before calculating the wind-induced velocity term at each time step.

Finally, the predicted WDF values and the U and V wind speed

components are used in Eq. 4 to complete calculation of the wind

induced speed term of each oil particle.
Frontiers in Marine Science 06
3 Experiment

In this section, the details of data used in preprocess part, model

training, and oil spill simulation will be introduced. In addition, the

configuration of the simulation will be discussed.
3.1 Data preparation

In the preprocessing part, the data to be used include buoy data,

sea surface reanalysis wind data, and ocean hydrodynamic data.

3.1.1 Buoy data preprocess
The buoy data are from satellite-tracked surface drifting buoys

(drifters) of the NOAA Global Drifter Program. In our study, the

velocity and position of buoy were used, which can be found in

Elipot et al. (2016, 2022). The processing of raw buoy data unfolds

in several stages: outlier processing, selection of undrogued data,

temporal segmentation, and wind-induced speed calculation. The

raw data selected for this study encompass a total of 4,515 buoys

situated within the spatial range of the global oceans spanning the

decade from 2010 to 2020. Initially, the raw data are subjected to

outlier removal. While all buoys are initially equipped with drogues

to record sea surface currents, drogues may be lost due to various

reasons. The variable “drogue_lost_date” is recorded in the dataset.

Thus, we need to filter the data to include only those buoys that

continue to drift for a specific period of time (100 h) after the

drogue is lost. The loss of the drogue causes the buoy to drift under

the combined influence of wind and current, making it an ideal

subject for our experiment. After filtering, 4,176 buoys remain, their

drifting periods varying from a few days to several weeks or even

years. The next step involves temporal segmentation. As we

consider the buoy data to approximate the trajectory of oil

particles during the generation of training data, the raw buoy data

must initially undergo preprocessing and partitioning into time

series of equal length. Given that the initial period of oil spill

distribution and behavioral process is of most interest in most oil

spill simulations, we select 480 h as the basis for segmentation. By

partitioning the data into 480-h segments, the 4,176 datasets are

subdivided into a number of fixed-length buoy velocity sequences.

According to the Section 2.4.1, the pre-processing procedure of

the subsequent section is completed, and the data are cleaned and

aggregated to obtain the wind-induced velocity and original wind

speed sequences of the buoys, with a total of 11,135 sample data.

Figure 2 shows the starting positions of all drifters. The distribution

is very wide, basically covering all the oceans of the world. The

broad spatial and temporal distribution of the data is the essence of

the parameterization modeling in this study.

3.1.2 Marine hydrodynamic data
The marine environmental reanalysis data used in this study are

divided into two parts: one is the wind and current field data used in

combination with buoy data to process and train the SVR-PM;

another is the wind, current, and temperature and salt field data

used to drive the oil spill simulations. For the segmented buoy data,
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the environmental field data used to calculate the wind-driven

velocity terms and the corresponding WDFs are derived from the

ECMWF ERA5 (Hersbach et al., 2023) dataset and the NOAA

NCEP (CFSv2) (Saha et al., 2014) dataset. The ERA5 dataset,

encompassing hourly data of u and v wind speed variables at

10 m above the sea surface, was utilized. This dataset has a spatial

resolution of 0.25° and a spatial and temporal extent that aligns with

the range covered by the buoy data, totaling about 750 GB. From the

NCEP dataset, we selected hourly data of u and v velocity variables

at the sea surface. This dataset has a spatial resolution of 0.5° and a

spatiotemporal range consistent with that covered by the buoy data,

amounting to approximately 170 GB. After the data processing was

completed, bilinear interpolation was used on the wind and current

field data to determine the current and wind velocities at each buoy

location. The dataset for training the model was obtained by

processing according to the scheme outlined in Section 2.4.1.
3.2 Configuration of oil spill model

In order to verify the performance of the SVR-PM, two

significant oil spill events in China sea were chosen to make

simulation by the proposed model. In addition, satellite remote

sensing is a significant method for observing the distribution and

fate oil spilled on the sea surface. Several satellite images were

obtained to make verification of the proposed model. The details of

the configuration and background hydrodynamic data are

described in Table 1.

The wind field data are from the ERA5 wind reanalysis data

(Hersbach et al., 2023). In addition, the current, temperature, and

salinity data are from HYCOM (https://hycom.org). The dataset

used is the output of Global Ocean Forecasting System(GOFS)

version 3.1 on the GLBv0.08 grid, which is 0.08° resolution between
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40°S and 40°N, poleward of these latitudes. The forecast model run

produce the forecast up to 5 days ahead with 3 h frequency, which is

stored under GLBv0.08/expt 93.0/uv3z datasets.

Satellite observation is a very essential approach to monitor

marine oil spill pollution. There are many types of satellite

observations, and the more common means in the marine field is

to use SAR satellite observation images to compare with numerical

simulation results to verify the accuracy of the model or to study the

behavior mechanism of the oil spill (Cheng et al., 2011; Cheng et al.,

2014; Xu et al., 2015). On 4 June 2011, oil spill incidents occurred at

the Penglai 19-3 oilfield’s Platform B in the Bohai Sea, China, which

is operated by the China National Offshore Oil Field, located at

38.3° N, 120.08° E (Xu et al., 2013). These incidents led to the

spillage of approximately 700 barrels of oil and 2,500 barrels of

mineral oil-based drilling mud onto the seabed. Satellite image

observation data from 02:14:57 on 11 June 2011 and 02:05:02 on 14

June 2011 were utilized to validate the model. Used image

originated from the Synthetic Aperture Radar (SAR) image from

ENVISAT Advanced SAR with wide swath and VV polarization

(Xu et al., 2013). A simulation integrating the SVR-PM was

conducted from 02:00, 11 June to 02:00, 14 June, lasting 72 h.

The primary aim of the proposed modeling focused on the

trajectory of surface oil particles affected by wind. The oil slick

distribution at 02:00 on 11 June was selected as the initial conditions

for the Penglai 19-3 case, and the distribution at 02:00 on 14 June

served as the verification distribution, as show in Figure 3.

The Panama-registered oil tanker Sanchi (IMO:9356608), en

route from Iran to South Korea, collided with the Chinese bulk

carrier CF Crystal (IMO:9497050) at 30°51.1′N, 124°57.6′E in the

East China Sea at 19:50 on 6 January 2018. The collision resulted in

an oil leak, subsequent fire, and explosions. The tanker drifted while

burning for approximately 8 days and sank in water 115 m deep at

28°22′N, 125°55′E at 16:45 on 14 January. The flames on the sea
FIGURE 2

Initial location of all drifters used in this study.
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surface did not extinguish until 09:58 on 15 January. SAR images by

the Chinese Gaofen-3 were also used in this case. The satellite

observation at 06:19 on 15 January with 10 m resolution and

100 km swath was used as the initial distribution condition, and

the observation at 05:33 on 21 January with 50 m resolution

and 300 km swath (Pan et al., 2020) served as the verification

distribution, as shown in Figure 4.
4 Results and discussion

This section will validate the accuracy of the proposed model.

First, the selection of hyperparameters in the training process of the

SVR model will be described. Then, the simulation results of the

proposed oil spill model integrated with SVR-PM will be compared
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with the satellite observation data. Finally, the simulation results of

wind drift coefficients derived from the traditional method rate are

compared with the experimental results of the proposed model, and

final conclusions are drawn. A set of hyperparameter combinations

with relatively optimal performance was found by training and

model tuning the SVR model using MATLAB regression learning

toolbox using 11,135 buoy and wind field data after pre-processing.

Kernel function was radial basis function or medium Gaussian

function, the kernel scale was 1.4, and the box constraint and

epsilon were automatically set, also with standardize training data.

Several metrics including root mean square error (RMSE), mean

absolute error (MAE), mean square error (MSE), and coefficient of

determination (R2) were used to evaluate the performance of SVR

model. RMSE was 0.9861, MAE was 0.50958, MSE was 0.0618, and

R2 was 0.67.
TABLE 1 Configuration of oil spill scenario.

Oil spill
scenario

oil spill initial
distribution

oil spill
location

Wind
data

Current
data

Temperature and
salinity

Observation
distribution

Penglai 19-3 oil spill (GMT+8)02:14, 11 June
2011

38°17′ N, 120° 4′
E

ERA5 wind HYCOM HYCOM (GMT+8)02:05, 14 June
2011

Sanchi oil tanker oil
spill

(GMT+8)06: 19, 15 January
2018

30°51.1′N, 124°
57.6′E

ERA5 wind HYCOM HYCOM (GMT+8)05:33, 21 January
2018
FIGURE 3

ENVISAT ASAR observation (wide swath and VV polarization) of Penglai 19-3 oil spill in 11.6.2011 and 14.6.2011.
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4.1 Satellite observation verification

The simulation of the Penglai 19-3 oil spill employing the

proposed model is depicted in Figure 5. The black area in the

figure represents observational data from 11 June, which is utilized

as input to simulate the subsequent 72-h behavior using the

advection diffusion and weathering modules in the oil spill

simulation. The simulation result for 14 June is denoted as the

red area in the figure. Although there is less agreement with the

observed data (depicted in pink) in the two northern parts, the

overall trend is similar. For the larger southern area, the simulated

results fall predominantly within the observational data coverage.

However, there is a significant discrepancy in the oil slick area. It is

important to note that the oil spill model in this study only

considers the actions of surface oil particles. As the spill point in

this incident was actually below the surface, the model does not

account for oil–water interactions within the water column, sunken

and submerged oil, or subsequent spills following the initial oil spill.

Consequently, the oil slick in the simulation results was

considerably smaller than what was observed in reality.

Figure 6 presents the simulation results of the Sanchi oil spill

incident, juxtaposed with satellite observational images. The black

portion illustrates observational data from 15 January, which serve

as an input for the simulation of the subsequent 144-h behavior.

The simulation reveals a commendable agreement between the

distribution of the oil slick and the satellite observational data.
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The only discrepancy lies in the area covered by the oil slick, which

is an acceptable margin of error g iven the reasons

previously discussed.
4.2 Comparison with traditional method

In the traditional oil spill model, the WDF is set using empirical

values. According to the previous section, two values are usually

used: one is 0–0.03, and the other is 0–0.06. In this section, the

simulation results using empirical values are compared with those

using parameterization models to verify the feasibility and accuracy

of the parameterization model. In addition, based on Eq. 12 in Guo

et al. (2018), an index used to quantitatively evaluate the oil spill

simulation results was introduced to measure the accuracy of the

model:

Pcov = 0:5*
Aso

AO
+ 0:5*

Aso

AS
(21)

where Pcov is the coverage percent of oil spill simulation; the

closer it is to 1, the more accurate the simulation is. Aso is the

superposition of the observed and simulated areas. AS is the areas of

the simulation. AO is the observed areas.

Figures 7 and 8 present the simulation results when the WDF is

set to 0.03 and 0.05, respectively. In addition, these three schemes

are denoted as Experiment 1 (Exp. 1) and Exp. 2. The Pcov and areas
FIGURE 4

Chinese Gaofen-3 SAR observation of Sanchi oil spill in 1.15 (10 m resolution and 100 km swath) and 1.21 (50 m resolution and 300 km swath), 2018.
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were calculated through the spatial analysis toolbox in ArcGIS. The

comparison results are detailed in Table 2. Looking at the Penglai

19-3 case, the simulation shows a substantial deviation when the

WDF is set at 0.03, a value typically used in most traditional oil spill

models. Regarding Pcov , the SVR-PM’s Pcov reaches approximately

19%. On the contrary, in Exp. 1, there is no overlap between the

simulation result and observed data, yielding a Pcov of 0.

As for the Sanchi case, the area covered by the simulation is

marginally larger than that obtained using the proposed SVR-PM

model. The superposition area of the SVR-PM in the Sanchi case is

approximately 5:7   km2, while it is approximately 10:6   km2 in Exp.

1. Despite the superposition area in Exp. 1 being roughly double

than that of SVR-PM, the Pcov values between them are closely

comparable. This minor difference in accuracy, coupled with the

area in the southeast corner slightly exceeding the observed data,

poses a challenge.

Based on the works of (Reed et al., 1994; Carson et al., 2013), the

WDF is typically set below 6%, leading us to conduct Exp.2.

However, the resulting effects of both cases showed a significant

divergence, making the outcomes less acceptable. Specifically, the

Pcov of both cases proved to be less accurate than the results

obtained from the SVR-PM. This highlights the importance of the

precise setting of WDF and the potential of SVR-PM to enhance the

accuracy of oil spill simulations.
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In our final experiment (denoted as Exp. 3), we set the WDF to

0.01, as demonstrated in Figure 9. The results revealed a marked

improvement in model performance compared to both Exp. 1 and

Exp. 2. For the Penglai 19-3 case, the coverage percentage (Pcov) is

almost 10% higher than the results of SVR-PM, and the area of

overlap in Exp. 3 is approximately 50% larger. Concerning the

Sanchi case, the coverage area of Exp. 3 is twice as large as that of

SVR-PM, with a discrepancy in Pcov of nearly 7%. This may suggest

that setting the WDF to 0.01 results in higher accuracy in oil spill

simulations for the two cases considered in this study compared to

the proposed model. However, it is critical to note that determining

the appropriate WDF for any oil spill simulation remains an open

problem that must be addressed before the first simulation is

conducted. Several sensitivity experiments are required to fine

tune the WDF to accurately simulate the behavior of oil particles

on the sea surface. In the context of the experiments carried out in

this study, at least two or more trials are necessary to find an

optimal setting, underscoring the advantage of the model proposed

in this paper.

Considering the combined results among simulations, the

parameterization model proposed in this study demonstrates

satisfactory performance across varying oil spill simulation

scenarios. For Penglai 19-3 case, the average Pcov of three

experiments is approximately 13%, but the coverage percentage of
FIGURE 5

Validation of Penglai 19-3 oil spill range from 11.6.2011 to 14.6.2011.
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SVR-PM is better than this, which could reach 19%. Similarly, in the

Sanchi case, the Pcov of SVR-PM can also reach the mean of three

experiments. Given the time differences between the two incidents

and the geographical variances, the role of the wind on sea-surface

oil particles proves to be highly significant. The simulation results

validate the utility of the WDF parameterization scheme in the oil

spill model, utilizing numerous buoy data with extensive spatial and

temporal distribution. The broad temporal range ensures the

accommodation of wind effect variations across different seasons.
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Moreover, the extensive spatial distribution endows the model with

some degree of geographical generalization capability.
5 Conclusion and prospect

In this study, we propose an SVR-based parameterization

modeling method, termed SVR-PM, to parameterize the WDF in

oil spill simulations. Most existing oil spill simulations typically use
FIGURE 7

Comparison between the parameterization model and WDF set as 0.03 for two oil spill cases.
FIGURE 6

Validation of Sanchi oil spill range from 15.1.2018 to 21.1.2018.
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a fixed empirical value for the WDF. However, this approach has

several limitations as the WDF determines the proportion of wind

action influencing the motion of oil particles. To address these

limitations, we utilize SVR, a machine learning algorithm widely

used for regression problems, to construct a parameterization

model of the WDF. The training data for this model comprise an

extensive set of buoy data, which is temporally and spatially

distributed, coupled with corresponding ocean hydrodynamic

reanalysis data. Using these resources, we train an SVR prediction

model that can accept real-time wind speed inputs and provide the

WDF under corresponding wind speed conditions. We then

integrate this model into an oil spill simulation that considers the
Frontiers in Marine Science 12
convective diffusion of surface oil particles and the weathering

process, transforming the WDF from a constant to a dependent

variable that varies with wind speed.

During the validation phase, we use satellite observations of two

high-impact oil spills that occurred offshore China to verify the model’s

accuracy. Although the fit of the SVR model is approximately 70%, it

still delivers better results than traditional methods when used in oil

spill event simulations. Furthermore, the model can achieve accurate

results without adjusting parameters and settings for oil spill

simulations across various geographical locations and time periods

(seasons). The Pcov , which measure the accuracy of oil spill simulation,

could reach the average level of simulation results of different schemes
TABLE 2 Accuracy evaluation between SVR-PM and constant WDF settings.

Case Penglai 19-3 Oil spill, observed area: 324.1 km2 Sanchi Oil spill, observed area: 288.2 km2

Scheme Exp. 1 Exp. 2 Exp.3 Exp. 1 Exp. 2 Exp. 3

WDF setting SVR-PM 0.03 0.05 0.01 SVR-PM 0.03 0.05 0.01

Simulated area (km2) 62.4 61.3 60.9 62 29.4 46 48.7 39.8

Superposition area(km2) 20.2 0 0 28.4 5.7 10.6 5.4 11.8

Covered percent(%) 19.3022% 0.0000% 0.0000% 27.2846% 10.6828% 13.3607% 6.4810% 16.8713%
fro
FIGURE 9

Comparison between the parameterization model and WDF set as 0.01 for two oil spill cases.
FIGURE 8

Comparison between the parameterization model and WDF set as 0.05 for two oil spill cases.
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of WDF settings. The SVR-PM’s advantage lies in enhancing the

accuracy of oil spill simulations and demonstrating strong adaptability

and generalizability over time and space. This advancement holds

significant implications for maritime departments and emergency

disaster response units.

While this study presents promising findings, there are still a

few limitations worth noting:

1. The parameterization modeling in the current research does

not take into consideration the b-values. The wind drift effect is, in

reality, determined by both the wind drift factor a and the wind

deflection angle b . However, this paper only considers the

parameterization of a and does not investigate the magnitude of

the wind drift angle, b . Future studies should give more attention to

the wind drift angle.

2. This study only selected one type of buoy data to investigate its

wind drift mechanism. Nonetheless, the nature of passive drift at sea

can vary based on different types of buoys, considering differences in

size and submergence depths. Additionally, there are numerous factors

influencing the effects of various ocean dynamics elements (e.g., wind,

waves, turbulence) on drifting objects. These influencing factors ought

to be considered in future research.

3. Other coefficients or stochastic processes that determine the

behavior and fate of the oil spill still need to be addressed. For

example, the random walk method, commonly used in modeling

the spread of oil spills, involves key parameters that should be

considered for modeling in future studies of such processes.
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