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Lightweight marine biological
target detection algorithm
based on YOLOv5

Heng Liang and Tingqiang Song*

College of Information Science and Technology, Qingdao University of Science and Technology,
Qingdao, China
Underwater object detection currently faces many challenges, such as the large

number of parameters in existing object detection models, slow inference speed,

blurring of underwater images, and aggregation of small targets, making it difficult

to conduct efficient underwater object detection. This paper proposes a

lightweight underwater object detection algorithm based on YOLOv5.The

method uses depth-wise separable convolution instead of ordinary convolution

to reduce the number of parameters and computational complexity. A C3 module

based on Ghost convolution is designed to further compress the model size and

improve the computational speed. In the feature extraction stage, a RepVgg

module based on structural reparameterization is used to convert the multi

-branch structure into a single-branch structure in the inference stage,

improving the feature extraction ability of the model and increasing the

inference speed. A Rep-ECA module is designed to embed the efficient channel

attention module ECANet into the RepVGG module, selecting more effective

channel information and improving the model’s feature extraction ability for small

objects in blurred images, thereby improving detection precision. Experimental

results show that in the URPC underwater object detection dataset, the proposed

algorithm has a 39% lower model parameter count compared to the original

model, a 42% reduction in computational complexity. The model can achieve a

frame rate of 85 on a single Nvidia GTX 1080ti GPU, which is a 24% improvement

over the original model, while mAP reaches 85.1%, a 1.1% improvement over the

original model. The algorithm can improve the detection precision and achieve

lightweight, which lays a foundation for the deployment of underwater equipment.

KEYWORDS

underwater object detection, YOLOv5, Ghost convolution, RepVGG, ECANet
1 Introduction

The marine underwater environment is extremely complex, and there are many

potential dangers, which make the development and exploration of the ocean still face

many difficulties and challenges. Today, with the rapid development of artificial intelligence

and robotics industries, using underwater robots for exploration has become an important
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method for humans to explore the ocean world. By controlling

underwater robots to carry out underwater operations and seabed

exploration (Sahoo et al., 2019) can be widely used in many fields

such as fishery industry, biological research, marine mineral

exploration, pipeline inspection, and marine archaeology. It can

not only reduce the risk of manual operation and improve work

efficiency but also reduce costs, which can be well adapted to the

development direction of future marine economy and help the

growth of the water industry.

For underwater robots, the key technology is the detection and

recognition of underwater objects. Underwater object detection is a

key technology for human exploration of the ocean. By equipping

robots with underwater cameras, optical images of targets can be

obtained, which are intuitive and provide more abundant

underwater information, making them superior in detecting

objects at close range underwater. However, unlike land images,

the underwater environment is complex and the lighting is uneven

(Liang et al., 2022). Under the influence of water absorption,

underwater light is dark, and the collected image information

suffers from problems such as low clarity, blurring, and color

distortion. In addition, there are many small targets in

underwater images. These small targets have a small coverage

range in the image and there are problems with clustering,

occlusion, and insufficient feature expression. Therefore, it is

difficult to accurately recognize underwater targets.

With the rapid development of artificial intelligence technology,

computer vision has provided new tools for human exploration of

the ocean (Marini et al., 2018). In response to the issue of

underwater image blurring, many scholars use deep learning

methods for underwater image enhancement. Lopez-Vazquez

et al. (2023) proposed a convolutional residual network for

underwater image enhancement, while achieving high

classification accuracy. Guan et al. (2023) proposed a lightweight

underwater image enhancement model based on GAN, which

improves the quality and efficiency of underwater image

generation. Meanwhile, many scholars have done extensive

research on the object detection of marine organisms. For

example, Bazeille et al. (2007) proposed a completely color based

underwater object detection method, which models the color

changes of underwater objects and detects them by comparing

color information. However, this method does not take into account

the color similarity of continuous samples, resulting in low

detection accuracy. Chuang et al. (2016) proposed a fish

recognition algorithm based on completely unsupervised feature

learning and robustness detection fusion, which can accurately

identify underwater fish schools. Qin et al. (2016). proposed a

deep framework for underwater fish recognition by combining

principal component analysis (PCA), spatial pyramid pooling

(SPP), and SVM classifiers, achieving high precision. However,

the training process of this method is too cumbersome to conduct

end-to-end training. Banan et al. (2020) designed an algorithm

based on the VGG network to recognize fish species, which has high

precision but can only recognize single-class objects. Bonofiglio

et al. (2022) used the YOLO model and target tracking algorithm to

identify and classify sablefish. Huang et al. (2022) used an improved

SSD network for underwater object detection, and improved the
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detection accuracy by adding attention mechanisms and feature

fusion. However, the models are still complex. Shi and Wang (2023)

proposed an improved lightweight underwater object detection

network based on YOLOv4. The model significantly reduces the

model size, but the parameter volume is still 49.2M and requires

further optimization.

In summary, deep learning has made outstanding progress in

object detection and other aspects (Hoeser and Kuenzer, 2020; Zhao

et al., 2019; Zaidi et al., 2021), achieving good recognition results in

large datasets such as COCO (Lin et al., 2014) and VOC (Everingham

et al., 2010). This provides new development directions for

underwater image object detection and recognition. However, the

problem of lightweight network model while improving network

accuracy has always been a pain point and difficulty in underwater

object detection. Compared to the two-stage object detection models:

RCNN (Girshick et al., 2014), Fast-RCNN (Girshick, 2015), Faster-

RCNN (Ren et al., 2016) and Mask-RCNN (He et al., 2017), YOLO

has faster and higher detection precision. Therefore, this study

designed a lightweight network based on the faster one-stage

network model YOLOv5s.The main contributions of this paper are

as follows: (1) Using depthwise separable convolution instead of

conventional convolution to reduce the number of parameters and

computation complexity, (2) Designing a C3 structure based on

Ghost convolution to further reduce parameter and computational

complexity,(3) Using the RepVGG module with structural

reparameterization technology to ensure inference speed while

improving the network’s feature extraction ability. (4) Embedding

an efficient channel attention module into the RepVGG module to

enhance the network’s ability to filter important channels and further

improve detection precision.

The remaining sections of this article are as follows: In Section

2, we introduce the dataset and image preprocessing methods used

in this study, as well as the evaluation metrics and model parameter

settings used in the experiments. In Section 3, we provide a detailed

description of the proposed improvement methods. In Section 4, we

conduct ablation experiments and discuss the experimental results.

In Section 5, we summarize and prospect the proposed algorithm.
2 Dataset and training strategy

2.1 Dataset and data augment

This study uses the dataset from the Underwater Robot Picking

Contest (URPC). All the images in this dataset were taken by

underwater robots, and the competition provides annotated data for

four categories: starfish, holothurian, echinus, and scallop. The

competition officials have noted that the dataset contains

annotation noise. Therefore, before training, we reannotated the

mislabeled and missed data. The dataset used in this study contains

5543 images, which were divided into a training set and a validation

set in an 8:2 ratio. A total of 4434 images were used for training, and

1109 images were used for validation. Some sample images from the

dataset are shown in Figure 1.

Observing some of the images in the dataset, there are many

small objects that are clustered together, and there is some degree of
frontiersin.org
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occlusion between objects. Moreover, due to the influence of light

scattering, there is a serious color deviation problem, which

seriously affects the accuracy of object detection. Additionally, the

samples for each class in the dataset are not balanced, which also

poses a challenge for underwater object detection. Specifically, there

are 16217 echinus, 4075 holothurian, 4838 starfish, and 4950 scallop

in the dataset, as shown in Figure 2.

According to the label size distribution shown in Figure 2B,

most of the labels in the dataset have a ratio of width and height to

the original image’s width and height between 0 and 0.1. Currently,

there are two main ways to define small objects: based on absolute

scale and based on relative scale. According to the definition of
Frontiers in Marine Science 03
relative scale of small objects, objects with a ratio of size to the

original image size less than 0.1 are considered small object (Wang

et al., 2021). Therefore, there are a large number of small objects in

the dataset, and the proposed improved model in this paper can

improve the detection performance of small objects.

Since the distribution of each category in the dataset used in this

experiment is unbalanced, it will affect the training effect of the

model. Therefore, before inputting the images into the network,

image data augmentation techniques such as random flipping,

cropping, and rotation are used to enhance the images. Moreover,

underwater images are generally dark and have serious color

deviation problems, so the brightness, contrast, saturation, and
A B

FIGURE 2

Visualization of the dataset used in this study: (A) distribution of label categories, (B) distribution of label sizes.
FIGURE 1

Sample Images from the Dataset.
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other aspects of the images are adjusted to enhance the network’s

fitting ability. Finally, the Mosaic data augmentation technique is

used to combine four random images during training to alleviate

the impact of the unbalanced distribution of categories in

the dataset.
2.2 Model evaluation metrics

This paper mainly uses P (precision), R (recall) (Fawcett, 2006),

AP (average precision), and mAP (mean average precision) as the

evaluation metrics for model accuracy, and frames per second

(Number of images processed per second) as the evaluation

metric for model speed. At the same time, we use the number of

parameters and computational complexity to evaluate the model,

where the computational complexity (GFLOPS) is 109 floating-

point operations per second, The calculation of P, R, AP and mAP is

shown in formulas (1) - (4)

P = TP
TP+FP (1)

R = TP
TP+FN (2)

AP =
Z 1

0
P(R)dR (3)

mAP = oM
i=1

APi
M

(4)

In formulas (1) and (2), TP represents the number of correctly

identified instances of a certain class, FP represents the number of

instances mistakenly identified as that class, and FN represents the

number of instances missed. A PR curve for a certain class is plotted

with P as the x-axis and R as the y-axis, and the average precision

(AP) is obtained by calculating the area under the PR curve. The
Frontiers in Marine Science 04
mean average precision (mAP) is calculated as the average of AP

across all classes to comprehensively evaluate the performance of

the model. The calculations for AP and mAP are shown in formulas

(3) and (4).
2.3 Model training and parameter settings

All experiments in this paper were conducted on a Linux

system, with an operating system version of Ubuntu 20.04, an

Intel Xeon E5-2650 V4 CPU, 32GB of RAM, and an NVIDIA

GeForce GTX 1080ti graphics card. The Python version used was

3.9.0, PyTorch version was 1.12.1, and CUDA version was 11.0.

In this experiment, the number of training epochs was set to

120, the batch size was set to 16, and the initial learning rate was set

to 0.01. The learning rate was warmed up using a specific method.

The optimizer used in the experiment was SGD, with a weight decay

coefficient of 0.5. Pretrained weights provided by the official were

used, and the size of the input images to the network was set to

640×640 by default. K-means algorithm was used to select the initial

anchor boxes.
3 Methods

Due to the low contrast and blurriness of underwater images, as

well as the clustering of small objects, it is necessary to fuse high-

level and low-level information to improve the detection ability of

the model for objects of different sizes. The YOLOv5 model uses the

PAN (Liu et al., 2018) and FPN (Lin et al., 2017) strategy to achieve

detection of objects of different sizes. In this paper, we selected the

YOLOv5s network as the baseline network and designed a object

detection model suitable for marine organisms, as shown in

Figure 3. It mainly consists of three parts: the backbone network,
FIGURE 3

A lightweight detection structure based on YOLOv5.
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the neck feature fusion network, and the prediction head. This

paper mainly makes the following improvements to YOLOv5s:
Fron
1) Using depthwise separable convolutions instead of the

regular convolutions in the feature extraction backbone

and neck feature fusion network has the effect of reducing

the number of parameters and computational complexity.

2) A C3Ghost module based on Ghost convolution was

designed, and the original C3 model in the algorithm was

replaced with the C3Ghost module, further reducing the

number of network parameters and improving the model

detection speed.

3) To address the problem of reduced feature extraction ability

and detection precision caused by depthwise separable

convolution and Ghost convolution, a RepVGG module

was introduced into the feature extraction backbone. The

module uses a multi-branch structure to enhance the model’s

feature extraction ability in the training phase and uses

structural reparameterization to convert the multi-branch

structure into a single-branch structure in the inference

phase, while maintaining high efficiency and improving

detection precision with only a small number of additional

parameters.

4) To address the problem of blurry underwater images with small

target clusters, a Rep-ECAmodule is proposed, which embeds

a more efficient channel attention mechanism, the ECA

module, into the RepVGG module. This module

discriminates the importance of different channels, enhances

the network’s ability to extract features of small targets in

blurry backgrounds, and further improves detection accuracy.
3.1 Depthwise separable convolution

To reduce the number of parameters and computation, this

paper replaces the regular convolution in the YOLO network with
tiers in Marine Science
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depthwise separable convolution (Chollet, 2017). Depthwise

separable convolution consists of depthwise convolution and

pointwise convolution. In regular convolution, each convolution

kernel corresponds to all channels of the feature map, while in

depthwise convolution, each convolution kernel corresponds to one

channel, and the number of channels in the resulting feature map is

the same as that in the original feature map. However, because

depthwise convolution operates on each channel separately, it

cannot achieve information interaction between channels.

Therefore, pointwise convolution is used to combine information

between channels to generate new feature maps. The operations of

regular convolution and depthwise separable convolution are

shown in Figures 4 and 5, respectively.

When using standard convolution operation, assuming the size

of the input feature map is c� h� w, where c represents the

number of channels of the input feature map,  h  represents the

height of the feature map, and w represents the width of the feature

map. The size of the output feature map is h }�w }�n, where n

represents the number of channels of the output feature map. The

size of the convolution kernel is k� k�m� n,   where k represents

the kernel sizes. The number of parameters (Pc) is shown in

Formula (5), and the computational complexity (GC)is shown in

Formula (6).

Pc = k� k� c � n (5)

GC = k� k� c� n� h0 � w0 (6)

When using depthwise separable convolution operation, a k�
k � c convolutional kernel is used to perform depth convolution on

the input feature map firstly. Then, a 1� 1� c� n convolutional

kernel is used to perform point-wise convolution on the obtained

feature map to fuse information between different channels. The

number of parameters of depthwise separable convolution (PD) is

shown in Formula (7), and the computational complexity (GD) is

shown in Formula (8).

PD = k� k  �c + 1� 1� c � n (7)
FIGURE 4

Regular convolution operation.
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GD = k� k  �c� h0 � w0 + 1� 1� c� n� h0 � w0 (8)

Depthwise separable convolution operation can significantly

reduce the number of parameters and computational complexity

compared to standard convolution operation. Formula (9) is the

ratio of the number of parameters and computational complexity

between the two.

RC = 1
k2 +

1
n (9)

From Formula (9), it can be seen that the number of parameters

and computational complexity of depthwise separable convolution

depends on the size of the convolution kernel. When the size of the

convolution kernel is 3×3, the computational complexity and

number of parameters of depthwise separable convolution will

decrease to about 1/9 of that of standard convolution. This

reduces the training time of the model and improves its

inference speed.
3.2 C3Ghost module

In order to further reduce the size of the model, this paper based

on the idea of GhostNet (Han et al., 2020) and incorporated Ghost

convolution into the C3 structure of the YOLOv5 model. Ghost
Frontiers in Marine Science 06
convolution consists of two parts: the first part is a normal

convolution, and the second part is a cheap linear operation. It

has been experimentally proven that the feature maps produced by

regular convolution usually contain a lot of redundancy (Han et al.,

2020). Therefore, the core idea of Ghost convolution is to use a

small number of convolution kernels to generate a part of the

feature map by using regular convolution, then extract information

from these feature maps by using depthwise convolution, and finally

merge concat two parts of feature maps to generate a light-weight

feature map. The Ghost convolution process is shown in Figure 6

Assuming that the input feature map is FϵRc�h�w, Ghost

convolution first performs a regular convolution operation on the

feature map, as shown in Formula (10).

Y 0 = F � w (10)

Yij = ji,j(Y
}
i ) (11)

In the formula, w represents the Convolutional kernel. Y }
i

represents the i- th feature map in Y 0, ji,j  represents the j- th

linear operation in the i- th feature map of Y }
i , and Yij represents all

the feature maps obtained after linear operation.

In the last stage of Ghost convolution, the two feature maps are

concatenated to obtain the final feature map. Compared with
FIGURE 6

Ghost convolution process.
A B

FIGURE 5

Depthwise separable convolution operation. (A) depthwise convolution, (B) pointwise convolution operation.
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regular convolution, Ghost convolution can significantly reduce

computational complexity. The computational complexity formula

of Ghost convolution is shown in Formula (12).

Gghost =
n
s � h0 � w0 � k� k� c + (s − 1)� n

s � h0 � w0 � d � d (12)

In the formula (12), s represents the channel compression ratio

of the first convolution, d � d represent the kernel sizes. Based on

the above formula and the computational complexity formula of

regular convolution, the ratio of Ghost convolution to regular

convolution can be obtained as shown in Formula (13).

RG =
k� k� c� n� h0 � w0

n
s � h

0 � w0 � c � k� k + (s − 1)� n
s � h

0 � w0 � d � d

=
k� k� c

1
s � k� k� c + s−1

s � d � d

=
s� c
s − 1

          ≈ s (13)

Therefore, it can be seen that the computational complexity of

regular convolution is about s times that of Ghost convolution,

which theoretically proves that using Ghost convolution to reduce

parameter and computational complexity is feasible. Therefore, this

paper improves the C3 structure in YOLOv5 by using Ghost

convolution and depthwise separable convolution to construct the

GhostBottleNeck structure. The GhostBottleNeck main branch

consists of two consecutive Ghost convolutions, and to reduce

parameter, the shortcut branch uses a depthwise separable

convolution. Based on this structure, the C3 structure is rebuilt as

C3Ghost, which contains three regular convolutions and n

GhostBottleNeck structures. The interaction between regular
Frontiers in Marine Science 07
convolution and Ghost convolution in C3Ghost module is

beneficial to balance detection precision and speed. The improved

C3 structure is shown in Figure 7.
3.3 RepVGG module

This paper uses Ghost convolution and depthwise separable

convolution to reduce parameter and computational complexity,

which may lead to a decrease in detection precision. Therefore, we

use the RepVGG (Ding et al., 2021) module to improve the feature

extraction ability of the model. The RepVGG structure is simple,

mainly composed of 3×3 convolution and ReLU activation

function. The RepVGG module draws inspiration from the idea

of ResNet (He et al., 2018; Shafiq and Gu, 2022). During training,

shortcut branches are created to reduce the performance

degradation caused by gradient vanishing and gradient explosion.

However, the multi-branch structure will increase memory

consumption. As shown in Figure 8A, the calculation results of

each step in the multi-branch structure will be saved in memory,

which will bring huge computational and storage costs. In the

inference stage, the RepVGG module adopts structural

reparameterization strategy to decouple training and inference,

and convert the multi-branch structure into a single-branch

structure to improve the model’s inference speed. The RepVGG

module is shown in Figure 8.
3.4 Rep-ECA module

Due to the influence of underwater light, the images captured by

underwater robots are usually very blurry. Attention mechanisms

can improve network performance. To enhance the model’s ability
A B

C

FIGURE 7

C3Ghost series modules. (A) Ghost Conv module, (B) GhostBottleNeck module, (C) C3Ghost module.
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to focus on underwater biological targets, this study adds the ECA

(Efficient Channel Attention) module on the basis of the RepVGG

module. The ECA module is an improved version of the channel

attention module. It was proposed by Wang et al. (2022) Compared

with the SE (Hu et al., 2018) module, the ECA module can reduce

the number of parameters. The ECA module replaces the two fully

connected layers of the SE module with a one-dimensional

convolution, avoiding dimension reduction and achieving

information interaction between channels, thereby reducing the

number of parameters. The calculation process of the ECA

attention module is shown in Figure 9.

Figure 9 shows the calculation process of the ECA attention

mechanism. First, the input feature map undergoes global average

pooling to obtain a one-dimensional feature map. Then, it

undergoes a one-dimensional convolution layer with an adaptive

kernel size to obtain the importance of each channel. After that, the

Sigmoid function is used for normalization operation and
Frontiers in Marine Science 08
multiplied by the input feature map to obtain the filtered feature

map through ECA. In this study, the ECA module is added to the

RepVGG module to allocate different weights to different channels

of the feature map, thereby filtering the feature information of

marine organisms, suppressing irrelevant information, and

improving detection precision.

As there is currently no theoretical research on which part of the

network the ECA module should be embedded to achieve the best

network performance, this study designed three types of RepVGG

modules based on the ECA attention mechanism, as shown in

Figure 8. The first type adds the ECA attention mechanism before

the 3×3 convolution, as shown in Figure 10A. The second type adds

the ECA module after the 3×3 convolution and before the feature

map addition operation of the three branches, as shown in

Figure 10B. The third type adds the ECA module after the feature

map addition operation of the three branches, as shown

in Figure 10C.
FIGURE 9

Calculation process of the ECA module.
A B

FIGURE 8

RepVGG module structure diagram, (A) Multi branch Repvgg module during training phase. (B) Single branch Repvgg module in inference stage.
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4 Experiments and discussion

4.1 Comparative experiments on depthwise
separable convolution

To reduce the model’s parameter and computational

complexity, we use depth-wise separable convolution to optimize

the model. The conventional convolution in the feature extraction

backbone and feature fusion parts of YOLOv5 is replaced by depth-

wise separable convolution, and the optimized model is named

YOLOv5s-D. Comparative experiments were conducted on the

URPC dataset to compare the optimized model with the original

model, and the experimental results are shown in Table 1.

According to Table 1, using depthwise separable convolution

can significantly reduce the number of parameters and

computational complexity of the original YOLOv5 algorithm. The

number of parameters is reduced from 7.03×106 to 4.59×106, and

the computational complexity is reduced from 16.0GFlOPs to

12.0GFlOPs. At the same time, it also improves the inference

speed to some extent. However, the lightweight of the model may

lead to a certain degree of decrease in detection precision.
Frontiers in Marine Science 09
4.2 Comparative experiments on
RepVGG modules

Due to the decrease in detection performance caused by using

depthwise separable convolution to reduce parameter and

computational complexity, we use RepVGG modules to improve

the detection performance of the model. To verify the effectiveness

of the RepVGG modules, the YOLOv5s model is improved by

incorporating RepVGG modules into the feature extraction

backbone, and the improved model is named YOLOv5s-Rep. The

experimental results are shown in Table 2.

Comparing the experimental results in Table 2, it can be found

that using RepVGG modules can improve the detection accuracy of

the model from 84.0% in the original YOLOv5s algorithm to

84.84%. Although the number of parameters and computational

complexity of the YOLOv5s-Rep model slightly increased, the FPS

values for both models are not significantly different. This is because

the RepVGG module uses structural reparameterization during

inference, converting the multi-branch structure in the training

phase to a single-branch structure during inference to ensure

inference speed.
TABLE 1 Comparative experiments on depthwise separable convolution.

Algorithm Param(M) GFLOPs(G) mAP(%) FPS

YOLOv5s 7.03 16.0 84.0 64

YOLOv5s-D 4.59 12.0 83.14 80
A B C

FIGURE 10

RepVGGBlock+ECA structure diagram, (A) Rep-ECA1 structure diagram, (B) Rep-ECA2 structure diagram, (C) Rep-ECA3 structure diagram.
TABLE 2 Comparative experiments on RepVGG modules.

Algorithm Param(M) GFLOPs(G) mAP(%) FPS

YOLOv5s 7.03 16.0 84.0 64

YOLOv5s-Rep 7.20 16.3 84.84 63
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4.3 Attention mechanism
comparative experiments

To verify the effectiveness of the ECA module for underwater

object detection algorithms and to validate the best way to

incorporate the ECA module into the RepVGG module, this

paper conducted comparative experiments by integrating the

three types of RepVGG modules based on the ECA attention

mechanism designed in Section 3.4 into YOLOv5s. These three

models are named YOLOv5s-Rep-ECA1, YOLOv5s-Rep-ECA2,

and YOLOv5s-Rep-ECA3, respectively. The experimental results

are shown in Table 3.

Comparing the experimental results shown in Table 3, it can be

concluded that adding the ECA attention mechanism to the

RepVGG module can improve the model accuracy while keeping

the number of parameters and computational complexity basically

unchanged. This proves that the ECA attention mechanism can

make the network pay more attention to useful object information

in blurry underwater images. Among the three different embedded

methods, the third method can improve the model’s detection

precision by 0.73%. Therefore, this paper uses the method of

embedding the ECA attention mechanism after the three

branches are added in the RepVGG module, and the model is

named YOLOv5s-Rep-ECA. To further verify the impact of

introducing different attention mechanisms on the model, this

paper conducts comparative experiments by adding the SE (Hu

et al., 2018), CBAM(Woo et al., 2018), CA (Hou et al., 2021), and

the RepVGG module with the third embedding method of the ECA

attention mechanism named YOLOv5s-Rep-ECA based on

YOLOv5s-Rep. The experimental results are shown in Table 4.

Comparing the comparative data of different attention

mechanisms in Table 4, it can be concluded that using attention

modules can improve the detection accuracy of underwater object

detection. This is because the color information of underwater

objects is similar to the background information, and introducing
Frontiers in Marine Science 10
attention mechanisms can highlight the feature information of these

objects, thus improving the performance of the network model. In

terms of accuracy, the ECA attention mechanism embedded in the

RepVGG module achieves the largest accuracy improvement. In

terms of speed, adding attention mechanisms usually makes the

model more complex, so the inference speed of the model is reduced

to some extent. The ECA attention mechanism has the least speed

loss. In summary, embedding the ECA attention mechanism in the

RepVGG module performs better than other attention mechanisms

in improving the model.
4.4 Ablation experiment

To further verify the effectiveness of the proposed improved

algorithm in this paper, ablation experiments were conducted on

several proposed improvements. The ablation experiment design is

shown in Table 5, where √ indicates that the method was used in the

experiment, and × indicates that the method was not used in the

experiment. Table 6 shows the results of the six groups of ablation

experiments, which were conducted under the same configuration

environment and parameter settings.

According to the experimental results shown in Table 6, Model

1 is the unimproved YOLOv5s, Model 2 improves the conventional

convolution by using depthwise separable convolution on the basis

of YOLOv5s, reducing the model’s parameter and computational

complexity, proving the effectiveness of depth-wise separable

convolution. Model 3 improves the C3 structure to C3Ghost

structure based on Model 1, and the model’s parameter and

computational complexity are also reduced to some extent,

proving the effectiveness of the C3Ghost structure. Model 4 adds

the C3Ghost module on the basis of depthwise separable

convolution, further reducing the model’s parameter and

computational complexity. Although the mAP has slightly

decreased, it has decreased by 1.06% compared with the original
TABLE 3 Comparative experiments on the ECA module.

Algorithm Param(M) GFLOPs(G) mAP(%) FPS

YOLOv5s-Rep 7.20 16.3 84.84 63

YOLOv5s-Rep-ECA1 7.20 16.3 85.01(+0.17) 60

YOLOv5s-Rep-ECA2 7.20 16.3 85.06(+0.22) 60

YOLOv5s-Rep-ECA3 7.20 16.3 85.57(+0.73) 60
TABLE 4 Comparative experiments on different attention modules.

Algorthim Param(M) GFLOPs(G) Map(%) FPS

YOLOv5s-Rep 7.20 16.3 84.84 63

YOLOv5s-Rep-ECA 7.20 16.3 85.57(+0.73) 60

YOLOv5s-Rep-SE 7.24 16.4 84.96(+0.12) 57

YOLOv5s-Rep-CBAM 7.25 16.5 85.13(+0.29) 54

YOLOv5s-Rep-CA 7.24 16.4 85.20(+0.36) 55
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YOLOv5 model. However, the inference speed of the model has

further improved, with an increase of 24 compared to the original

model, proving that the combination of the two can also make the

model lighter. Model 5 adds the RepVGG module on the basis of

Model 4, and the parameter and computational complexity have

slightly increased compared to Model 4. However, the model’s

accuracy has increased by 1.3% compared to Model 4 and 0.24%

compared to the original model, and the inference speed has not

changed compared to Model 4, proving that the RepVGG module

can improve the network’s feature extraction ability and thus

improve the network’s accuracy. Model 6 is the final version of

the algorithm improvement. Compared with Model 1, its accuracy

has improved by 1.1%, its parameter has reduced by 2.72×106, its

computational complexity has reduced by 6.7GFLOPs, and at the

same time, its inference speed has improved by 21. In summary, the

proposed model in this paper has better detection performance for

underwater object detection in terms of both speed and accuracy.

In summary, the proposed improved algorithm in this paper

has certain advantages in both speed and precision compared with

different object detection algorithms. Lightweight models are more

convenient to deploy in underwater equipment. Meanwhile, the

proposed improved algorithm improves the impact of low

underwater image quality on object detection. It can perform

high-precision object detection in blurry underwater images.
4.5 Comparative experiments on
mainstream object detection algorithms

To further verify the superiority of the proposed algorithm

compared to other mainstream algorithms, this paper conducted

comparative experiments between the improved model and current
Frontiers in Marine Science 11
mainstream object detection models, including single-stage object

detection algorithms: SSD (Liu et al., 2016), Retinanet (Lin et al.,

2017), two-stage object detection algorithm Faster-RCNN, YOLO

series algorithms: YOLOv3 (Redmon and Farhadi, 2018), YOLOv4

(Bochkovskiy et al., 2020), YOLOv7 (Wang et al., 2022), and Anchor-

Free based CenterNet (Duan et al., 2019) algorithm. All experiments

were conducted under the same environment and parameter settings,

and the experimental results are shown in Table 7.

According to the experimental data shown in Table 7, compared

with single-stage object detection algorithms SSD and RetinaNet, this

study has significant advantages in terms of parameter and

computational complexity, detection precision and inference speed.

Compared with the traditional two-stage object detection algorithm

Faster-RCNN, the proposed algorithm has a more significant

improvement in speed and accuracy. Compared with the YOLOv3

model, the parameter has decreased by nearly 11 times, the

computational complexity has decreased by about 9 times, and the

mean average precision has increased by 12.27%. For the lightweight

YOLOv4-tiny model, the parameter has decreased by 1.79×106, and

although the computational complexity has increased by 2.3GFLOPs,

the detection mean average precision has increased by 21.84%, and

the inference speed has increased from 55FPS to 85FPS. For the

lightweight YOLOv7-tiny model, the parameter has decreased by

1.69×106, the computational complexity has decreased by

3.9GFLOPs, and the detection mean average precision has

increased by 1.3%, and the inference speed has increased by 15FPS.

Compared with the object detection model CenterNet, the parameter

has decreased by 28.39×106, the computational complexity has

decreased by 60.9GFLOPs, and the mean average precision has

increased by 17.57%, and the inference speed has increased by 41FPS.

In summary, the proposed improved algorithm in this paper

has certain advantages in both speed and precision compared with
TABLE 6 Ablation experiment.

Order Number Param(M) GFLOPS(G) Map(%) FPS

1 7.03 16.0 84.0 64

2 4.59 12.0 83.14 80

3 4.90 10.6 83.26 72

4 3.99 8.5 82.94 88

5 4.31 9.3 84.24 88

6 4.31 9.3 85.10 85
TABLE 5 Ablation experiment design.

Order Number DWConv C3Ghost RepVGGBlock ECA

1 × × × ×

2 √ × × ×

3 × √ × ×

4 √ √ × ×

5 √ √ √ ×

6 √ √ √ √
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different object detection algorithms. The algorithm lays the

foundation for deployment to underwater equipment. Meanwhile,

the proposed improved algorithm improves the impact of low

underwater image quality on object detection. It can perform

high-precision object detection in blurry underwater images.

In order to more intuitively reflect the detection performance of

the algorithm proposed in our methods, two representative images

were selected, which respectively represent the cases of underwater

small object aggregation and underwater image blurring. The

detection results were compared with other algorithms, as shown

in Figure 11. From Figure 11, it can be observed that other

algorithms have more or less missed detections and false

detections in the case of small objects aggregation or image

blurring. The algorithm proposed in this article greatly reduces

the occurrence of missed detections and false detections by using

RepVGG modules and ECA attention mechanisms. This further

proves that the proposed algorithm model can be applied to

complex underwater environment with high speed and

lighter weight.
Frontiers in Marine Science 12
5 Conclusions

This article proposes a lightweight marine biological object

detection method based on YOLOv5, which solves the problem of

slow detection speed caused by large model parameters and

computational complexity, and improves the detection accuracy

of small targets in underwater fuzzy images. The algorithm is based

on YOLOv5s and replaces conventional convolution with depth

separable convolution, and introduces a C3 module based on Ghost

convolution to reduce the number of parameters and computation

complexity and improve the inference speed. The RepVGG module

is introduced to enhance the model’s feature extraction capability

while maintaining high detection speed during inference.

Embedding the ECA attention mechanism to the RepVGG

module improves the detection precision of small underwater

object in blurry images. We conducted experiments on the URPC

dataset, and the improved model significantly reduces the number

of parameters and computational complexity compared to the

original model, while increasing the mAP by 1.1% compared to
FIGURE 11

detection results of different algorithms.
TABLE 7 Comparative experiments on mainstream object detection algorithms.

Algorithm Param(M) GFLOPS(G) mAP(50%) FPS

SSD 26.3 62.8 79.08 23

Faster-RCNN 137.0 370.0 71.77 10

RetinaNet 37.97 170.1 58.28 23

YOLOv3 61.9 66.2 72.83 25

YOLOv4-tiny 6.1 7.0 63.26 55

YOLOv7-tiny 6.0 13.2 83.8 70

CenterNet 32.7 70.2 67.53 44

Ours 4.31 9.3 85.1 85
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the original model. We also conducted comparative experiments

with other advanced algorithms, which demonstrated that our

proposed algorithm is better suited to complex underwater

environment than other algorithms.

Due to the complexity of the underwater environment, low

and uneven underwater illumination, large amounts of suspended

matter in the water, and the influence of weather, season, and

sampling location, the captured underwater images are often

blurry, of poor quality, and have significant color changes.

Therefore, indepth research on image restoration methods is

required to further improve the accuracy of object detection in

underwater environments.
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