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While remote sensing images could convey essential information of surface

water environment, the low spatial resolution limits their application. This study

carried out a series of experiment tests of thermal discharge from a coastal

power plant and constructed an image dataset HY_IRS, representing the

transport and diffusion of discharged heated water in tidal waters. Two image

super-resolution (SR) reconstruction models based on deep learning (DL),

ESPCN and ESRGAN, were trained based on this dataset and then used to

reconstruct high-resolution remote sensing images. It shows that the two DL

models can markedly improve the spatial resolution of the surface diffusion

image of thermal discharging, with the PSNR improved by 8.3% on average. The

trained two models were successfully used to improve the spatial resolution of

thermal infrared remote sensing SST images from Landsat8 TIRS, indicating that

the SR model based on DL has a good effect and a crucial application prospect in

the field of improving the resolution of pollutant diffusion remote

sensing images.

KEYWORDS

super resolution (SR), deep learning, thermal discharge, transport and diffusion field,
thermal infrared remote sensing
1 Introduction

Remote sensing images are an essential data source for surface environmental

monitoring. However, their spatial resolution is generally low due to the long distance

between sensor and observation object as well as the technical limitation of photosensitive

device in camera. Table 1 summarizes the current thermal infrared d satellite remote
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sensing techniques, which involve surface temperature information.

It can be found that their spatial resolution is around 0.1~1km (Hu

et al., 2017). This low spatial resolution makes it unsatisfactory to

meet the needs both in scientific research and engineering

management. Specifically, the satellite remote sensing is supposed

to assist in assessing the impact of thermal discharge by coastal

power plants, but in reality the temperature rise area cannot be

accurately determined due to the low spatial resolution of sensing

images. In the case of near-surface field monitoring and indoor

tests, industrial thermal infrared cameras are often used to

photograph the thermal effluent dispersion patterns. However,

due to the large size of the lens imaging unit of the uncooled

thermal infrared imager, the low imaging pixels of the camera

(currently, the number of pixels per side of the images produced by

state-of-the-art industrial thermal infrared cameras at most 640). In

most cases, it is often necessary to carry the camera on a platform

far away from the test object (such as low-flying unmanned aerial

vehicles) to capture the full-field patterns, resulting in failure to

capture a clear and detailed thermal pollutant diffusion field from

the sensing inversion images.

Super-resolution (SR) reconstruction refers to the technology

focusing on constructing high-resolution (HR) images from low-

resolution (LR) ones. SR techniques can be classified into three

categories: reconstruction-based, sample learning-based, and deep

learning (DL)-based (Tang et al., 2020; Xia et al., 2021). Among

them, the f data-driven DL-based image super-resolution

algorithms have been significantly improved since 2014, and

subsequently applied in computer vision and image processing,

which becomes the hotspot in SR research (Wang et al., 2020). The

first DL-based SR model is the Super-Resolution Convolutional

Neural Network (SRCNN) model based on a pure convolutional

neural network proposed by Dong et al. (2014). In 2016, Shi et al.

(2016) improved the SRCNN by introducing sub-pixel convolution

layers and proposed the Efficient Sub-Pixel Convolutional Neural

Network (ESPCN) model. The ESPCN model offers a

computationally efficient solution by leveraging sub-pixel

convolution layers, which perform upscaling in the feature space

rather than the image space. This design significantly reduces

computational complexity and memory requirements, allowing

the model to perform super-resolution tasks at a much faster rate

compared to the traditional methods. Subsequently, the Super-
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Resolution Generative Adversarial Network (SRGAN) model,

combining residual networks and generative adversarial networks

(GANs), has been developed with a more satisfactory performance.

In 2018, Wang et al. (2018) proposed the Enhanced Super-

Resolution GAN (ESRGAN) model, an extension of the SRGAN

introducing several significant improvements, which includes a

generator, a discriminator, and a feature extraction network.

Recently, the application of a transformer-based approach was

presented in (Lu et al., 2022), named the Efficient Super-

Resolution Transformer, and it has also been successfully applied

to image super-resolution reconstruction. Deep learning techniques

continue to outperform traditional based algorithms in terms of

efficiency and effectiveness due to end to end training (Bashir et al.,

2021). Deep learning algorithms carry flexibility which could

handle super resolution issue with different scale factors, blur

kernels and noise levels inside a unified maximum a posteriori

framework (Dawa et al., 2023). Overall, the ESPCN and ESRGAN

models are currently the most advanced and widely-used

SR models.

The fates of pollutants in water are dominated by the

dynamic flow and the turbulent field, resulting in the chaotic

but organized distribution patterns and boundaries (Figure 1A).

However, the current ESPCN and ESRGAN SR models are

usually developed for universal use and thus trained by diverse

categories data (Figure 1B), consequently they cannot

specifically address SR for pollutant diffusion images in natural

waters. In recent years, DL has been applied to SR research on

geographic remote sensing images (Dong et al., 2020; Li et al.,

2020; Shen et al., 2020; Zhang et al., 2020; Guo et al., 2021).

Nevertheless, the satellite images used for model training

generally have a low resolution, resulting in an insufficient

capture of the details of pollutant diffusion field such as the

turbulent diffusion driven by small-scale vortices.

Taking the thermal discharge in cooling water from a coastal

power plant as an example, this study aims to establish a thermal

infrared imaging dataset for surface temperature measurement. The

ESPCN and ESRGANmodels were trained and tested to conduct SR

research on the images of surface-water pollutants diffusion, and

then applied to the satellite remote sensing images of thermal

discharge from a coastal power plant to evaluate the effectiveness

of image quality improvement by DL models.
TABLE 1 Current thermal infrared satellite remote sensing images and their spatial resolutions.

Sensor Satellite Platform Number of Thermal Infrared Bands Swath Width/km Spatial Resolution/m

ASTER EOS (USA) 5 60 90

TEM+/TM/LDCM TIRS Landsat (USA) 1/1/2 185 60/120/100

IRMSS CBERS-1/02 (China) 1 120 156

IRS HJ-1A/B (China) 2 720
150
300

AVHRR NOAA(USA) 3 2800 1100

MODIS EOS(USA) 16 2330 1000

VIRR/MERSI FY-3(China) 2 2800/2800 1100/250
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2 Thermal infrared image dataset of
cooling water discharged from coastal
power plants

The dataset used in this study consists of continuously-observed

thermal infrared images in a physical test for the cooling water

discharged from a coastal power plant. The power plant uses raw

seawater for cooling, which is drawn vis a channel on the southeast

side of the plant and discharged through another channel on the

west side. The layout of the water intake and discharge can be found

in Figure 2A. The study area locates in a typical irregular semi-

diurnal tidal zone, with tidal durations of 346 minutes and 397

minutes for the flooding tide and ebbing tide periods, respectively.

A series of physical model experiments were conducted to study

the thermal discharge. Experiment scenarios include two types of

heat discharge, three types of tides (typical spring, moderate, and

neap tides) in two seasons (winter and summer), and two types of

open channel discharge schemes. The experiments were designed

based on gravity and buoyancy similarity, with the detailed

parameters shown in Table 2. The surface thermal diffusion field
Frontiers in Marine Science 03
was obtained by the TVS-500EX thermal infrared camera

(Produced by NEC Corporation of Japan), with a temperature

detection sensitivity of 0.1 °C and an imaging size of 320×240

pixels. The camera was installed at a height of 7 meters above the

water surface, and the shooting interval was 3 seconds in the

experiment, corresponding to 1.64 minutes in the prototype.

Some images captured by the camera are listed in Figure 2B.

During the experiment, the ambient temperature in the lab was

4.1 °C, and the emissivity of water body was 0.97.

The experimentally acquired images were organized into a

dataset named HY_IRS dataset including 10736 thermal infrared

images of cooling water discharge under different experiment

conditions was obtained. These images were converted into

grayscale images with a resolution of 320×240 pixels and

randomly divided into a training set (8701 images), a validation

set (1535 images), and a test set (500 images). The training set

samples were generated by down-sampling the original images with

a 1/4 scaling factor (i.e., r=4).

During the summer of 2020, prototype monitoring of the sea

surface temperature (SST) in the vicinity of the power plant was

conducted using ship-based measurements, unmanned aerial
A B

FIGURE 2

Physical model test of the thermal discharge from a coastal power plant (A), and the thermal infrared images captured by TVB-500EX infrared
thermal imager (B).
A B

FIGURE 1

Typical distribution patterns of pollutant transport in natural waters (A) and a typical image (a butterfly image from the DIV2K dataset) used in DL SR
model training (B).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1211981
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Duan et al. 10.3389/fmars.2023.1211981
vehicles, and satellite remote sensing. Seventeen cloudless satellite

images (since the nuclear power plant has been in operation since

October 2018) were obtained from Landsat8 TIRS. The C1 Level1

data products of thermal infrared bands 10 and 11 of the TIRS

sensor were selected. The SST of the TIRS data was retrieved using

the atmospheric correction method based on the radiative transfer

equation and the atmospheric correction parameter calculator

provided by National Oceanic and Atmospheric Administration

of United States (NOAA) (Barsi et al., 2003), making use of the

meteorological data collected from the local meteorological tower.

The spatial resolution of the SST retrieval images from Landsat8

TIRS was 100 meters per pixel.
3 Model establishment and training

Through improving the ESPCN and ESRGAN architectures, SR

models for thermal infrared diffusion images of cooling water

discharge from the power plant were established.
3.1 ESPCN model

The DL-based ESPCN model proposed by Shi et al. (2016) was

specifically designed for single-image SR tasks, with the primary

objective of upscaling LR images to HR ones while retaining or even

enhancing the perceptual quality. In its architecture, the feature

maps are extracted in the LR space, and an efficient sub-pixel

convolution layer which learns an array of upscaling filters to

upscale the final LR feature maps into the HR output is

introduced. The handcrafted bicubic filter in the SR pipeline is

replaced with more complex upscaling filters specifically trained for

each feature map, whilst reducing the computational complexity of

the overall SR operation.

The underlying architecture of ESPCN comprises three key

components: a convolutional feature extraction layer, a non-linear

mapping layer, and a sub-pixel convolution layer.

Convolutional Feature Extraction Layer: The initial layer in the

ESPCN model is dedicated to extracting essential features from the

LR input image. This layer employs a set of convolutional filters,

which are convolved with the input image to generate feature maps.

The purpose of this process is to capture both local and global

structures present in the image which are crucial for reconstructing

the HR output.

Non-linear Mapping Layer: Following the feature extraction

layer, the second layer aims to establish a non-linear mapping
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between the extracted features and the HR image representations.

This layer consists of multiple convolutional filters which are

applied to the previously generated feature maps. These filters are

responsible for learning the complex relationships between the LR

input and the HR output, enabling the model to effectively upscale

the image.

Sub-pixel Convolution Layer: The final component of the

ESPCN architecture is the sub-pixel convolution layer, also

known as the upscaling or deconvolution layer. This layer

performs a pixel-shuffle operation to rearrange the feature maps

produced by the non-linear mapping layer into a HR output. The

sub-pixel convolution layer ensures that the reconstructed image

retains the spatial characteristics of the input image while

minimizing computational complexity and memory usage.

In this study, MeanSquaredError was used as the loss function

and the Adam was adopted as the optimizer with 0.001 learning

rate. The architecture of the ESPCN model consists of three

convolution layers for feature maps extraction, and a sub-pixel

convolution layer that aggregates the feature maps from LR space

and builds the SR image in a single step. The last layer is processed

to convert the LR feature maps to a HR image. r=4 is referred to the

upscaling ratio when downsample the image; nl is the number of

features at layer l, (where l ∈ (1, L − 1) for a network with L layers,

L=5 in this model); n0 = 3 is equal to the color channels of the image

in this work. The output shapes of layer 1 to 5 are 1, 64, 64, 32, 16, 1,

with 0, 1664, 36928, 18464, 4624, 0 parameters respectively. This

architecture avoids upscaling LR image before feeding it into the

network. It first applied a l layer convolutional neural network

directly to the LR image, and then applied a sub-pixel convolution

layer that upscaled the LR feature maps to produce SR image. After

the input layer, one convolutional layer was added in accordance

with Shi et al. (2016). The channel numbers of the three

conventional 2D convolutional layers were 64, 64, and 32,

respectively, with convolution kernel sizes of 5, 3, and 3, and

finally follows a 2D convolutional layer with r2 = 42 channels,

with a kernel size of 3×3. The network was trained with input

training images of size (320/4) × (240/4). The total number of

network parameters was 61680.
3.2 ESRGAN model

ESRGAN introduces several enhancements to the original

SRGAN model, such as the incorporation of the Residual-in-

Residual Dense Block (RRDB) architecture, a relativistic

discriminator, and an improved loss function that combines
TABLE 2 Design parameters of the physical test for thermal discharge from a coastal power plant.

Flow scale Qr Horizontal scale Lr Vertical scale Hr
Time
scale

Discharge temperature
rise

4.732×105 360 120

32.863 8.1 °C
Prototype flow: 134/268

m3/s
Prototype length and width: 21.6×14.5

km2
Prototype maximum water depth: 12

m

Model flow: 0.283/0.566 L/s Model length and width: 40.4×60 m2 Model maximum water depth: 10 cm
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perceptual, adversarial, and content losses. These innovations result

in superior performance and the ability to generate HR images with

enhanced perceptual quality, finer details, and fewer artifacts. The

ESRGAN model consists of a generator, a discriminator, and a

feature extraction network.

Generator: The generator in ESRGAN is responsible for

producing HR images from the given LR inputs. The architecture

of the generator is based on the RRDB design, which is an enhanced

version of the residual dense block in the original SRGAN. RRDB

incorporates a hierarchical residual learning mechanism to facilitate

efficient information flow and gradient propagation, allowing the

generator to capture both global and local features effectively. The

generator consists of multiple RRDBs, followed by an upscaling

layer that employs sub-pixel convolution to upscale the generated

feature maps into an HR image.

Discriminator: The discriminator in ESRGAN is designed to

distinguish the HR images generated by the generator from the

ground truth HR images. The architecture of the discriminator is

based on a deep convolutional neural network, which includes

several convolutional, batch normalization, and Leaky ReLU

activation layers. The primary objective of the discriminator is to

guide the generator towards producing more realistic and

perceptually convincing HR images.

Feature Extraction Network: In addition to the generator and

discriminator, ESRGAN employs a feature extraction network to

compute the perceptual loss during the training process. The

perceptual loss is calculated as the difference between these extracted

features, encouraging the generator to produce images with similar

high-level structures and characteristics as the ground truth.

The ESRGAN model selects the optimal parameters trained on

the bicubically down-sampled DIV2K dataset (https://tfhub.dev/

captain-pool/esrgan-tf2/1). The network architecture used in this

study is shown in Figure 3. Compared with the traditional SRGAN,

this network removes all batch norm (BN) layers from residual

block (RB) and replaces the original basic block with RRDB, which

combines a multi-layer residual network and dense connection, and

introduces a residual scaling factor b.
Frontiers in Marine Science 05
3.3 Loss function and evaluation metrics

As for the loss function design, the following three image

training effect evaluation indicators are combined in the standard

ESPCN model and ESRGAN model:

(1) Mean squared error (MSE) of image interpolation;

(2) Peak signal-to-noise ratio (PSNR),

PSNR = 10� log10(
(2n − 1)2

MSE
)

where n represents the bit depth of each pixel in the image,

which is 8 in this study.

SR algorithms are typically evaluated by several widely-used

distortion measures, such as PSNR. Compared with the subjective

evaluation of images by human observers, PSNR is more objective in

evaluating the effect of image signal processing (Ledig et al., 2017).

Human visual quality is more sensitive to the low spatial frequencies and

more sensitive to brightness compared to chromaticity. Besides, visual

judgment could be easily affected by neighbouring pixels. Generally, for

image reconstruction, a PSNR > 40 dB represents good quality, PSNR =

30~40 dB represents moderate quality, PSNR = 20~30 dB represents

poor quality, and PSNR< 20 represents unacceptable quality.

(3) Hash fingerprint comparison between images

The hash fingerprints of the images are calculated using mean

hash algorithm and difference hash algorithm. The main process is

as follows: first, the image is converted to grayscale. In the mean

algorithm, the mean value of grayscale within the whole image is

calculated first; then traverse the gray value of each pixel, set it to 1 if

it is greater than the mean value, and set it to 0 if it is less than the

mean value, to form a fingerprint; finally, the similarities of

corresponding pixels between the two images are compared, by

calculating the proportion of the same number of pixels to the total

number of pixels. In the difference algorithm, the pixel value is

compared with the next pixel value in the order of rows and

columns, and the greater is recorded as 1, and the smaller is

recorded as 0, forming a fingerprint; finally, compare the

similarities of the corresponding pixels of the two images, and
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FIGURE 3

The network architecture of ESRGAN model in this work redrawn based on the model proposed by Wang et al. (2018). Residual in Residual Network
consisting of convolution layers, residual in residual block (RB) as the trunk of the model, pixel shuffler layers, and the upscaling convolutional layers.
All BN layers in RB are removed compared the standard SRGAN model, the RRDB block is added to replace the original basic block, and b is the
residual scaling parameter.
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count the proportion of the mean value of the same number to the

total number of pixels.
3.4 Model training

The model was built using the DL framework TensorFlow 2.3.0.

Model training and evaluation were conducted on an HP Z4G4 GPU

workstation. The GPU parameters were NVIDIA Quadro RTX 4000,

Cudnn 7.6.5 cuda10.1_0, RAM: 32.0GB, and Python 3.8.10.

During model training, the batch size was from 8 to 64, and

EarlyStopping technique was used for regularization. The model

was tested by training 20-100 epochs, and the model with the best

performance in the last 100 batches was selected. The results

showed that after 20 batches, the loss gradually stabilized, and the

PSNR gradually increased to above 37, as shown in Figure 4A.

Fifty thermal infrared images, representing temperature fields on

different tidal state, were selected from 500 images of temperature

distribution under cooling water discharge. The ESPCN model was

used to test the SR effect, and the traditional Bicubic method was used

as the comparative baseline. The image quality of the model prediction

was evaluated, as shown in Figure 5. The results showed that the

average PSNR of the LR images obtained by Bicubic was 33.6, while the

PSNR of the images reconstructed by the ESPCN model increased to

36.4, with an improvement in image resolution of 8.3%, as shown in

Figure 4B. Although there is still some difference between “HR” and
Frontiers in Marine Science 06
“ESPCN”, it is clear that the reconstructed HR images are significantly

closer to the original HR images. The transport-diffusion patterns

shaped by tidal flow and turbulence, as well as the irregular edge of the

heated water could be better restored.
4 SR of thermal infrared satellite
remote sensing images

The optimal ESPCN model trained on the HY_IRS dataset

and the ESRGAN model trained on the DIV2K dataset were used

to reconstruct 4x super-resolution Landsat8 SST inversion

images (for the selected 18 views from Oct. 2018 to Dec.

2022). Since no original high-resolution image is available for

satellite remote sensing images, the bicubic interpolation

method was used as a baseline for comparison. The PSNR of

the ESPCN predicted images and Bicubic is 33.96 on average

(with maximum value 34.64 and minimum value 33.39), while

that of the ESRGAN predicted images and Bicubic is 28.96 on

average. Figure 6A shows the SR effect of remote sensing images

at 2:30 GMT on December 24, 2018. It shows that both the two

DL models improve the spatial resolution of remote sensing

images and ensure coherence with the original images and the

bicubic reconstructed images.

The quantitative comparison and detailed analysis of the water

surface temperature (SST) area, obtained by remote sensing before
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The training process of ESPCN model (A) and its result evaluation of PSNR for 50 selected test images (B). The model was tested by training 100
epochs, and the model with the best performance in the last 100 batches was selected. The results showed that after 20 batches, the loss gradually
stabilized, and the PSNR gradually increased to above 37, as shown in subfigure (A). The val_loss (red line) is the value of cost function for the cross-
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FIGURE 5

Two super-resolution reconstructed image samples by ESPCN model. As for the ebbing tidal image shown in (A), the PSNR increase by 8.1% from
33.26 (LR vs. HR) to 35.95 (ESPCN vs. HR). As for the flooding tidal image shown in (B), the PSNR increase by 10.6% from 32.91 (LR vs. HR) to 36.37
(ESPCN vs. HR).
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and after SR, as well as by the In-situ observation and numerical

simulation, were conducted. Take the results of SST field near the

coastal power plant on December 19, 2022 as an example. At 2:30 am

GMT, a low-spatial-resolution (100m) image of the SST field was

obtained using Landsat8 satellite remote sensing inversion, and we

refer to it as the LR : Landsat8 Image. The image was inverted from

the single-channel thermal infrared data on the satellite, through the

atmospheric impact correction by method of MODTRAN

atmospheric radiative transfer model. Simultaneously, we carried

out thermal infrared remote sensing survey using a low-altitude

UAV (with the Optris PI640 thermal infrared imager on board)

and obtained a HR (1.2m) image of the SST field, and we refer to it as

the UAV measure image. Both the inversion SST results obtained by

satellite and UAV remote sensing were calibrated using a large

number of direct measurements at the sea surface. Also, a SST

three-dimensional numerical simulation was carried out using the

Delft3Dmodel (Deltares, FLOW2D3DVersion 6.03.00.64634). In the

simulation, meteorological data were obtained from the monitoring

data at the power plant site and the reanalysis data CFSv2 of the

National Centers for Environmental Prediction (NCEP). The

corresponding simulation result is denoted as NumSimu. Finally,

we reconstructed the 4x high-resolution image from the input of LR :

Landsat8 Image by the trained ESPCN model that discussed above.

The results obtained by all the above methods are compared in

Figure 6B. These areas of different temperature ranges (within the 134

km2 observation area) of all the methods are quantitatively analyzed

for comparison, shown in Figure 7. Statistically, there are some visible

differences between the statistical results of temperature areas

obtained by low-resolution satellite remote sensing and that by the

high-resolution UAV remote sensing. The mean relative error of

temperature areas (from ≥0 to ≥015 °C) is -28.4%. At the same time,

it can be found that the statistical area values of different temperature

intervals of the images after SR reconstruction by DLmodel are closer

to the high-resolution UAV real-world results. The mean relative

error of temperature areas reduced to -11.4%. In contrast, the errors
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of temperature areas in the result of the numerical simulation are

significantly larger, with an average relative error of 50.2%. Even

some obviously difference in distribution shape of the temperature

rise can be seen. It is understandable that the numerical simulations

yielded poor results, since the numerical simulation of coastal water

temperature is always a difficult task. There are many sources of

errors in the simulation, such as numerical errors, inaccurate input

meteorological conditions, errors in the calculation for tidal flow and

surface heat exchange, etc. The use of DL models to improve image

resolution has proven to be a very effective and fast way to achieve the

goal of improving the statistical accuracy of SST remote sensing data.
A

B

FIGURE 6

SR of Landsat8 TIRS thermal infrared satellite images based on DL models. Subfigure (A) shows the SR effect of remote sensing images at 2:30 GMT
on December 24, 2018 based on ESPCN and ESRGAN; subfigure (B) compares the results obtained by all three methods, i.e., Landsat8 satellite
remote sensing inversion, UAV remote sensing inversion, and numerical simulation.
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FIGURE 7

Quantitatively comparison in areas of different temperature ranges
on 2022-12-19, acquired by different methods. LR : Landsat8 Image:
the low-spatial-resolution (100m) image of the SST field from
Landsat8 satellite remote sensing inversion; the UAV measure
image: a high-spatial-resolution (1.2m) image of the SST field
acquired by the thermal infrared remote sensing survey using a low-
altitude UAV; NumSimu: a SST three-dimensional numerical
simulation was carried out using the Delft3D model; HR : ESPCN:
the 4x reconstructed HR image from the input of LR : Landsat8
Image by the trained ESPCN model.
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5 Conclusion

In conclusion, the study carried out a series of physical tests of

thermal discharge from a coastal power plant and built an image

dataset HY_IRS, representing the pollutant transport and diffusion in

tidal waters. Two SR models based on deep learning, ESPCN and

ESRGAN, were trained based on this dataset. Dataset HY_IRS is

designed to facilitate the development of SR models for thermal

infrared images of cooling water discharge, which is of great

significance for improving the accuracy of water pollution surveys

and providing effective support for water environmental management.

Targeted training of deep learning-based image SR models using

thermal infrared images of wastewater discharge experiments can

effectively capture the distribution morphology of pollutant transport

and diffusion in tidal waters and enhance spatial resolution for images

of such substance diffusion fields. The average improvement of the

spatial resolution of images is up to 8.3%. Quantitatively comparison

in areas of different temperature ranges given by satellite and UAV

remote sensing inversion, as well as a numerical model indicates that

the use of DL models to improve image resolution has proven to be a

very effective and fast way to achieve the goal of improving the

statistical accuracy of SST remote sensing data. Deep learning models

trained on thermal infrared images of thermal discharge experiments

can be used for spatial resolution enhancement of satellite remote

sensing inversed images of the surface water environment.
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