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Transgenerational plasticity as a
mechanism of response to
marine heatwaves in the
purple sea urchin,
Strongylocentrotus purpuratus

Jannine D. Chamorro*, Adriane M. McDonald
and Gretchen E. Hofmann

Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara,
Santa Barbara, CA, United States
Kelp forests of the California Current System have experienced prolonged

marine heatwave (MHW) events that overlap in time with the phenology of life

history events (e.g., gametogenesis and spawning) of many benthic marine

invertebrates. To study the effect of thermal stress from MHWs during

gametogenesis in the purple sea urchin (Strongylocentrotus purpuratus) and

further, whether MHWs might induce transgenerational plasticity (TGP) in

thermal tolerance of progeny, adult urchins were acclimated to two conditions

in the laboratory – a MHW temperature of 18°C and a non-MHW temperature of

13°C. Following a four-month long acclimation period (October–January), adults

were spawned and offspring from each parental condition were reared at MHW

(18°C) and non-MHW temperatures (13°C), creating a total of four embryo

treatment groups. To assess transgenerational effects for each of the four

groups, we measured thermal tolerance of hatched blastula embryos in acute

thermal tolerance trials. Embryos from MHW-acclimated females were more

thermally tolerant with higher LT50 values as compared to progeny from non-

MHW-acclimated females. Additionally, there was an effect of female acclimation

state on offspring body size at two stages of embryonic development - early

gastrulae and prism, an early stage echinopluteus larvae. To assess maternal

provisioning as means to also alter embryo performance, we assessed gamete

traits from the differentially acclimated females, by measuring size and

biochemical composition of eggs. MHW-acclimated females had eggs with

higher protein concentrations, while egg size and lipid content showed no

differences. Our results indicate that TGP plays a role in altering the

performance of progeny as a function of the thermal history of the female,

especially when thermal stress coincides with gametogenesis. In addition, the

data on egg provisioning show that maternal experience can influence embryo

traits via egg protein content. Although this is a laboratory-based study, the

results suggest that TGP may play a role in the resistance and tolerance of S.

purpuratus early stages in the natural kelp forest setting.
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1 Introduction

Marine heatwave (MHW) events—defined as discrete periods

of anomalously high sea surface temperatures (Hobday et al., 2016)

—have emerged over the last decade as extreme climatic

disturbance events which can occur at large spatial and temporal

scales (Hobday et al., 2018; Oliver et al., 2021). Globally, MHWs

have had significant effects on coastal marine ecosystems, ranging

from mass mortality events (Cavole et al., 2016; Hughes et al., 2017;

Wernberg, 2021; Garrabou et al., 2022), species range shifts

(Lonhart et al., 2019; Sanford et al., 2019), and changes in

biodiversity (Rogers-Bennett and Catton, 2019; Hart et al., 2020;

Weitzman et al., 2021; Michaud et al., 2022) to effects on organismal

processes such as reproduction (Leach et al., 2021; Minuti et al.,

2021) and development (Leung et al., 2017; Tanner et al., 2020;

Clare et al., 2022; Minuti et al., 2022). Because recent research

indicates that MHWs are expected to increase in frequency and

duration in the future (Oliver et al., 2018; Guo et al., 2022; Jacox

et al., 2022), understanding how these events will impact species,

especially at their most temperature-sensitive stages, will provide

critical insight into how MHWs might alter population and

community structure. Specifically, research on the timing of

MHWs relative to the timing of critical life history events is an

important consideration when exploring the physiological

mechanisms by which environmental thermal stress might impact

organismal performance.

Notably, for organisms with complex life histories, such as

marine invertebrates, early developmental stages are often the most

vulnerable to environmental stress, with early embryos and

juveniles showing the most sensitivity across taxa (Pandori and

Sorte, 2018). For many benthic marine invertebrates, there are

significant knowledge gaps in three areas – how early stages will

respond to the acute thermal stress from MHWs, the physiological

mechanisms that confer resilience, and lastly, how the timing of

MHWs in nature align with the timing of life history events.

Mechanistically, the thermal tolerance of embryos and larvae can

be influenced via inherent plasticity expressed during development,

or alternatively via parentally-sourced mechanisms. Here, maternal

provisioning of eggs and/or transgenerational plasticity (TGP)

could transduce tolerance to the embryo as a function of adult

environmental history (Donelson et al., 2016). As part of this special

topic, we present the results from a laboratory experiment that

mimicked MHW patterns observed at our kelp forest study site, and

acclimated adult purple sea urchins (Strongylocentrotus purpuratus)

in the laboratory at a time that coincided with gametogenesis in

local natural populations. We then tested the hypothesis that adult

thermal experience would influence the tolerance of progeny via

TGP. To investigate maternal investment as a specific mechanism of

TGP, we examined whether changes in egg provisioning would

correlate to the thermal acclimation treatment of the adults.

Our laboratory conditions mimicked a major MHW event that

occurred in our region, the extreme event also known as ‘the Blob’.

This notable MHW event occurred from January 2014 – August

2016 (Gentemann et al., 2017), and, during this time, sea surface

temperature (SST) increased an average of 1- 4°C (Cavole et al.,

2016; Di Lorenzo and Mantua, 2016). This event had drastic
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impacts in the Northeast Pacific from the Gulf of Alaska to Baja

California that ranged across levels of biological organization

(Cavole et al., 2016; Arafeh-Dalmau et al., 2019). Regionally, in

the Santa Barbara Channel (SBC) and the local kelp forests, this

event has had lasting effects on the kelp forest community, altering

local biodiversity (Michaud et al., 2022), interacting with disease

(Reed et al., 2016), and changing the quality of kelp as food

(Lowman et al., 2022). Since the Blob, recurrence of shorter term

MHW events are continuing to be documented (Leach et al., 2021)

raising concern for the health of these productive coastal

ecosystems going into the future.

Determining how kelp forest ecosystems will be impacted by

MHWs will be dependent on our understanding of organismal

responses of ecologically important species. In kelp forests, S.

purpuratus is a dominant herbivorous grazer capable of

transforming ecosystems (Pearse, 2006; Smith and Tinker, 2022).

Vulnerability to elevated temperatures can vary throughout the sea

urchin life cycle, where early developmental stages are often the

most sensitive to environmental stress (Byrne, 2011). While

increases in environmental temperatures can have a positive effect

on early stages by increasing growth and rate of development, thus

reducing planktonic larval duration, if temperatures exceed upper

thermal thresholds, early forms can experience an increase in

abnormal development and/or mortality (Byrne, 2011). Adults are

generally less susceptible than embryos to warming in sea urchin

species, however heat stress associated with MHWs has shown to

have lasting effects on urchin survival, immune response, and

reproduction (Shanks et al., 2020; Minuti et al., 2021). From an

ecological development perspective (Sultan, 2007), large parts of the

purple urchin’s reproductive cycle take place when MHWs occur in

the SBC (Figure 1). MHWs have tended to occur in the late summer

to early winter, a time period that coincides with the period of

gametogenesis in purple sea urchins (Cochran and Engelmann,

1975; Strathmann, 1987) (Figure 1). In addition, S. purpuratus

spawns in this region from December – February (G. Hofmann,

pers. observ.). Thus, the overlap between timing of MHWs and

gametogenesis in purple urchins makes this species an ideal

candidate for examining mechanisms of parental effects in

response to local MHWs. From an experimental physiology

perspective, this temporal alignment in nature renders parental

acclimation in the laboratory during gametogenesis a way to explore

whether the thermal history of adults influences the tolerance of

their early-stage progeny.

Transgenerational plasticity, which refers to modification of

offspring phenotype induced by signals experienced by the parents,

is well documented in marine taxa (Donelson et al., 2016; Zhao

et al., 2020; Truong et al., 2022). In general, TGP has been studied

extensively in marine invertebrates with mixed results depending

on taxa and the context of the environmental factor in question

(Byrne et al., 2020). At present, TGP or “carry-over” effect studies in

a MHW context (i.e., where the temperature regime in an

experiment matches that of actual temperature patterns during

local MHWs) are few, but emerging data are providing important

insight into how thermal stress from MHWs interacts with the

phenology of life history events (Gall et al., 2021; Leach et al., 2021;

Minuti et al., 2022).
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In this study, we examined TGP as a mechanism to increase

physiological performance during critical developmental stages of S.

purpuratus when exposed to prolonged MHW conditions.

Specifically, our aim was to investigate maternal effects in a

benthic marine invertebrate that routinely experiences MHWs in

situ and ask whether exposure to MHW temperatures during

oogenesis in female urchins induced a transgenerational response,

or carry-over effect, when exposed to a simulated prolonged MHW

in the laboratory. For this study, adult purple sea urchins were

acclimated under two conditions – temperatures that mimicked

average MHW conditions typical of the 2014-2016 MHW in the

SBC (18°C), and a non-MHW average habitat temperature (13°C)

during the period of gametogenesis. Following a four-month

acclimation period, adults were spawned and offspring from each

maternal acclimation treatment (MHW vs. non-MHW

temperature) were reared reciprocally at MHW temperatures

(18°C), and non-MHW temperatures (13°C). To test for evidence

of TGP in this reciprocal rearing design, we assessed multiple traits

throughout early development including thermal tolerance and

measurements of body size. To assess the potential for maternal

investment as a mechanism or TGP we measured egg traits such as

egg size and biochemical composition. The results contribute to our

understanding of how ecologically important species of kelp forest

ecosystems respond to acute thermal stress from MHWs.
2 Materials and methods

2.1 Animal collection and
adult conditioning

Adult purple sea urchins, Strongylocentrotus purpuratus

(Stimpson, 1857), were collected on SCUBA subtidally near

Goleta Bay, CA, in September 2020. Urchins were collected under
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permit #SC-9228 to the Santa Barbara Coastal LTER, and all

protocols followed the guidelines of animal care and use at

University of California, Santa Barbara. The mean temperature at

the site was 16.8 ± 0.9°C on the day of collection. Following

collection, urchins were held in a flow-through seawater table at

ambient temperature (~16.4°C) for 24 hours before being placed in

the adult acclimation treatments. During this period urchins were

monitored for any disease or premature spawning and removed

if needed.

To determine how maternal conditioning influenced

provisioning and subsequent offspring performance, adult urchins

were acclimated in either a warm (W: ~18.3°C) or cool (C: ~13.1°C)

temperature condition representing MHW and non-MHW

conditions, respectively (see Supplementary Material Figure 1).

Urchins were held in the acclimation treatments from October

2020 to January 2021, which coincides with the window of

gametogenesis for S. purpuratus populations in the SBC

(Strathmann, 1987). Adult acclimation treatments consisted of

three 37L replicate tanks held in a seawater table, acting as a

water bath, to maintain temperature. Seawater was supplied to

the treatment tanks via a dripper irrigation system with a flow rate

of 12L/hr. The temperature of the seawater table was controlled

using a Delta Star® heat pump with a Nema 4x digital temperature

controller (AquaLogic, San Diego, CA, USA). The temperature of

each tank was monitored daily using a wire thermocouple (Omega

HH81a). Aquarium pumps (Aqua-Supreme) were installed in each

tank to maintain proper water flow. Ten adult urchins were

randomly selected and added to each treatment tank at the

beginning of the acclimation period (N=60 total, 10 urchins per

tank replicate for each temperature condition) (Figure 2). Each

week seven fronds of kelp (Macrocystis pyrifera) were added to each

tank and urchins fed ab libitum. Urchins were inspected daily, and

any individuals that showed signs of disease or death were removed.
FIGURE 1

Mean daily temperature experienced by adult purple sea urchins during the 2014-2015 MHW. Temperature data were collected on the benthos
using ONSET HOBO temperature loggers by the Santa Barbara Coastal LTER. The red and purple lines represent 2014 and 2015, respectively; the
grey line represents the climatological mean (2001-2021). The occurrence of a MHW event, identified using metrics established by Hobday et al.
(2016), is indicated by a dashed line for both 2014 (red) and 2015 (purple). Timing of life history events for S. purpuratus are represented by colored
bars: gametogenesis (blue), spawning (green), and planktonic larval duration (yellow) (Rogers-Bennett, 2013; Okamoto et al., 2020).
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2.2 Urchin spawning and larval culturing

Following the four-month conditioning period, urchins were

induced to spawn by injecting 0.53M KCl into the coelom

(Strathmann, 1987). Sperm was collected “dry” via pipette, and

then stored on ice in 1.5mL microcentrifuge tubes until activated.

Eggs were collected by inverting females over a beaker containing

UV sterilized 0.35micron filtered seawater (FSW). Sperm and egg

quality were checked under a compound microscope. Females with

the highest quality eggs (determined via visual inspection of size,

shape, and transparency) from each adult acclimation treatment

were selected for test fertilizations with potential sires. To test for

gamete compatibility, a sample of eggs from each female were

combined with diluted sperm from four different non-MHWmales.

The male with highest sperm quality and compatibility (e.g., good

motility and >95% fertilization) was chosen as the sire. Eggs from

five females from each acclimation treatment, with the highest

quality eggs and without fertilization incompatibilities, were then

pooled in two separate beakers, creating two egg pools (i.e., a pool of

eggs from MHW acclimated females, and a pool from non-MHW

acclimated females). Each female contributed approximately 72,000

eggs to each pool. Beakers containing pooled eggs were gently

mixed while diluted, activated sperm (at approx. 105 cells per mL)

from the chosen sire was added in small increments to avoid

polyspermy. Since this study focused on examining maternal

effects, only one sire from the non-MHW group was chosen to
Frontiers in Marine Science 04
reduce any variation in offspring phenotype attributed to paternal

genetic variation. Once pooled eggs reached 95% fertilization,

embryos were deposited in larval culturing containers for the

rearing phase of the experiment.

For the reciprocal culturing experiment embryos were raised at two

different developmental temperatures: a MHW temperature (~18.5°C)

hereafter denoted as ‘W’ and a non-MHW temperature (~12.7°C)

hereafter denoted as ‘C’. This experiment created four offspring

combination treatments that are denoted as: WW, WC, CW, CC,

where the first letter represents the condition for the adult, and the

second letter indicates the temperature at which embryos underwent

development. Each of the four groups were raised in three replicate

culture containers (Figure 2). Culturing containers consisted of two

nested 19L buckets. The inner bucket, which held the embryos, had

cutouts that had been covered and sealed with 35mm mesh. The mesh

covered cutouts allowed water to leave the bucket without losing

embryos. Filtered seawater was fed into a reservoir tank, allowing the

water to come to the treatment temperature prior to being fed into

culture container using irrigation drippers at a rate of 6L/hr. To

maintain treatment temperatures, reservoir tanks and larval culturing

containers were held in seawater tables, acting as water baths, in the

same set up described for adult treatment tanks. A paddle attached to a

motor on each lid of the containers gently stirred the seawater to

suspend embryos. Each container contained 12L of FSW and was

stocked with 122,000 embryos. Seawater temperature in each culturing

container was closely monitored using a wire thermocouple.
FIGURE 2

Experimental design. Adult S. purpuratus (N=60) were acclimated in either a MHW (W: 18°C) or a non-MHW (C: 13°C) condition, for a four-month
period, during gametogenesis. Eggs from each maternal treatment were pooled (N=5 females per treatment) and fertilized using sperm from a single
non-MHW- acclimated male. Embryos from each cross were reared at either a MHW or non-MHW temperature, resulting in four groups: WW, WC,
CW, and CC. Each group was raised in three replicate culture vessels.
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2.3 Sampling through development

Embryo sampling was conducted at three stages during

development: hatched blastula (HB), early gastrula (EG), and an

early form of echinopluteus larvae, the prism stage (PR). Each stage

was sampled when embryos displayed dist inguishing

developmental characteristics described in Strathmann (1987).

Specifically, hatched blastula stage were characterized by hatching,

where the embryo is no longer enclosed in the embryonic envelope;

HB were sampled at 16 hours post-fertilization (hpf) for WW and

CW treatments and 23hpf for WC and CC treatments. The early

gastrula stage was characterized as the embryo displaying

invagination at the vegetal plate and was sampled at 21hpf for

WW and CW treatments and 34hpf for WC and CC treatments.

The prism stage was characterized as the full formation of the

tripartite archenteron, in addition to growth of the body rods, and

was sampled at 44hpf for WW and CW treatments, 58hpf for WC,

and 55hpf for CC treatments.
2.4 Thermal tolerance

To determine the effects and interaction of maternal

acclimation and developmental temperature on the performance

of the four treatments (WW, WC, CC, CW), subsets of hatched

blastula embryos from each treatment were tested in an acute

thermal tolerance trial. Methods for this trial were as described by

Wong and Hofmann (2020) with some modification. Briefly, using

a temperature gradient heat block, scintillation vials containing 3.5

mL of FSW were brought to seven temperatures (17.5, 20.5, 26.4,

24.7, 28.0, 29.8, 31.1°C). Embryos from replicate culturing

containers in each treatment were pooled so that each container

contributed equally to the thermal tolerance trial. For the trials,

1,000 embryos in 500mL of FSW were added to the preheated

scintillation vials, and were capped to prevent evaporation. Vials

containing the embryos were maintained in the heat block for 1hr,

at which point additional cool FSW was added to each vial and the

vials were transferred to a 14°C environmental chamber for a

recovery phase. During the recovery phase, embryos were allowed

to proceed through development to the prism stage, an early pre-

feeding larval stage. The timing of the appearance of embryos

progressing to the prism stage was assessed visually using

microscopy; approximately 43 hours elapsed from the start of the

recovery period and to the beginning of the scoring process.

Periodic water changes were conducted to make sure water in

vials did not become hypoxic. Using approximately 100 individuals

from each vial, we screened for advancement to the prism. Larvae

were scored as alive if swimming or cilia movement was observed.

LT50 (the temperature at which the population experiences 50%

mortality) was calculated for each treatment. While previous studies

have measured mortality immediately following exposure to an

acute thermal stress, for this experiment mortality was measured

once the embryos reached the prism stage. This allowed for a more

accurate measure of survival by adding a recovery phase to the acute

temperature trial.
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2.5 Embryo and larval
morphometric analysis

For HB and EG, 500 embryos from each culturing container

were preserved in 2% formalin in FSW. In addition, 500 PR larvae

from each culturing container were preserved in 2% formalin in

FSW buffered with 100mM sodium perborate to a pH of 8.7, a

formulation that reduces degradation of the skeletal rods. For each

stage, preservation in 2% formalin was achieved by adding an equal

volume of 4% formalin (in FSW or buffered FSW) to the

sample volume.

Preserved embryos were promptly photographed for

morphometric analysis using a compound microscope (Olympus

BX50) with a 10x objective and attached digital camera (Motic 10

MP and Motic Image Plus software). Images were measured using

ImageJ (National Institutes of Health, USA) and calibrated using a

stage micrometer. For HB and EG images, individual embryos

(N=35) from each treatment replicate were oriented so the full

lateral view was visible, 2D area was measured and calculated by

tracing around the perimeter of the embryo. For PR images,

individuals (N=35) from each treatment replicate were oriented in

a lateral view, so that the side profile of the archenteron was visible,

2D area was similarly measured by tracing around the perimeter of

the embryo. At the prism stage, skeletal rod length was also

determined by measuring from the tip of the body rod to the tip

of the postoral rod.
2.6 Analysis of egg traits

To assess maternal investment in females from the different

acclimation treatments, we measured egg traits including egg size

and biochemical composition. Eggs were preserved and measured

using the same methods as described above for embryos. For

imaging, 500 eggs from each contributing female (N=10) were

collected promptly after spawning, and preserved in 2% formalin

in FSW for morphometric analysis. Individual eggs (N=35) from

each female were measured by calculating the average of three

diameters and two-dimensional (2D) area.

For lipid quantification, 2,000 eggs were deposited in a 1.5mL

cryovial. Each sample was centrifugated to concentrate eggs

(approximately 30s at 16,000 RCF) (Eppendorf 5415C

Centrifuge), the water layer was carefully removed, and the

sample was flash frozen in liquid nitrogen and stored at -80°C

until analysis. Two tubes from each contributing female were used

to quantify total lipid concentration. Total lipid was extracted using

methods described in Wong et al. (2019), a method based on Sewell

(2005) with some modification. The concentrated eggs from each

sample were suspended in 250mL of Milli-Q water and sonicated at

2amps for a total of 45s at 15s intervals (Fisher Scientific Sonic

Dismembrator 500). Each homogenized sample was then

transferred to a 5mL glass V-vial (Wheaton) and combined with

125mL of chloroform (HPLC grade) and 250mL of methanol (HPLC

grade). Samples were shaken vigorously and then centrifuged at

2,680 RCF for 5min at 4°C (Beckman Coulter Allegra™ 21R
frontiersin.org
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Centrifuge). Using a pulled Pasteur pipette the aqueous and

chloroform layers were transferred to a clean V-vial; chloroform

and water were then added to the final volume ratio of 4:3:2 of

water:chloroform:methanol. Samples were then hand shaken and

centrifuged again at 2,680 RCF for 5min at 4°C. After centrifuging,

the chloroform layer was carefully transferred to a clean glass vial.

All samples were flushed with N2 and stored at -20°C prior

to analysis.

Total lipid was quantified spectrophotometrically using

modified methods based on Marsh and Weinstein (1966). Briefly,

samples were placed under a flow of N2 to allow chloroform to

evaporate (Reacti-Vap™ Evaporators TS-18826, Thermo

Scientific™). Once dried, 500mL of sulfuric acid (ACS grade) was

added to each sample, covered with aluminum foil, and dried in a

furnace at 200°C for 15min. Samples were allowed to cool for 10min

prior to the addition of 2.5mL of deionized water to each vial.

Samples were allowed to cool for an additional 10min and then

absorbance of each sample was measured on a spectrophotometer

(Shimadzu UV-1800) at 375nm. A standard curve of a known mass

of lipid within a range of 30-300mg was also prepared and run in

parallel with each batch of samples (R2 = 0.98-0.99). The lipid

profile used to generate the standard curve consisted of major lipid

classes found in S. purpuratus eggs which were previously reported

in Wong et al. (2019); specifically, the standard was comprised of

51% triacylglycerol (Glyceryl tripalmitate, Sigma-Aldrich, Catalog

No. T5888), 38% phospholipid (L-a-Phosphatidylcholine, Sigma-

Aldrich, Catalog No. P3556), and 11% sterol (Cholesterol, Sigma-

Aldrich, Catalog No. C8667).

Eggs used for protein quantification were prepared using the

same process as described for lipid quantification. Three tubes from

each contributing female were used to quantify total protein

concentration. Protein was extracted from 2,000 eggs from each

females using methods described in Wong et al. (2019). Briefly,

100mL of homogenization buffer (20mM Tris-HCl, (pH 7.6);

130mM NaCl; 5mM EDTA) with 1% Triton-X and 1% Protease

Inhibitor Cocktail (Catalog number P8340, Sigma-Aldrich) was

added to each sample of concentrated eggs and sonicated on ice for

20s. Samples were then shaken (Thermolyne M71735 Slow Speed

Roto Mix) on ice for 15min, followed by centrifugation at 16,000

RCF for 20min (Eppendorf 5415C Centrifuge). The supernatant

was transferred to a 1.5mL microcentrifuge tube and stored at -20°C

until analysis. Total protein content was quantified using the

Pierce™ BCA Protein Assay Kit following manufacturer’s

instructions (Catalog No. 23225, Pierce Biotechnology, Rockford,

IL, USA). The standard curve was generated using bovine serum

albumin (R2 = 0.99).
2.7 Statistical analysis

All statistical analyses were conducted in R Studio (2022.12.0 +

353). Adult survival data was generated using the Kaplan-Meier

method (Rich et al., 2010) and analyzed using a log-rank test. For

the thermal tolerance trial, the influence of maternal acclimation

temperature and offspring developmental temperature on

survivorship in response to temperature was analyzed using a
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generalized linear mixed effect model (lme4 package) (Bates et al.,

2015). The binary data (alive vs. dead) were fitted using a logit link.

Models were compared, and the best fit was determined using

standard model reduction approach for fixed effects, their

interactions, and random effects; where the Akaike information

criterion (AIC) was used to determine the best fit model. Maternal

and offspring temperature were set as fixed effects and vial number

was set as a random effect. A Wald chi-squared test was conducted

to determine the significance of each factor on survivorship. The

LT50 value was calculated using a logistic regression for each

treatment. The influence of maternal condition and the

developmental temperature on body size at each stage (i.e., HB,

EG, and PR), was similarly analyzed using a linear mixed-effect

model. Maternal and offspring temperature were set as fixed effects

and individual culturing containers were set as a random effect. For

egg traits, the influence of maternal acclimation on egg size (i.e.,

average diameter and 2D area), total lipid, and total protein content

was analyzed using a linear mixed-effect model. For egg size, total

lipid, and total protein content, maternal temperature condition

was set as a fixed effect while each individual mother was set as a

random effect.
3 Results

3.1 Observations following acclimation of
adult urchins

Adult S. purpuratus were successfully acclimated in the

laboratory to two experimental temperature conditions, MHW

(18°C) and non-MHW (13°C) conditions, with some mortality.

Throughout the four-month acclimation period, mortality was

observed in both treatments with a trend of higher survival in the

non-MHW treatment (90%), as compared to the MHW treatment

(73%). However, the difference in survival probability between

treatments was non-significant (Figure 3) (log-rank test: c2 = 2.8,

df=1, p=0.10). Following the acclimation, surviving urchins from

each treatment were spawned, providing ample material to create

the embryo families and raise cultures. However, we observed

decreased spawning success in MHW-acclimated adults as

compared to non-MHW-acclimated adults where 50% of

surviving urchins in the MHW treatment spawned as compared

to the non-MHW treatment where all adults were induced

to spawn.
3.2 Thermal tolerance

Our study did detect a carry-over effect of maternal thermal

history to the progeny. In the thermal tolerance trial, progeny from

females acclimated to MHW temperatures (denoted as ‘W’) had a

higher thermal tolerance to acute thermal stress than progeny from

non-MHW-acclimated females (denoted as ‘C’), with higher

percentages of larvae alive following the recovery period. Embryos

from females acclimated to 18°C, the MHW condition, had higher

LT50 values than those acclimated to 13°C, the non-MHW
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condition (Figure 4). Across the experiment, calculated LT50 ranged

from 27.2 - 28.4°C. For each treatment, LT50 values for WW, WC,

CW, and CC were 28.2, 28.4, 27.9, 27.2°C, respectively. When

comparing the influence of maternal condition, a comparison of

WW vs. CW treatments suggested that embryos, when reared at

higher temperatures, gained a modest increase in tolerance (+0.3°C)

if mothers experienced MHW temperatures during the period of
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oogenesis. We also found evidence that embryo environmental

conditions influenced thermal tolerance. Here, elevated

developmental temperature increased thermal tolerance in

progeny from females naïve to MHW exposure, where LT50 of

the CW family was 0.7°C higher than the CC family.

A generalized linear mixed-effect model found that maternal

acclimation, temperature at which offspring were raised, and their
FIGURE 4

Survivorship of early-stage S. purpuratus from the four treatments. Hatched blastula from each of the four treatments were exposed to a 1-h acute
temperature trial and then allowed to recover at 14°C. Following recovery and development to prism the proportion of live prism larvae were
scored. Colored lines represent a logistic regression for each treatment. LT50 is shown at the intersection of the dashed grey line with the color-
coded line for each group with different parentage and different developmental temperature.
FIGURE 3

Survivorship in S. purpuratus adults over 4 months of acclimation at marine heatwave (18°C) and non-marine heatwave (13°C) temperatures. Adult
urchins were acclimated to either a MHW temperature of 18°C or non-MHW temperature of 13°C for a four-month period from October to January.
The red and blue lines represent survival probability for MHW or non-MHW condition, respectively.
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interaction all had a significant effect on embryo thermal tolerance

(Table 1). These results indicated that the thermal history of the

females and the developmental temperature of the embryo both

influenced thermal tolerance of early-stage purple sea urchins in the

thermal tolerance trial.
3.3 Embryo morphometrics

The influence of maternal acclimation and offspring

developmental temperature on body size differed as a function of

stage, where maternal acclimation significantly influenced embryo

body size at the early gastrula and prism stage, while offspring

developmental temperature had a significant influence only at the

prism stage (Table 2). Difference in body size amongst treatments

were most evident at the prism stage, where on average, offspring

from MHW-acclimated females were 7.1% larger than those from

non-MHW-acclimated females. Additionally, offspring raised at the

MHW temperature were on average 14.3% larger (2D area) than

those raised at the non-MHW temperature and had skeletal rod

lengths that was on average 53.5% longer than those raised in the

non-MHW condition (Figure 5). Results from the best fit linear

mixed effect models are summarized in Table 2.
3.4 Egg morphometrics and biochemistry

In general, maternal temperature acclimation had no effect on

egg size. Although eggs from non-MHW-acclimated females

trended larger in size, maternal environmental history during

oogenesis did not significantly influence average egg diameter

(F1,8 = 0.1272, p= 0.7286) or 2D area (F1,8 = 0.5882, p= 0.4608).

Average egg diameter for MHW- and non-MHW-acclimated

mothers was 0.0798 ± 0.023 and 0.0801 ± 0.023mm, respectively.

The average 2D area of eggs from MHW- and non-MHW-

acclimated females was 0.0051 ± 0.003 and 0.0052 ± 0.003mm2,

respectively (Figures 6A, B).

In contrast to morphometric traits, the biochemical composition

of the eggs did vary in a comparison of females acclimated to MHW

vs. non-MHW temperatures. Specifically, protein concentrations

were higher in eggs from MHW-acclimated females as compared

to eggs from non-MHW-acclimated females (F1,8 = 11.184, p<0.01).

Total protein content from MHW and non-MHW acclimated

mothers was 40.4 ± 3.38 and 34.6 ± 3.23 ng/egg, respectively
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(Figure 6C). In contrast, maternal thermal history did not have a

significant effect on total lipid content of eggs (F1,8 = 2.3268,

p =0.1575), although trending differences in lipid content were

observed. Total lipid content in eggs from MHW- acclimated

females was on average 17.6 ± 5.19 as compared to 14.0 ± 2.62 ng/

egg in MHW- acclimated females (Figure 6D).
4 Discussion

The goal of this study was to investigate TGP as a mechanism of

resilience to MHW-relevant thermal stress in early developmental

stages of the purple sea urchin, S. purpuratus. Designing

experiments parameterized by local thermal extremes, we found

that parental thermal history influenced thermal tolerance of

progeny, where females acclimated to MHW temperatures (18°C)

during gametogenesis produced more thermally tolerant progeny as

compared to their non-MHW acclimated counterparts (13°C). Our

findings further showed that maternal acclimation significantly

influenced offspring body size at various stages in development

(i.e., EG and PR), where embryos from MHW-acclimated females

were larger. In exploring specific mechanisms of TGP, we

hypothesized that differences in maternal provisioning could

contribute to the observed differences in offspring phenotype.

Here, in an assessment of egg size and the biochemical

composition of eggs, we found that eggs from differentially

acclimated females differed significantly in total protein content,

with eggs from females maintained at higher temperatures having

greater total protein. In combination, these results indicated that

prolonged exposure to anomalously high environmental

temperatures, as would be experienced during MHW events in

nature, could influence reproductive success in situ.

In general, there are relatively few studies that have examined

the effects of MHWs on gamete and offspring traits with an eye to

three important elements of an ocean-climate study – here, parental

effects that could drive plasticity, ecologically relevant temperatures

for that species/populations under study, and species-specific

phenology. In this regard, important studies on echinoderms have

shown that a New Zealand species, Evechinus chloroticus, when

acclimated to high summer temperatures decreased reproductive

output (Delorme and Sewell, 2016). In our study, operating in an

ecologically matched time window for oogenesis, we observed a

similar trend were S. purpuratus adults acclimated to MHW

conditions had lower spawning success when compared to those
TABLE 1 A Wald chi-squared test was used to determine the significance of each factor: temperature of acute exposure, maternal acclimation
temperature, and offspring developmental temperature; and their interaction on survivorship.

c2 df p

Temperature 206.264 1 <0.001

Temperature x Maternal acclimation 20.412 1 <0.001

Temperature x Developmental temperature 57.337 1 <0.001

Temperature x Maternal acclimation x
Developmental Temperature

38.351 1 <0.001
Bold values indicate factors which had a significant effect.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1212781
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chamorro et al. 10.3389/fmars.2023.1212781
held at control conditions. In a study of carry-over effects in

Heliocidaris erythrogramma, Minuti and colleagues found that

MHW- acclimated females produced larger, more thermally

tolerant progeny at early developmental stages (Minuti et al.,

2021). Similar observations were made in this study on the

temperate, kelp forest species, S. purpuratus. Further, in a study

of sperm traits in S. purpuratus, male urchins acclimated to local
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MHW conditions (20°C) had decreased fertilization success when

compared to males exposed to non-MHW conditions (15°C) (Leach

et al., 2021). Our understanding of MHW effects on reproductive

and offspring traits is growing with accumulating evidence noting

that early stage and developmental steps are likely influenced by

high temperatures typical of MHWs, especially if the thermal stress

aligns with critical life history events such as gametogenesis.
FIGURE 5

Morphometric analysis of embryo and prism stage S. purpuratus. Body size of embryos and larvae at three developmental stages: hatched blastula
(HB), early gastrula (EG), and prism (PR), for each family combination (WW, WC, CW, & CC). Only results with significant p-values are displayed on
each graph.
TABLE 2 Type III analysis of variance table with Satterthwaite’s method for the linear mixed effect models showing the effect of maternal acclimation
and offspring developmental temperature on body size (i.e., area and skeletal rod length) of early developmental stages of S. purpuratus.

MS NumDF DenDF F p

Hatched Blastula

Area

Maternal acclimation 6.12e-07 1 12 3.963 0.07

Developmental temperature 3.94e-07 1 12 2.552 0.136

Maternal acclimation x developmental temperature 6.05e-07 1 12 3.918 0.071

Early Gastrula

Area

Maternal acclimation 2.41e-05 1 12 65.612 3.31e-06

Developmental temperature 8.24e-07 1 12 2.242 0.16

Maternal acclimation x developmental temperature 1.00e-05 1 12 27.265 2.14e-4

Prism

Area

Maternal acclimation 5.28e-06 1 12 8.335 0.014

Developmental temperature 4.46e-05 1 12 70.403 2.95e-06

Rod length

Maternal acclimation 1.64e-04 1 12 0.619 0.447

Developmental temperature 0.052 1 12 197.586 8.08e-09
fron
Bold values indicate factors which had a significant effect.
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4.1 Transgenerational effects on offspring
thermal tolerance

The main objective of the study was to examine whether adult

environmental experience in MHW conditions would influence the

performance of their progeny. Ecologically, this is significant

because MHW events can occur throughout the period in which

purple urchins are broadcast spawning and thus, early development

could occur at anomalously high temperatures in situ (Figure 1).

Using laboratory experiments, we queried whether adults could

“prime” their progeny during periods of anomalously elevated

temperatures, or whether MHW stress during gametogenesis

would have deleterious effects on offspring performance. Using

acute temperature trial assays used previously on early stage

echinoderms (Wong and Hofmann, 2020), we observed that

maternal exposure to MHW temperatures increased thermal

tolerance in progeny (Figure 4), as demonstrated by higher

LT50 values.

These results join other studies that examined TGP in marine

invertebrates in response to thermal stress, where the offspring

response varied with species, timing, and nature of parental
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2017; Rivera et al., 2021; Bernal et al., 2022; Waite and Sorte, 2022).

For example, in a study on the marine polychaetae, Ophryotrocha

labronica, researchers found that the thermal tolerance of the progeny

tracked the timing of the temperature exposure of the female, where

tolerance of offspring differed depending on whether maternal

acclimation occurred during early or late oogenesis (Massamba-

N'Siala et al., 2014). These results match the outcome of our

experiment in S. purpuratus. Together, these findings underscore

the significance of the timing of the warming events associated with

MHWs and their subsequent effects on offspring resilience. Since the

nature of MHWs can vary from prolonged to short-term events

(Oliver et al., 2021), transgenerational responses may differ

depending on duration of maternal exposure.
4.2 Transgenerational effects on embryo
and larval body size

In addition to measuring upper thermal tolerance as a metric of

offspring performance, we examined body size, an important
A B

DC

FIGURE 6

Egg morphometrics and assessment of biochemical storage biomolecules. (A) Diameter and (B) 2D area of eggs from females acclimated to MHW
(W) and non-MHW (C) conditions. (C) Total protein (ng/egg) and (D) total lipid content (ng/egg) of eggs from females acclimated to MHW (W) and
non-MHW (C) conditions. Only results with significant p-values are displayed on each graph.
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functional trait of echinoderms in larval ecology and physiology

(Strathmann, 1971; Allen and Marshall, 2014) that has shown to

correlate to performance in studies of local adaptation and plasticity

in S. purpuratus (Kelly et al., 2013; Strader et al., 2022). In this study

using MHW-relevant temperatures, we found that maternal

thermal history significantly influenced body size (measured as

2D area) for early gastrula embryos and prism larvae (Figure 5),

where offspring from MHW-acclimated females were larger in size,

potentially indicating a positive transgenerational effect, since larger

size in larvae is often associated with higher fitness (Strathmann,

1971; Allen and McAlister, 2007). Offspring developmental

temperature also influenced body size for prism-stage larvae,

which was evident in the observed differences in skeletal rod

length. An interaction between maternal thermal history and

developmental temperature was seen only at the early gastrula

stage, where differences in body size within each developmental

treatment were dependent on the maternal experience.

Other studies examining transgenerational effects in response to

elevated temperature conditions in echinoderms have reported mixed

effects on larval size. For example, studies on Strongylocentrotus

intermedius and Tripneustes gratilla, show that adults exposed to

long-term elevated temperatures, 15 months and 6 months

respectively, produced progeny that were smaller in size compared

to progeny from adults conditioned to ambient temperatures (Zhao

et al., 2018; Karelitz et al., 2019). In addition, adult long-term

acclimation to +2°C temperature conditions did not affect body

size of the progeny in Heliocidaris erythrogamma (Harianto et al.,

2021). Overall, measurement of body size at different stages in

development may contribute to the differences seen amongst

studies. Furthermore, length of adult exposure, differences in

species plasticity, and population-level responses likely contribute

to reported differences in transgenerational responses.
4.3 Maternal provisioning as a general
mechanism of TGP

Mechanistically, maternal contributions to shifts in tolerance of

the progeny could manifest in two ways - 1) as maternal energetic

investment in the eggs, and/or 2) as maternally-derived egg

transcripts and proteins working to reduce cellular damage due to

heat stress during early development. Historically maternal

energetic investment has been assessed through measurements of

egg size and biochemical composition (i.e., lipids and proteins)

where studies have shown that egg size and nutritional

macromolecules are significant in determining conditions and

performance of developing progeny in echinoderms (Jaeckle,

1995; Prowse et al., 2008; Moran et al., 2013; Peters-Didier and

Sewell, 2017). Given these data on echinoderm eggs, we

hypothesized that observed differences in offspring phenotype

would be due to differences in maternal energetic provisioning

(i.e., egg size and biochemical composition). In testing this

hypothesis, we found that acclimation of females to MHW

temperatures during oogenesis resulted in significantly altered egg

characteristics. Specifically, although egg size was unaffected by

maternal acclimation, eggs from MHW- acclimated females had
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higher protein content and had total lipid content that trended

upward (Figure 6).

For marine invertebrates, egg size is often used a standard

measurement of maternal investment as it has been linked to

numerous adaptive traits in developing embryos and larvae

such as fertilization success, larval development, and post-

metamorphosis survival (Moran and McAlister, 2009; Allen and

Marshall, 2014). While differences in egg size were not observed in

our study, past research examining the effects of maternal

acclimation temperature on egg size report varying outcomes

(Foo and Byrne, 2017). In combination, data in the literature

suggest that species and the duration of thermal exposure are

likely significant determinants of egg size (Skadsheim, 1989;

Suckling et al., 2015; Guillaume et al., 2016; Karelitz et al., 2019).

However, when examining provisioning of eggs, focusing solely on

size may not be the best predictor of energetic content. In echinoid

species specifically, while egg size generally scales with energy

content, at the intraspecific level this relationship is weakened

(McEdward and Morgan, 2001; Moran and McAlister, 2009).

In this light, to further assess differences in egg quality, we

measured total protein and lipid concentrations. Protein

concentrations were significantly higher in eggs from females

with the history of high temperature conditioning (Figure 6C). In

addition, although there was a trend indicating higher lipid levels as

well, there was not a significant difference between eggs of MHW-

and non-MHW-acclimated females. In general, the levels of protein

and lipid measured here are consistent with other measurements in

S. purpuratus (Matson et al., 2012; Wong et al., 2019). Studies

examining how these macromolecules are used throughout

development show that lipids (specifically triglycerides) are major

energy fuels, while structural lipids (e.g., phospholipids) and

proteins are used to construct the larval body (Byrne et al., 2008).

These patterns of biochemical utilization support our results where

larger larvae developed from more protein rich eggs (i.e., eggs from

MHW-acclimated females).

While not evaluated in our study, differences in egg protein

characteristics may potentially influence thermal tolerance of early-

stage embryos via maternal transmission of heat shock proteins. In

support of this hypothesis, a study examining gonad tissue of

acclimated adult urchins (20 vs 26°C) found higher levels of

Hsp70 protein in the warm-acclimated urchins (Harianto et al.,

2021). While measurements of gonad tissue do not identify

standing stocks of defensome proteins in spawned eggs, this study

does highlight the potential for maternal acclimation via changes in

egg protein characteristics to alter tolerance of developing embryos.

In addition to proteins, maternally sourced transcripts may also

contribute to differences in thermal tolerance at early embryonic

stages. Together these inherited molecules are necessary for driving

early developmental processes, and it is not until the maternal-to-

zygotic transition that embryos are able to activate their own

genome (Hamdoun and Epel, 2007; Schier, 2007). With this in

mind, we chose to study hatched blastula embryos, specifically, as

studies have shown that these early-stage embryos still rely on

maternal transcripts and are unable to completely activate elements

of the embryonic defensome, e.g., genes for molecular chaperones

and heat-shock proteins (Sconzo et al., 1995).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1212781
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chamorro et al. 10.3389/fmars.2023.1212781
To further highlight physiological mechanisms that contribute

to TGP, transcriptomic studies on urchins have shown that parental

acclimation to different temperatures influence gene expression in

offspring during early development (Shi et al., 2020). Similar results

have been observed in S. purpuratus under variable conditions of

temperature and pCO2 (Wong et al., 2018). While transcriptomic

techniques have aided our ability to determine the molecular

underpinning of TGP, to shed light on maternal provisioning

mechanisms, future studies should incorporate long-term

acclimation during gametogenic windows followed by

examination of maternally sourced RNA and proteins in eggs and

early embryos. Assessment of the temperature-related egg changes

in a climate-change context could be further investigated by

examining the translatome, an approach that has been used in

other echinoderms (Chassé et al., 2018).
4.4 Effects of developmental temperature
on offspring phenotype

In addition to addressing transgenerational processes, the factorial

design of the experiment allowed us to examine how the temperature at

which embryos developed influenced their phenotypic and functional

traits (i.e., body size and thermal tolerance). We found that progeny

from non-MHW acclimated females reared in non-MHW conditions

had the lowest LT50 value. However, thermal tolerance of these progeny

increased when reared at the higher MHW temperature (Figure 4).

This outcome has been observed in other echinoderm species. In a

study on red urchins (Mesocentrotus franciscanus), embryos reared at

17°C had an increased thermal tolerance as compared to embryos

reared at 13°C (Wong and Hofmann, 2020), indicating that if rearing

temperatures do not exceed upper thermal limits there is a potential for

a resistance response in early-stage embryos. In our study,

developmental temperature also had a significant effect on body size

at the latest stage evaluated (i.e., PR), where development in MHW

conditions was positively associated with body size and body rod

length (Figure 5).
5 Conclusion

This study provides evidence that TGP may contribute to the

capacity to resist the thermal stress associated with MHWs in a

benthic marine invertebrate. Findings from our thermal tolerance

trials showed that offspring with a history of MHW exposure,

whether it be via maternal history or during development, had

higher LT50 values than those that were naïve to MHW conditions,

suggesting that both trans- and intragenerational acclimation were

acting to increase tolerance to heat stress. These results suggest that

prior exposure to elevated temperature can increase tolerance of

early-stage S. purpuratus. Since early life history stages are often

considered to be the most sensitive to abiotic stressors (Pandori and

Sorte, 2018), and are currently being affected by MHWs (Rogers
Frontiers in Marine Science 12
et al., 2021), maternal effects such as those observed in our study

may act to ameliorate negative impacts of MHWs.

It is important to note that there are limitations to the

interpretation of the results of this laboratory experiment.

Specifically, it is unclear how long this resistance will last, either

in the lifetime of individuals, or across subsequent generations.

While carry-over effects may increase tolerance to thermal stress in

a single generation, past TGP studies have shown that acquired

tolerances may not persist within or across generations (Byrne et al.,

2020). Additionally, due to the variable nature of MHW events it is

important to consider the possibility of environmental mismatches

between parents and offspring and how this may influence inherited

traits (Baker et al., 2019). Future research that incorporates the

spatio-temporal patterns of MHWs at the local level and further,

matches these events to the phenology of critical life history events,

will improve our ability to forecast impacts of MHWs on coastal

marine ecosystems. Variation in thermal patterns are likely to have

significantly different impacts on important life history events

depending on the species and life history strategies in question, a

perspective that has been noted in the ocean global change biology

literature (Bautista and Crespel, 2021). Lastly, food quality and

availability during MHW conditions will also influence adult

condition in situ. Lowman and colleagues have reported lower

nutritional quality of kelp exposed to high temperatures (Lowman

et al., 2022), which may subsequently impact urchin growth and

reproduction (McBride et al., 2004).

From a global change perspective, MHWs are predicted to

become a dominant force in many of the world’s oceans (Oliver

et al., 2021; Smith et al., 2023) and a greater understanding of how

ecologically and economically important species respond to the

thermal stress associated with MHWs will be critical in predicting

the vulnerability of key fisheries (Smith et al., 2021) and on how

biodiversity and ecosystem health might be altered in warming

coastal oceans (Smale et al., 2019; Michaud et al., 2022). Overall,

TGP studies will provide critical insight into mechanisms of

acclimation in response to these thermally stressful events that

function at ecological timescales, providing time for adaptation to

catch up.
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