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Subsurface ocean measurements are extremely sparse and irregularly distributed,

narrowing our ability to describe deep ocean processes and thus also limiting our

understanding of the role of ocean andmarine ecosystems in the Earth system. To

overcome these observational limitations, neural networks combining remotely-

sensed surface measurements and in situ vertical profiles are increasingly being

used to retrieve high-quality three-dimensional estimates of the ocean state. This

study proposes a convolutional neural network (CNN) architecture for the

reconstruction of vertical profiles of temperature and salinity starting from

surface observation-based data. The model is trained on satellite and in situ data

collected between 2005 and 2020 in the Atlantic Ocean. Rather than using

spatially gridded in situ observations, we use directly measured vertical profiles.

Different combinations of surface variables are analyzed and compared in order to

determine the most effective inputs for the CNN. Furthermore, the relative

importance of each of these variables in the vertical reconstruction is assessed

using Shapley values, originally developed in the framework of cooperative game

theory. The model performance is shown to be superior to current state-of-the-

art methods and the same approach can easily be extended to other basins or to

the global ocean.

KEYWORDS

3D reconstruction, remote sensing, Convolutional Neural Networks, sea surface
temperature, sea surface salinity, earth observation, hydrography, ARGO
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1 Introduction

Accurate monitoring of regional and global ocean state is

crucial for a full understanding of Earth system dynamics and for

the detailed assessment of critical impacts of anthropogenic

pressures on climate and marine ecosystems (Stewart, 2009;

Bindoff et al., 2019). Central to this is the distributions of

essential ocean variables (EOVs), such as temperature and

salinity, as well as their interactions over a wide range of spatial

and temporal scales both in horizontal and vertical dimensions

(Moltmann et al., 2019).

To improve our observing capability and to enable process-

based modelling efforts, ocean observing systems based on both in

situ and remote sensing platforms have been continuously

improving, focusing on the collection of EOVs data at the highest

possible resolution (Stewart, 2009). Various remote sensing

platforms and sensors are used today for ocean monitoring, and

the number of satellites dedicated to Earth Observation has

increased substantially over the last 40 years (Amani et al., 2022).

Satellite data have rather uniform spatial and temporal coverage,

but they are limited to the surface of the ocean and can be

inherently noisy and error-prone, requiring different levels of

postprocessing (Yueh et al., 2001; Castro et al., 2008). Similarly, a

growing number of oceanographic cruises and automated systems

(mooring, buoys, etc.) have provided in situ hydrographic

measurements for decades. The collection of high-quality in situ

observations has increased considerably since the introduction of

the Argo program in 1999 (Roemmich et al., 2001; Wong et al.,

2020) which has been able to deliver accurate temperature and

salinity profiles down to a depth of 2000 m. Still, all in situ

measurements, including Argo, are inherently sparse both in time

and space when compared to satellite measurements. Hence it is of

fundamental importance to develop methods capable of leveraging

on the advantages of both observing systems to optimize the effort

required in ocean data collection.

Different methods have been proposed for estimating subsurface

ocean variables, such as temperature and salinity, including process-

based numerical models and statistical data assimilation techniques.

Some of thesemethods are based on a combination of ocean circulation

model analyses, dynamics data, hydrographic data, and remotely-

sensed data (Wunsch and Gaposchkin, 1980; Kao, 1987), while other

methods are strictly data-driven and use advanced statistical models of

surface and subsurface observations. Early studies (Cheney, 1982;

Khedouri et al., 1983) demonstrated the value of statistical

approaches in combining satellite and in situ data obtaining a high

correlation between measurements of the ocean surface topography

and the subsurface thermal structure. Single Empirical Orthogonal

Function (EOF) reconstructions also have been found useful to couple

surface values with subsurface properties using historical data (Carnes

et al., 1990; Carnes et al., 1994; Buongiorno Nardelli and Santoleri,

2005). This latter framework was further developed using multivariate

features (mEOF-r) achieving better results for reconstructed anomalies

of temperature, salinity, and steric height (Nardelli and Santoleri, 2005;

BuongiornoNardelli et al., 2006; Nardelli et al., 2017). Variousmethods

for subsurface variable reconstruction were reviewed by Fox et al.

(2002); Guinehut et al. (2012); Jeong et al. (2019), where single and
Frontiers in Marine Science 02
multi-coupled linear regression models were used to estimate

relationships between sea surface fields, e.g., temperature and

altimetry data, and profiles of ocean temperature.

Recently, deep learning approaches have been used to estimate the

subsurface thermal structure for large ocean regions, demonstrating

that they are effective in representing nonlinear relations between

surface and subsurface variables (Ali et al., 2004; Su et al., 2020). In

particular, simple feed-forward Neural Networks (NNs) have been

used to reconstruct temperature profiles using sea surface variables

such as temperature (SST), height (SSH), wind (SSW), net surface heat

flux, net incoming shortwave and outgoing long wave radiation (Ali

et al., 2004). Reconstructions from mEOF-r have been compared with

those derived from NN architectures, including Long-Short-Term-

Memory (LSTM) algorithms, trained on North Atlantic in situ vertical

data from Argo profiles and using satellite surface measurements

(temperature, salinity, and absolute dynamic topography)

(Buongiorno Nardelli, 2020). Starting from quite different

approaches, namely training on pre-gridded 3D fields, various LSTM

and Convolutional Neural Networks (CNN) architectures have been

proposed to infer the vertical ocean structure from surface data alone

(Han et al., 2019; Su et al., 2021a; Su et al., 2021b).

Deep learning methods have consistently shown superior

performance compared to other statistical approaches in

reconstructing subsurface EOVs based on surface observations.

Numerous studies have examined and demonstrated the

capabilities of neural network-based frameworks in reconstructing

EOVs across various environmental ocean conditions and

dynamics. These studies have been conducted at regional scales

such as in the Atlantic and Pacific Ocean regions (Wu et al., 2012;

Zhang et al., 2020; Meng and Yan, 2022), as well as at the global

scale (Lu et al., 2019; Su et al., 2020). However, most of these

analyses have primarily relied on spatially gridded in situ data sets,

which provide spatially consistent representations of the ocean state

but restrict the reconstruction resolution and limit the use of

additional information in areas with high observational density.

Using direct vertical measurements on the other hand provide

precise and localized information but leads to a data set with

varying observation densities across different regions.

Here we build upon previous findings and propose a CNN

framework for the direct reconstruction of salinity and temperature

profiles, using satellite-based surface measurements across the entire

Atlantic Ocean in the period 2005-2020. The present study extends

previous results on the North Atlantic (Buongiorno Nardelli, 2020) by

including the South Atlantic hence including regions with a relatively

lower density of in situ profiles. The new CNN architecture presented

here is used to cover an extensive geographical region including

temperate, tropical and equatorial regimes in the Atlantic Ocean. The

analysis and systematic evaluation of different inputs has been expanded

considerably compared to previous studies and a sensitivity analysis of

the model is included to assess performances in the reconstructions

against the appropriateness and quality of the input data.

In summary, the contributions of this paper include:
• A comparison of different deep learning models for

reconstructing salinity and temperature, using CNN as a

central deep learning architecture.
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• A sensitivity analysis of various combinations of physical

variables to assess performances in reconstruction (ablation

study, feature importance and random input perturbations).

• An assessment of the impact of the training set size and

geographical distribution on the reconstructed variables.
In Section 2, the data are introduced followed by a description of

the CNNmodel and several baselinemodels for comparison. In Section

3, we present the results, compare them to several other models and

show that our model can effectively reconstruct ocean state variables in

the entire Atlantic Ocean. Section 4 contains a discussion of our results

and in Section 5 we highlight the key findings. The Appendix, Section

6, contains Supplementary Material.
2 Materials and methods

2.1 Surface and in situ measurements

Salinity and temperature profiles are reconstructed using a

CNN model trained on remotely-sensed surface data and in situ

observations, including geospatial information, i.e., location and

time of the sample acquisition. Satellite measurements and in situ

temperature and salinity profiles in the Atlantic Ocean over the

period 2005-2020 were obtained through the Copernicus Marine

Environment Monitoring Service (CMEMS1). Information about

the specific products is contained in Table 1.

The vertical profiles included quality-controlled conductivity,

temperature, and depth (CTD) produced by the Coriolis In Situ

Analysis System (ISAS) (Szekely et al., 2019). These values were

interpolated onto a regularly spaced vertical grid using 10 m

intervals down to a depth of 1500m. Similarly, steric heights (SH),

densities (D), and thermal expansion coefficients (TC) are computed

on the regular grid taking 1500m as reference level. Profiles that do not

extend to a depth of 1500m or with data gaps ranging more than two

depth steps were discarded in the analyses, while single missing data

points were estimated by linear interpolation. Accordingly, the profiles

in the data set have 151 values for the depth range 0 - 1500 m with a

vertical resolution of 10 m. About 50% of the available profiles in the

Atlantic were removed since they did not meet these criteria.

Surface observations were acquired from several satellite platforms

and obtained from four different data sets. We used and examined

combinations of multi-year reprocessed L4 surface measurements of

Sea Surface Temperature (SST), Salinity (SSS), Density (DOS),

Absolute Dynamic Topography (ADT), Sea Level Anomaly (SLA),

and geostrophic currents (UGOS & VGOS) as well as wind speeds

(SSW,USSW,VSSW). The variables are on a gap-free, regular grid, but

the temporal and spatial resolution of these vary (see Table 1). TheUK-

Metoffice OSTIA product and CNR product provide error estimates

for SST and SSS, denoted here as SSTerrorand SSSerror, respectively. The

main source of error is from the sampling capability of the

constellation of the various satellites used to create the data sets and

includes factors such as data coverage, variations in biases from
ttps://marine.copernicus.eu/.
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multiple sensors, and the statistical interpolation technique

employed. Generally, they are computed using a combination of

uncertainty estimates from satellite instruments and the standard

deviations of the differences between measurements obtained from

Argo floats and satellite observations [see details in McLaren et al.

(2016); Buongiorno Nardelli et al. (2022)].
2.2 Climatological data

Climatological average fields of salinity and temperature were

obtained from World Ocean Atlas 18 (WOA-18) (Locarnini et al.,

2019; Zweng et al., 2019). These are objectively computed monthly

profile averages on a 0.25° × 0.25° grid and using observation from the

period 1981-2010, with depth up to 1500 m using 57 vertical levels. As

with the in situ profiles, these data have been interpolated onto a

regularly spaced vertical grid with 10 m intervals. In this work,

Climatological averages have been linearly interpolated both

temporally and spatially to match the day and locations of the in situ

measurements, denoted interpolated climatological average (iCLIM).

Subtraction of iCLIM from measured profiles preserves only the

nonseasonal, anomalous signals, allowing for the extraction and

isolation of patterns, trends and variation that may be obscured by

long-term averages. Climatological average profiles were subtracted

from each variable to produce anomaly values of subsurface

temperature (TA), salinity (SA), steric height (SHA), density (DA),

and thermal expansion coefficient (TCA). Moreover, following the

same procedure surface anomaly fields of each variable were produced:

sea surface temperature (SSTA), salinity (SSSA), density (DOSA), and

absolute dynamic topography (ADTA).

Much of the variability of global wind patterns are governed by

seasonal changes and geographic location. In this work, we produce a

one-year baseline data set for wind speed comprised of weekly

averages over the period of 1993-2020. These baselines of weekly

values were distributed with a spatial resolution of 0.25° × 0.25°. The

averages were temporally and spatially smoothed using a Gaussian

filter to remove high-frequency noise and isolate the underlying

signal (Bourassa et al., 2005). Specifically, the Gaussian filter was

applied with a standard deviation (std) of 4 in time and [2,2] in space.

The values of std were determined through a series of tests and by

inspecting the patterns of the weekly averages in various regions.

Equivalently, to the construction of other anomaly values, the

baseline values were subtracted from surface wind speed

measurements to produce sea surfacewind speed anomalies (SSWA).
2.3 Study area and processing of
the input data

2.3.1 Study region
Data acquired from the Atlantic Ocean were used for model

training and overall assessments of the models. However, to assess

reconstruction on a regional level, smaller spatial regions were

analyzed. These regions were selected to include highly dynamic

and stable regions as well as regions of high and low observation

densities. Regions were regarded as dynamic if they exhibited high
frontiersin.org
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anomalies with respect to the iCLIM (Figure 1B). The presence of

strong mesoscale dynamics may in particular drive deviations from

the climatological averages. The average std of the temperature

anomaly distributions are relatively small across the entire Atlantic

with an overall average std of 0.38°C, but reach values of 1.2°C in

smaller local regions. It should be noted, that the deviations

displayed in the figure are the average stds over full profiles, i.e.,

the figure does not indicate the depth at which high anomalies

occur, which may vary with depth depending on the geographical

location. However, the purpose of this study is to generate reliable

reconstructions of full profiles, and therefore, the selection of study

regions was based on std averages.

Five areas have been selected (Figure 1B: regions A-E) to

compare the reconstructions in contrasting ocean regions. The

regions A, B, D, E display moderate to high stds of the anomalies.

The origin of these anomalies is driven by different dynamics. Much

of the dynamics in Region A are caused by variations in the Gulf

Stream, while outflow from the Amazon River has a notable

effect on Region B. Region C illustrates a region that on average

corresponds well with the climatological mean.

2.3.2 Data preprocessing
The total number of profiles in the period 2005-2020 within the

Atlantic Ocean is slightly above 270,000. The spatial density of the
Frontiers in Marine Science 04
profiles shows a relatively uniform distribution across the Atlantic

Ocean, where the median number of observations per pixel on a 1°x

1° grid is 40, and 64% of pixels have between 20-50 observations.

Certain areas appear as under sampled with 10% of pixels having

less than 10 observations, and conversely, some regions include

more than 70 observations per pixel cf. Figure 1A. There are several

factors that may contribute to these under sampled regions, most

notably the oceanic circulation as the distribution of Argo floats is

strongly influenced by the surface ocean currents. Other

contributing factors include the depth of the area, as profiles

shallower than 1500m have been excluded, as well as the

deployment distribution of Argo floats, particularly during the

early stages of the program.

Surface satellite data were co-located to in situ measurements

using the geographical location (latitude and longitude) of the

profiles and the Julian day, and applying bilinear interpolation on

the surface values. For the vast majority of data points, the surface

measurements of the two platforms were consistent. The differences

between satellite and in situ observations were approximately

Gaussian distributed with mean −0.007°C and standard deviation

(std) 0.48°C for temperature measurements, and a mean −0.017g/kg

and std 0.22g/kg for salinity. Although these distributions were

narrow, the ranges of the two variables are substantially different.

The surface measurements of temperature were ranging from
TABLE 1 Data set properties, origin, processing level, type, spatial and temporal resolution.

Reference (Product ID):

Variables: Produced by: Processing level: Product Type: Spatial and Temporal Resolution:

https://data.marine.copernicus.eu//product/INSITU_GLO_TS_OA_REPOBSERVATIONS_013_002b

Temperature (T)
Salinity (S)

CORA N.A. Multi-year Undefined × Undefined
Instantaneous

https://data.marine.copernicus.eu/product/SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001

Sea Surface
Temperature (SST)

OSTIA L4 Multi-year 0.05° × 0.05°
Daily mean

https://data.marine.copernicus.eu/product/MULTIOBS_GLO_PHY_S_SURFACE_MYNRT_015_013

Sea Surface
Salinity (SSS)
Sea Surface
Density (DOS)

CNR L4 Multi-year
0.25° × 0.25°
daily instantaneous (weekly sampling)

https://data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L4_MY_008_047

Absolute Dynamic Topography (ADT)
Sea Level
Anomaly (SLA)
Geostrophic Currents
(UGOS & VGOS)

SSALTO/DUACS L4 Multi-year 0.25° × 0.25°
Daily instantaneous

https://data.marine.copernicus.eu/product/WIND_GLO_PHY_L4_MY_012_006

Sea Surface
Wind Speed(SSW)
East Sea Surface
Wind Speed(USSW)
North Sea Surface
Wind Speed(VSSW)

IFREMER CERSAT L4 Multi-year 0.25° × 0.25°
6 hourly mean
All data sets were obtained January 2022.
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−1.7°C to 32.0°C, whereas the salinity measurements range from

30g/kg to 37.8g/kg with most measurements being above 33.5g/kg.

Thus, the differences between the two types of salinity

measurements were larger relative to their range than those of the

temperature. These differences can be attributed to several factors,

including the coarser spatial and temporal resolution of the satellite

salinity data set, which may result in missed short-term and/or

small-scale fluctuations detected by in situ measurements but not

captured by satellites. Furthermore, notable discrepancies in salinity

were observed near river outlets and estuaries, particularly

associated with the Rıó de la Plata Estuary, as well as the

Amazon, Mississippi, and Congo River outlets (See Appendix 6.2,

Figure S2). Although, SSS estimates based on satellite microwave

radiometer measurements in cold waters, i.e., at high latitudes, are

subject to higher uncertainty (Boutin et al., 2021), no notable

changes were observed in the spatial distribution of the

discrepancies in these regions except for a slight increase in the

Davis Strait. This may be ascribed to the calibration process carried

out by CNR to generate the data set, by employing a multi-

dimensional optimal interpolation algorithm using SSS data from

multiple satellite sources, as well as in situ salinity measurements

and satellite SST information. Additionally, it is worth noting that

platform discrepancies for both salinity and particularly

temperature were more pronounced in dynamic regions,

something which can be attributed primarily to inconsistencies in

the sampling time between observations.

Wind speed strongly influences the vertical mixing and

stratification of the water column, and the response is lagged

and accumulated. Therefore, the wind conditions at the point of

an in situ recording may not be particularly informative. For that

reason, we introduce a new variable, SSWsumwhich represents
Frontiers in Marine Science 05
the sum of wind speeds over the preceding 3 days. The choice of

this value was based on the depth of the water column and was

selected as a compromise to account for both strongly and

weakly stratified regions, which can impact the mixing caused

by wind.

Spatial and temporal information are used as input for the

models. Latitudes (lat) and longitudes (lon) of the observations

are used as inputs for the models, as well as temporal information

provided as day of the year (DOY). In order to enable a neural

network to learn the cyclic nature of a year, the DOY is projected

onto a circle with center at (1,1) as day1 = cos ( 2p
365 DOY) +

1, day2 = cos ( 2p
365 DOY) + 1. Accordingly, available physical

variables for model input are comprised of SST, SSS, ADT, SSW,

SSWS, SSWsum, and corresponding anomalies. The available

outputs are full profiles of temperature, salinity, steric height

(SH), density (D), thermal coefficient (TC), and corresponding

anomalies. Each of the physical quantities is min-max normalized

between [0,1] to prepare the data for a deep learning framework.

To ensure model evaluations of high quality, 20% of the total size

of the data set is allocated as a test set. From the remaining 80%,

an additional 20% is reserved for a validation set and 80% for a

training set. These are both used in the training process of

the network.
2.4 Model architecture

The salinity and temperature depth profiles were reconstructed

using the CNN model schematically represented in Figure 2 with

hyperparameters shown in Table 2. The hyperparameters refer both

to the choices of the structure of the network and other parameter
A B

FIGURE 1

(A) Spatial distribution of the data points obtained in the period 2005-2020, and (B) Standard deviations (stds) of temperature anomaly profiles
averaged over a 1°x 1° grid and over the full profiles for the same period (for a figure showing salinity, see in Appendix 6.1, Figure S1). Regions of dark
purple colors indicate a large number of measurements deviating from the Climatology, whereas the light yellow colors indicate high consistency
between WOA-18 and observed profiles. The regions (A–E) represent specific study regions.
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values that govern parts of the learning process of a network, and

they have been chosen after optimization over multiple tests. To

mitigate the potential issue of the learning process becoming

trapped in a local minimum, we incorporate cosine annealing

into the Adam optimizer during training (Loshchilov and Hutter,

2017; Sørensen et al., 2022). This technique involves changing the

learning rate at each epoch according to a cosine function with a

period of Eiand a range of [hmin, hmax]. The maximum value for

each cycle is decayed by hdecay. The model uses an input vector of N

elements, comprising surface measurements and geospatial

metadata. It produces vertical profiles of M variables, such as

temperature (T), salinity (S), steric height (SH), density (D),

thermal expansion coefficient (TC) and/or their respective

anomalies (TA, SA, SHA, DA, and TCA). These profiles consist

of 151 depth estimates with a regular spacing of 10m (total 1500m

depth reconstructions). However, the present model structure

enable to customize the input size N and output size M to

accommodate different numbers of input and output variables.

We first used one-dimensional transpose convolution layers,

which act as reverse operations of a convolutional layer, to establish

weights for upsampling. This process increases the size of an input

matrix, while simultaneously finding weights such that important

features are highlighted. Subsequently, 1D convolutional layers are

used to find patterns in the upsampled input needed to infer the

output, and to identify increasingly more complex patterns in the

hidden layers of the network. The 1D convolutional layers are used

instead of standard 2D convolutional layers to address the objective

of reconstructing different 1D profiles (Kiranyaz et al., 2021). The

design of the network has been decided based on extensive manual

search, while other hyperparameters have been selected through a

grid search.
2.5 Analyses of the results

In order to evaluate the performance of our proposed CNN

model (called OCNN, see Figure 2), we compared the results of this

framework with four other approaches: interpolated climatological

averages (iCLIM), a long short-term memory network (LSTM), a

bidirectional LSTM (BLSTM), a baseline CNN (bCNN). In stable

regions, the iCLIM is a good approximation of the subsurface ocean

structure. Therefore, we compared profile anomalies, generated

with respect to Climatology, to the difference between model

predictions and in situ observations. In addition, we implemented

the state-of-the-art LSTM structure proposed in (Buongiorno

Nardelli, 2020) and an advanced version [called bidirectional

LSTM, i.e., BLSTM (Graves and Schmidhuber, 2005)] for further

comparisons. Finally, a simple baseline CNN architecture (bCNN),

is used to compare the results to demonstrate the importance of a

careful design of CNN architecture for the problem at hand. Note

that in addition to a simpler architecture, the hyperparameters of

the bCNN have not been optimized, differently from the OCNN.
FIGURE 2

Diagram of the convolution neural network architecture (CNN) with N
surface inputs shown on the top. The network processes information
through a series of operations, each denoted by a different color, with
the size of the output for each layer displayed to the right. The
convolutional layers are designed with a kernel size of 3 and stride 1,
and the max pooling layers are configured with a pool size of 3 and
stride size of 3. The final output is estimates of M vertical profiles.
TABLE 2 Hyperparameters of the CNN model.

Hyperparameter Value

Batch normalization 0.3

Initializer LeCun N (Klambauer et al., 2017)

Epochs 1600

Batch size 1000

Loss MSE

Optimiser Adam

Initial learning rate(hinit) 0.005

Decay rate(hdecay) 0.9

Maximum learning rate(hmax) 0.1

Minimum learning rate(hmin) 2 · 10−6

Cycle period (Ei) 80 Epochs
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The four approaches for comparison and the OCNN are

summarized as:
2 h

Fron
• Interpolated climatological averages (iCLIM): Climatological

averages from WOA-18 were used as a reference.

• LSTM(35): The Long-Short-Term-Memory (LSTM) model2

from (Buongiorno Nardelli, 2020), our initial benchmark for

the reconstruction of ocean hydrographic structure.

• BLSTM(35): The Bidirectional-LSTM is a more advanced

version of the LSTM model. This network consist of two

LSTM layers in series with 35 memory cells in each layer.

The architecture is identical the LSTM(35) but uses

bidirectional LSTM layers.

• bCNN: A baseline CNN model with a simple architecture

and without a hyperparameter optimization. It contains one

fewer transpose convolutions and convolution/max-

pooling block than the OCNN architecture.

• OCNN: The final CNN model, shown in Figure 2, which

has been constructed by carrying hyperparameter tuning

based on a grid-search.
To facilitate comparison, all neural network-based models were

initially trained with the same variables as in (Buongiorno Nardelli,

2020). Here, the inputs are anomalies of sea surface temperature

(SSTA), sea surface salinity (SSSA), absolute dynamic topography

(ADTA) as well as latitudes, longitudes, and day of the year. The

outputs of the networks are vertical anomaly profiles of temperature

(TA), salinity (SA), and steric height (SHA). In this study, we used

unaltered ADT values, which include both effects of steric changes

(temperature and salinity variations) and eustatic variations, e.g., as

those due to barotropic adjustments in response to atmospheric

pressure field changes or large scale dynamical balances (e.g. in the

presence of intense barotropic flows). The impact of explicitly

including these different signals is unclear within the framework

of neural network models, and while there are potential benefits to

incorporating them in a model, their estimate can also be affected by

the limited in situ data available to define an accurate steric

adjustment procedure. Other studies have isolated the steric

component within the ADT values (Buongiorno Nardelli, 2020),

and further work may be conducted to systematically evaluate

potential impacts of the decomposition of the ADT values.

The models were trained on an Nvidia A100 60 GB GPU, with

an automatic termination scheme after 100 epochs with no

improvement in the validation loss. All models were optimized

using the Adam optimiser (Kingma and Ba, 2014) with the same

parameters as in Table 2.

Variations in the importance of the inputs may indicate or

highlight physical relations between the sea surface and subsurface

properties and conditions, although the relations do not represent

causality. One approach to obtain estimates of the relative importance

of inputs uses the concept of Shapley values. In game theory, Shapley

values are used to assess the contribution of each agent to the outcome

of a cooperative game (Winter, 2002). Using the algorithm SHAP
ttps://github.com/bbuong/3Drec.
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(SHapley Additive exPlanations)(Lundberg and Lee, 2017), we estimate

the marginal contribution of each individual input feature to the final

prediction of a model. Shapley values are computed for all depths to

assess the change in the importance of the inputs for the model

predictions at various depths.

Additionally, we implement a method for evaluating the

importance based on the sensitivity, of the model to noise in the

relevant input variables. Here, sensitivity is defined as the relative

change in model output resulting from a relative change in input

variables. Instead of finding the marginal contributions of the

inputs, we here assess the direct impact of variations in the inputs

on the results. By adding small random perturbations to each input

of the network, the corresponding impact on the overall

reconstruction performance may be approximated. Features will

have relatively high importance if small changes of an input value

lead to large increases in the errors of the reconstructions, and

conversely. By analyzing these effects, it is possible to estimate the

impact s o f measurement no i s e on the accuracy o f

the reconstructions.
3 Results

3.1 Accuracy of the reconstructions

To compare the performances of the different reconstruction

models, we computed the root mean squared error (RMSE) between

the test set and the respective reconstruction (Table 3). Specifically,

for all analyzed reconstruction methods, RMSE values are

computed at each of the 151 depth levels using the entire test set,

thus generating vertical RMSE profiles for every method across the

whole Atlantic Ocean. The mean values represent the domain scale

averages of these vertical RMSE profiles, while the maximum (Max)

values are the largest RMSE values among these 151 depth levels of

each method. Consistent with previous studies, the reconstructions

obtained using neural network-based approaches displayed notably

lower RMSE values compared to iCLIM, with OCNN showing the

lowest RMSE among all analyzed methods. However, RMSE values

are not constant over the water column but vary with depth

(Figure 3) with generally higher values at the surface, while lower

and close to zero RMSEs in the deeper layers (> 500 m). The iCLIM

had the poorest performance in reconstruction at all depths, and

indeed neural network models outperformed iCLIM over the entire

water column for both temperature and salinity values. Specifically,

RMSE values ranged from 0.17°C to 1.12°C for temperature and

from 0.3 g/kg to 0.033 g/kg for salinity for all neural network

methods while maximum RMSE for iCLIM is 1.4°C in temperature

and 0.32 g/kg in salinity. At all depths, the OCNN outperformed all

the other models in the reconstruction of both variables. The errors

obtained with the OCNN are comparable to other neural network

models over most of the water column. However, both CNN

approaches (bCNN, OCNN) showed greater reconstruction

accuracy than the LSTM models in the upper layer of the ocean.

The OCNN exhibited average reconstruction errors that were 19%

and 17% lower than the LSTM for temperature and salinity,

respectively, in the upper 200m of the water column. Moreover,
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when compared to the iCLIM in this region, the OCNN showed

significant improvements, with average reconstruction errors that

were 39% and 30% lower for temperature and salinity, respectively.

For the full water column, the average reconstruction errors of the

OCNN when compared to the iCLIM were 41% and 26% lower for

temperature and salinity, respectively.

In all evaluated models, the most significant temperature errors

were observed at depths of 60-90m, while salinity errors were

primarily near the surface. The highest error in temperature

appears to be located at the generally accepted mixed layer depth

for the study area. Since temperature and salinity gradients are

stronger in this part of the water column, even small displacements

in the depth used for reconstruction may yield large errors. A

mechanism that supports the hypothesis that regions with high

variability are those with larger RMSE. The relatively larger RMSE

values for salinity estimates at the surface may to some extent have

been a consequence of the discrepancies between satellite and in situ
Frontiers in Marine Science 08
salinity measurements. As previously outlined, these discrepancies

can be attributed to the interpolation of the coarse-resolution

satellite product and the influence of short-term or small-scale in

situ fluctuations. Therefore, the effects of the mixed layer depth are

less conspicuous in the RMSE values for salinity.

At low variability depth regions (approx. 900 m depth) there

were no differences between the models, and for salinity, the iCLIM

demonstrates similar levels of error to the neural network models.

This suggests that salinity values in this region are not strongly

influenced by surface variables, and that the similar estimates are

provided by the iCLIM.

An assessment of the spatial distribution of the errors was obtained

by calculating the average RMSE in the first 200m for the entire test set

(Figure 4). The largest errors were associated mostly with highly

dynamic regions in the western boundary currents (Gulf Stream,

Brazil Current) and the eddy dynamics driven by the Agulhas

Current. Equatorial regions also showed relatively large errors, likely
TABLE 3 Test score for all models for temperature and salinity measured in °C and [g/kg], respectively.

Model Temperature Salinity

Mean Mean Mean Max

RMSE RMSE RMSE RMSE

iCLIM 0.6844 1.4019 0.0979 0.3234

LSTM 0.4717 1.1242 0.0813 0.3088

BLSTM 0.4343 1.0381 0.0773 0.2645

bCNN 0.4144 0.986 0.0747 0.2023

OCNN 0.4029 0.9629 0.0727 0.1972
The mean values represent the average RMSE in both the horizontal and vertical dimensions across the Atlantic for each reconstruction method. The maximum (Max) values indicate the largest
RMSE values in the vertical column, after computing the RMSE value at each of the 151 depth levels for each method.
The bold values represent the lowest RMSE values among the tested models.
FIGURE 3

Vertical RMSE profiles for each model from the surface down to 1500 m at 10 m intervals of temperature (left) and salinity (right).
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linked to the intensity of the ocean currents and mixed layer dynamics

in the area. For salinity, the areas with the largest errors roughly

coincided with regions of highest variability in data ((Figure 1B).
3.2 Feature importance and
model sensitivity

The OCNN model was tested under different configurations

with various input and output variables (See Appendix 6.4, Table

S1). From several tests, we found that the optimal input

combination for temperature and salinity profile reconstruction

consists of: sea surface temperature, salinity, density, sum of wind

speeds, and absolute dynamic topography (SST, SSS, DOS, SSWsum,

ADT), the corresponding anomalies SSTA, SSSA, ADTA, DOSA,

SSWAsum, error estimates of SST and SSS (SSTerror, SSSerror), and

finally lat, lon and day of year (DOY). It should be noted that the

deviations from the climatological mean are included in original

measurements as well as in the corresponding anomalies, but the

original measurements were considered useful as they provided

contextual reference points for different regions. The use of error

estimates of other input variables such as ADT and SSW were

considered but appeared to have little to no significance on the

reconstruction capabilities.

For the reconstruction of temperature, also modelling several

outputs of full profiles of temperature, salinity, steric height (SH),

density (D), thermal expansion coefficient (TC), and their

respective anomalies yielded better results. Although the above

inputs improved also the reconstructions of salinity, the best

results for the reconstruction of this variable were obtained by

modeling a singular output, the subsurface salinity anomalies (SA).

For that reason, two separate models were used for temperature and

salinity reconstructions. Using these combinations of inputs and

outputs, the average reconstruction errors of temperature and

salinity were reduced by 5.3% and 5.5% respectively.
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An analysis of the relative importance of those inputs using

Shapley values demonstrated that sea surface temperature, SST, and

surface density, DOS, are on average the most important for the

reconstruction of the profiles of temperature and salinity (Figure 5).

However, the relative Shapley values indicate relative importance of

inputs rather than reconstruction accuracy, which as seen in

Figure 3 resembles the climatological averages for all models at

depth greater than 1000m. Thus, this method does not necessarily

suggest causation between surface and subsurface properties, but a

network may use secondary information such as leveraging the

inputs as geographical reference points. Predictions of temperature

in the first 200m depended rather strongly on the values of surface

temperature anomaly, SSTA. Similarly, the surface salinity anomaly

(SSTA) had high relative importance for the prediction of salinity in

the surface layers. Between depths of 100-600m, the absolute

dynamic topography and corresponding anomaly (ADT and

ADTA, respectively) exhibited a considerable increase in relative

importance for both salinity and, notably, temperature

reconstructions. This is not surprising as ADT values are

commonly linked to the density structure of the water column.

Within the same vertical range, geographical position (mainly

latitudes, and to a lesser extent longitudes) had a significant

impact on model performances for both temperature and salinity.

Random white noise was introduced on each variable to test

sensitivity of the reconstructed profiles to input. By randomly

selecting a ±5% deviation from a uniform distribution, RMSE

values were then calculated and compared with the unperturbed

case. The averaged (over the depth) error increased significantly for

certain variables (SST, SSS, ADT, and associated anomalies) and

generally reconstruction in salinity appeared to be the most

sensitive to changes (Figure 6). We noted that errors in

reconstructions were considerably larger when altering only the

variable but not the corresponding anomaly. In these scenarios, the

increase in error propagated with the entire depth range, with the

highest values at maximum depths. This is in particular the case for
FIGURE 4

Spatial map of RMSE values in the top 200m between the OCNN predictions and observed test data.
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salinity and density, and it indicates that the model is highly

dependent on the coherence between the original and anomaly

values of a variable. An exception is the ADT where varying the

original and anomaly values together has a larger effect than

separately. One reason for this may be that the anomaly fields for

ADT are defined with respect to steric height computed from values

of temperature and salinity, and not direct in situ measurements of

the topography. Similarly, as indicated by the Shapley values,

latitudes and longitudes have some effects on the model

performance for both temperature and salinity. In particular,

latitude is important for temperature reconstructions within a

specific depth range, i.e., 50-300 m.

The mean percentage decrease of the RMSE at various depths

for input variations of SST, SSS, ADT, and DOS and their

respective anomalies simultaneously are displayed in Figure 6.

It is apparent that perturbations in the SST and the SSS have the
Frontiers in Marine Science 10
largest impact in the uppermost layers for the reconstruction of

their respective subsurface variables ST and SS. Changes of SST

by 0 − 5% correspond to an average decrease in reconstruction

performance of temperature at the surface by almost 20%, and

changes of SSS impact the surface reconstructions of salinity by

30%. Perturbations in the input of SST and SSS lead to significant

amplifications of errors in the upper ocean layers, while changes

in ADT result in error propagation to larger depths as also

indicated by the Shapley values. In particular, these effects are

noticeable at depths ranging from 200m to 1000m, where the

average decrease in performance is 10-20%. As previously

mentioned, this can be understood as the surface topography

being governed by a summation of steric changes, due to

variations in temperature and salinity that occur throughout

the entire vertical profile, see (Jones et al., 1998; Guinehut

et al., 2012; Zhang et al., 2012).
A B

FIGURE 6

A random noise was repetitively added to each input individually, generating a series of new RMSE depth profiles. The mean percentage decrease of
these RMSE profiles is here compared to the original test scores (A). The mean percentage decrease of RMSE in depth for the four last columns of
the histogram (B). The noises were randomly selected from uniform distributions with ±5% of the signal variance of each variable.
FIGURE 5

The mean magnitude of Shapley values computed using SHAP of each input in the CNN model as a function of depth. The relative importance is
scaled between 0-1.
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3.3 Improvements compared to
climatological data

To assess the advantages of convolution neural network

relative to traditional methods, we compared the results from

the OCNN using the input and output combination from the

previous section with iCLIM values in different regions. Generally,

the OCNN had greater accuracy of iCLIM across the entire water

column when averaged over the model domain, with the difference

being minimal at greater depths where conditions are mostly

stable. While the OCNN performances generally were better

closer to the surface and especially around the base of the

surface mixed layer (cf. Figure 3).

These results are confirmed when performances across different

regions in the Atlantic Ocean (Figure 4) were analyzed.

Reconstructions of both temperature and salinity using the

OCNN had higher accuracy than iCLIM in regions at higher

latitudes, while in tropical and equatorial regions the difference in

performance between the two models was reduced (Figure 7). This

is because temperate and polar regions have larger variability in the

ocean conditions than tropical regions, hence, as expected, the

simple interpolation of climatological profiles did not provide good

reconstruction values when compared to the OCNN. The

improvement in reconstruction accuracy is similar for

temperature and salinity across the different regions, although for

temperature the OCNN showed better performances. On the

contrary, in Equatorial regions, the OCNN can occasionally have

poorer performances than iCLIM (Figure 7). It should be noted,

however, that in these regions only limited training and testing data

were available, so that accurate comparisons should are dubious.

With regard to specific regions (see Figure 1B) there were

substantial differences in the accuracy of the OCNN respect to

iCLIM (see Table 4). The OCNN had >50% improvement in
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reconstructions for temperature, and approximately 40% for

salinity, in regions A, D, and E which are the most dynamic

among those selected. While in region C a smaller improvement

in temperature and no improvement in salinity were observed. The

comparison with the mean RMSE values from Table 3 indicates a

notable reduction in the overall mean RMSE values across the

Atlantic for the OCNN. This improvement is as a result of using the

model with the optimal input-output combination. The high RMSE

values for surface salinity seen in Figure 3 were not observed

uniformly across the Atlantic. They were particularly high and

frequent in dynamic areas such as the Gulf Stream and near river

outlets, thereby increasing the overall RMSE. The vertical RMSE

profiles varied considerably for both temperature and salinity across

different study regions (A–E), and only in Region B, corresponding

to the Amazon River outlet, were the salinity RMSE values largest at

the surface (See Appendix 6.3, Figure S3).

By removing observed profiles from those regions we tested the

effects of training on the accuracy of the model. Specifically, we

tested two cases (Test 1 and Test 2 in Table 4). In the first case

profiles were removed randomly to obtain a more uniform

distribution of observations in all regions across the whole

Atlantic. In the second case (Test 2) observations were not

removed from regions with few observations (i.e., B, C, 100%

retain of the original data). In Test 1 the training set was reduced

by 68% with a maximum of 12 profiles per 100 km2 across all

regions. Similar reduction was used in Test 2 but no observations

were removed from regions B and C, which had then respectively,

15 and 21 observations per 100 km2.

The mean improvement is measured with respect to the

interpolated climatological averages (iCLIM). Temperature and

salinity are measured in °C and [g/kg] respectively. Two tests

were performed reducing the size of the training set by about

70%, in Test 1 across all regions while in Test 2 no profiles were
FIGURE 7

Test scores improvements comparing iCLIM to the OCNN estimates.
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removed from regions B and C. The calculated mean difference is

relative to the same model trained on the full data set.

For both temperature and salinity profiles, the reconstruction

accuracy decreased proportionally to the reduction of training data

(see Table 4). Calculating the mean difference across the entire

Atlantic with respect to a model trained on the full data set, we

obtain that reconstructions of salinity deteriorate more than those

for temperature (overall mean difference -7.7% and -3.8,

respectively, Test 1).

When training profiles are preserved in some regions (Test 2),

the reconstruction accuracy of temperature in Region B remained

relatively stable, while slightly decreasing in Region C. However,

there was still a considerable decline in the performance of salinity

reconstructions, particularly in Region B. This indicates that the use

of training information of a non-local character, coming from

regions other than B, may be useful for improving salinity

reconstruction. This notion is further supported when comparing

the two tests, as improvements were observed not only in Region B

and C but also in other regions (i.e., A, D, E).
4 Discussion

Prior work reconstructed the subsurface ocean structure using

LSTMs by considering profiles as time series (Buongiorno Nardelli,

2020; Su et al., 2021b). In this study we implement different LSTM

and CNN architectures, and illustrate that CNNs have lower

reconstruction error than that of LSTMs for all depths.

Furthermore, we show the importance of tuning the structure and

parameters of a CNN to obtain improved reconstruction estimates

and evaluate the importance of different parameters (type of

variables and training size) in improving the performances.
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Previous studies have shown that sea surface height and

temperature as input features combined with additional variables,

such as wind stress, can improve the reconstruction of ocean state

variables (Ali et al., 2004; Jeong et al., 2019; Lu et al., 2019).

However, a systematic analysis of the impact of different input-

output feature combinations on reconstruction performance was

lacking. This paper presents such systematic analysis performing

different tests of input-output variations with the same CNNmodel.

Our findings demonstrate that incorporating variables such as

surface density (DOS) and sum of wind speeds (SSWsum)

improved the reconstruction performance. Moreover, inclusion of

both the measured values and their anomalies as input variables

further improved reconstructions for both temperature and salinity.

For temperature reconstructions, constructing a model that

includes additional outputs, such as the measured profiles, their

respective anomalies, and profiles of density and steric height,

showed even better resul ts . Converse ly , for sa l in i ty

reconstructions, using only profiles of salinity anomalies (SA)

yields better results.

Globally, the addition of all input features presented in Section

3.2 provides on average 5% improvements in reconstructions, i.e.,

reduces reconstruction RMSE for both temperature and salinity.

However, at local scales the impact of additional input features is

greater, particularly for salinity and in regions with highly variable

conditions. In regions such as the Gulf Stream and Agulhas

Current, wind plays an important role, and adding SSWsumalong

with the other additional inputs leads to almost a 10% decrease in

mean RMSE for salinity reconstructions. In our study, we find that

the incorporation of certain input features can increase RMSE. For

instance, introducing geostrophic currents (UGOS/VGOS) and of

wind speed components (USSW/VSSW) has a negative impact on

the reconstruction performance. The cause of this could be
TABLE 4 Reconstruction results in selected regions defined in section 2.3.

Temperature [°C] Salinity [g/kg] A B C D E Overall

Training set size:
(Obs. per 100 km2)

46 15 21 37 40 27

Testing set size:
(Obs. per 100 km2 )

12 4 5 9 10 6

iCLIM mean RMSE 1.224 0.166 0.394 0.076 0.265 0.039 0.832 0.129 0.826 0.099 0.694 0.099

OCNN mean RMSE 0.561 0.095 0.346 0.074 0.227 0.04 0.415 0.076 0.392 0.061 0.381 0.067

Mean improvement [%] 54.1 43.2 12 2.3 14.3 -1.1 50.3 40.8 54.2 38.4 45.1 31.7

Test 1

Training set size:
(Obs. per 100 km2)

12 7 8 11 11 8

Mean difference [%] -2.9 -6.4 -2.7 -5.9 -6.9 -10.8 -3.6 -8 -3 -7.6 -3.8 -7.7

Test 2

Training set size:
(Obs. per 100 km2)

12 15 21 11 11 11

Mean difference [%] -2.9 -5.9 0.2 -2.5 -1.4 -5.7 -2.9 -6.2 -1.8 -5.6 -1.7 -5.2
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attributed to errors in spatial or temporal interpolation, lag effects

from surface changes to changes in the deeper ocean, or a lack of

physical coupling between surface input and subsurface

output features.

Many studies have focused on exploring different model designs

and deep learning architectures, while an in-depth analyses of the

importance of different input-output variables has only recently

received attention (Pauthenet et al., 2022). In this study, we have

demonstrated that analyzing feature importance and input

sensitivity can enhance our understanding of how neural

networks reconstruct oceanographic features. Furthermore, this

approach can inform the design of observational networks by

identifying variables that require more accurate information to

improve reconstruction performance. The analysis using Shapley

values revealed that sea surface temperature and salinity, as well as

their anomalies, played a crucial role in estimating the respective

subsurface variables. For deeper layers, the surface topography

(ADT) and, to some extent, latitude had relatively higher

importance in reconstructing both variables. Links between these

physical variables have been demonstrated in previous studies

(Jones et al., 1998; Guinehut et al., 2012; Liu et al., 2017).

However, the surface values of SST and SSD appeared to have

disproportionate importance for the OCNN, particularly at deeper

layers. This may be an indication that the network is using these

variables as locational proxies in its reconstructions, rather than as

indicators of deeper ocean physical variables. While the feature

importance analyses provides a clear overview about the relative

weight of different inputs in profiles reconstruction, it is important

to underline that those relationships do not necessarily indicate

causation in the physical relations between sea surface and

subsurface properties and conditions. However, several studies

(Lapeyre and Klein, 2006; Liu et al., 2017; Chen et al., 2020)

indicate, that some dynamics down to depths of 1000m may be

captured by reconstruction based on that surface temperature,

height, and density fields. This suggests that the high relative

importance may indeed reflect links between sea surface and

subsurface conditions and properties to depths of 1000m.

Reconstructions for deeper ocean layers appear to deteriorate

rapidly, which is consistent with the findings of this study, and

one should view the high relative importance with caution.

The accuracy of OCNN is influenced by both regional and

profile-based variability. Errors in temperature reconstruction were

higher at the base of the mixed-layer, while for salinity the worst

performance is at surface. This is partially because small

perturbations on SSS had large impacts on the reconstructions of

salinity profiles (Section 3.2). A systematic perturbation of SSS inputs

within 0 − 5% range, showed drops in model accuracy by an average

30% for the surface values, and an average of 6% for the entire profile.

Hence, since discrepancies between in situ and satellite surface

measurements frequently exceed ±5%, the low accuracy of OCNN

at the surface could be expected. Indeed by substituting surface

satellite inputs of salinity directlywith in situmeasurements (data not

shown) we obtained major improvements in the accuracy of OCNN

not only for surface estimates, but for reconstructions in the first
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70m. This result is consistent with previous findings that employed

spatial upsampling of salinity data using satellite SST differences to

shape and constrain surface patterns (Buongiorno Nardelli, 2020).

In general, RMSE values indicate that salinity estimates using

neural network-based models are less accurate than temperature

estimates and show smaller improvements (45% for temperature

and 32% for salinity) when compared to profiles obtained using

iCLIM. A potential reason for this may be that relationships between

surface and subsurface conditions, such as the connection between

altimeter measurements and steric contributions to surface height, are

only able to explain a limited portion of the variability in the salinity

signal, as observed in earlier studies [e.g., (Guinehut et al., 2012)].

Specifically, in the ocean depths beyond 1000 meters, all models

yielded identical RMSE results. One possible explanation for this

might be the complete disconnection between surface variables and

the deep ocean dynamics. This notion is further supported by the

negligible impact of introducing random white noise to the inputs on

salinity predictions below 900 meters, see Section 3.2.

The size of the training set has a considerable impact on the

performance of the OCNN reconstructions. When the training

set size is reduced by about 70%, the overall RMSE scores display

a decrease of 3.8% and 7.7% for temperature and salinity,

respectively. These impacts seem to have both local and non-

local implications, as retaining training examples in specific

regions affects the RMSE outcomes throughout the Atlantic,

even though the impacts are more noticeable in those regions.

Despite the non-uniform spatial reduction in training data and

the preservation of more data in regions with lower observation

density, the most substantial effects on salinity reconstructions

are observed in these regions, with some experiencing RMSE

reductions of approximately 11%. This has consequences for the

sampling strategies of in situ measurements, since a minimum

number of samples across various Atlantic regions is necessary

for robust reconstructions. However, this research suggests that

neural network-based models also learn patterns and dynamics

that can be utilized for reconstructions in other regions. Further

research could identify regions that provide relatively more

information, both local and non-local, compared to regions

where only a few training observations are sufficient to generate

robust estimates. Strategies for future deployments of Argo

profiles may benefit greatly from such analysis.

As a result of the criteria for in situmeasurements in this study,

about 50% of the available profiles in the Atlantic were discarded. A

large portion of these samples could be suitable for similar studies

focusing on reconstructing hydrographic profiles in shallower

waters. Using these profiles would considerably increase the

number of training examples, offering both local and non-local

information. Specifically for salinity reconstruction, having more

training examples greatly influenced the results. Furthermore, since

the reconstruction of salinity did not outperform iCLIM in regions

deeper than 900 meters, it would be beneficial to include additional

shallower profiles.

Using the optimal input-output variable combination from the

current study, future research could explore local spatial and
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temporal dependencies. One potential approach would be to

construct a 3D matrix for each input feature, utilizing a 2D time

series of spatial maps. The height and width of the matrix would

correspond to the spatial signature of the adjacent surface values,

while the depth of the matrix would represent the temporal change.

The CNN model and its architecture should be adapted accordingly

to this input, i.e., changing from one-dimensional to two- or three-

dimensional convolutional layers. Prior studies (Su et al., 2021b; Su

et al., 2022; Sun et al., 2022) have used spatial and temporal

dimensions in a more explicit manner than in this study. However,

much research is still required to fully evaluate and understand the

dominant patterns and modes within the surface data.

We found that reconstruction errors are reduced when more

profiles are used for training, but we did not analyze the epistemic

vs the aleatoric uncertainty. For this purpose, the CNN should be

made fully Bayesian so that it becomes possible to estimate both the

expected values, corresponding to the deterministic reconstructions

and their data and model uncertainty. Equipped with a measure of

data uncertainty, the model would make it easier to determine the

need for additional Argo floats in specific regions.
5 Conclusion

In this study, we reconstruct the salinity and temperature vertical

profiles of the Atlantic Ocean down to a depth of 1500 m using a one-

dimensional convolution neural network. We demonstrate that the

effectiveness of neural network-basedmethods for combining accurate

but sparse in situ profiles with remotely-sensed surface measurements

can vary significantly depending on the specific algorithm employed.

Our study resulted in the development of an optimized convolutional

neural network (OCNN), which showed superior performance

compared to other neural network approaches such as LSTM, a

simpler version of the CNN (bCNN), and reconstructions based on

climatological values.

The non-uniform spatial distribution of errors showed lower

accuracy associated mostly with highly dynamic regions in the

western boundary currents (Gulf Stream, Brazil Current) and in

the Agulhas Current. The central challenge in reconstructing

temperature residuals lies in accurately estimating values within

the 60-90meter depth range at the base of the uppermixed layer. For

salinity reconstructions, discrepancies between satellite surface

measurements and in situ observations appeared to have greater

influence on the performance, surpassing the influence of near-

surface variability.

Our research revealed that incorporating additional and specific

combinations of inputs and outputs into the networks resulted in

even greater improvement in reconstruction performance. The

distribution of

relative importance between the inputs varied with depth,

where some inputs were central to the upper and mixed layer

depth (0-200m) such as surface anomalies of temperature and

salinity (SSTA, SSSA), and to some extent the wind speed. Other

variables such as the measured values of surface temperature and

salinity (SST, SSS), and values of ADT had greater importance at

depths of range 200-1000m.
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We demonstrate that a decrease in the spatial density of in situ

profiles across the Atlantic results in a reduced reconstruction

performance in high variability regions, such as the Gulf Stream,

and an even greater decline in low variability regions. However,

preserving training observations in specific regions, not only leads

to local reconstruction improvements in those regions, but also

enhances overall performance across the Atlantic. This suggests that

a minimum number of training examples is necessary across

various Atlantic regions, while much local information can be

extrapolated to other locations. The effects of reduced training

data are particularly noticeable for salinity reconstructions. With

the original number of in situ observations in low variability

regions, the areas remain sparsely sampled, and the predictions

show improvements although minimal compared to climatological

averages. Additional observations in these regions could further

increase the gap from estimates based on climatological averages.

This research demonstrates that convolutional neural network-

based architectures such as the OCNN for reconstruction of

subsurface ocean structure yield promising outcomes. By utilizing

and further advancing this framework, more precise insights into

ocean structure can be acquired, leading to a better comprehension

of the Earth System and shifts in its dynamics.
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